Syllabus for the program of Integrated Master of Technology in Chemical Engineering

Preamble

The program, Integrated Master of Technology in Chemical Engineering is offered by Institute of Chemical Technology (ICT) Mumbai Campuses at Bhubaneshwar and Marathwada, Jalna.

About ICT Mumbai

The Institute of Chemical Technology (ICT) Mumbai, formerly UDCT, University of Bombay (Mumbai now) was established on October 1, 1933 as a department of the University by the desire of industry and support of the government of Province of Bombay, particularly to lend support to the textile (a staple industry in Western India) and chemical industry, an infant industry. Over the years the UDCT grew in its status and extended its programs to sectors of chemical and allied industry, pharmaceuticals, materials and energy and became a role model for its contributions to industrial connectivity and growth. ICT was granted Deemed to be University by MHRD on 12th September 2008 and an elite status and Centre of Excellence on par with IITs/IISc/IISERs which was granted by the State Assembly on October 20, 2012; a unique distinction in history of India. ICT's track record of 85 years is phenomenal. ICT is ranked among the best in India having the highest NAAC rank of A++ with CGPA of 3.77. It was declared at Category I institute by MHRD/UGC Notification (The Gazette of India dated Feb. 12, 2018). On 3rd April, 2018, The National Institutional Ranking Framework (NIRF) of MHRD placed ICT at No. 10 in Engineering, No. 4 in Pharmacy, No. 19 among Universities and No. 30 among all. In QS BRICS 2019 ranking, ICT secured 115th rank among all with 100/100 marks for research and innovation. Once again in the Scopus Survey November 2018, ICT is found to be the top in Chemical Engineering and in top 5 overall in the country based on the Weighted Average Citation Impact (Sci-Val, Scopus). In the latest list of Institute of Eminence, ICT figures in 12 public institutes which will be considered by UGC/MHRD for special funding.

Over the years, ICT has produced more than 750 first generation entrepreneurs, 19 Padma awardees (3 PV, 8 PB, 8 PS), India's first 5 Ph Ds in Engineering and Technology. This sectorial excellence has been due to the students and faculty coming from all over India. ICT runs 9 UG, 18 PG, 29 Ph D, 1 PG Diploma in Chemical Technology Management and 1 Certificate Course in Chemical Safety and Risk Management, with a student strength of over 2300 among which currently there are 575 PG and 700 Ph D students in all branches of Engineering and Sciences.

Because of the Category I and Deemed to be status, it was possible for ICT to go out of Maharashtra. In view of massive investment in energy, petrochemicals, chemicals, polymers, textiles, minerals, materials, biotechnology and pharmaceutical industries in Odisha, ICT was requested to open a campus in Bhubaneswar. Indian Oil Corporation Ltd took a historic decision to support fully a campus of ICT in Bhubaneswar. It was officially launched at the hands of Hon'ble Shri Ram Nath Kovind, the President of India on 18th March 2018. Similarly, the Marathwada Campus was instituted at the behest of the Government of Maharashtra and was inaugurated by The Hon. Chief Minister Shri Devendra Phadnavis on 28 May 2018, Government of Maharashtra.

About Integrated Master of Technology Program

The unique features of the Integrated M. Tech. are

- 1. Integrated M. Tech. after 12th Standard (HSSC) of 5-year duration consisting of 15 trimesters with alternate term in industry, with major in Chemical Engineering and minor in 6 different disciplines.
- 2. To ensure improved quality and industry relevance in curricula development for integrated M. Tech. (9 stduy trimesters in the Institute and 6 trimesters in the industry) in the field of Chemical Engineering as major branch with minor in Petrochemicals, Textiles, Polymers and Materials, Pharmaceuticals, and Energy Engineering, Food Engineering and Lipid Engineering (in Marathwada, Jalna).
- 3. The last two trimesters will be for promotion of experimental and design project to promote entrepreneurship and start-up companies.
- 4. Four-month Trimester pattern with studies and In-plant training (IPT) alternate term.
- 5. Simultaneous 2 years' experience in various Industries.
- 6. Vibrant syllabus with option to include case studies and IPT experiences in courses.
- 7. Collaborative projects with Industry by involving Ph.D. Fellows and faculty.

- 8. Student is continuously monitored and participates in class room discussions, home assignments and research project.
- 9. Student will be evaluated based on in-term evaluation (50%) and end-term examination (50%).
- 10. Many new subjects and choice based learning courses and some of them are
 - a. Environmental Science and Sustainability
 - b. Ethics and Industrial Practices
 - c. Experimental Design and Research Methodology
 - d. Finance and Profit Management
 - e. Green Chemistry and Engineering
 - f. Industrial and Labour Laws in India
 - g. Industrial Management
 - h. Intellectual Property Rights, Valuation and Management
 - i. Materials Management
 - j. Perspective of Global Industry
 - k. Research and Innovation Methodology
 - I. Sustainability and life cycle assessment

This concept/curriculum of Integrated M. Tech. is new and being introduced in India for the first time. During the industrial internship the student may receive stipend from industry making the education affordable to one and all. Along with the teaching, both these campuses will be equipped modern equipment for carrying out high class research and innovation at Centres of Excellence to develop Technology and to support Research & Development in industry and Skill Development in Chemical Engineering, Petrochemicals, Textiles, Polymers, Pharmaceuticals, Energy, etc. Thus, students will also work on some of the research ideas during one of the internship period in collaboration with the industry. One of the faculty will be mentor the students during this period. Students will get hands on analytical instruments during this period.

Course instruction and Grading System

- 1. The course will be trimester based each of 4-month duration. There will be 3 trimesters in each year.
- 2. The scheme of study and IPT terms is given below:

Year	Trimester	Scheme of
		trimesters
1	T1	Theory
1	Т2	Theory
1	Т3	In-plant
2	Τ4	Theory
2	Т5	In-plant
2	Т6	Theory
3	Τ7	In-plant
3	Т8	Theory
3	Т9	In-plant
4	T10	Theory
4	T11	In-plant
4	T12	Theory
5	T13	In-plant
5	T14	Theory
5	T15	Theory

- 3. The grading system will be as per R.26 of ICT. (Annexure I)
- 4. The in-term assessment will be of 50% weightage and end-term exam will be of 50% weightage.
- 5. The in-term assessment would consist of at least three assessments.

Program Education Objectives

- 1. Prepare students for career in chemical and allied industry leveraging their technical expertise
- 2. Build leadership capabilities amongst students to meet the needs of society and industry
- 3. Create awareness amongst students about the social/industrial demands and role of chemical engineer in the society
- 4. Incorporate a culture of research and innovation by providing students with guidance and opportunities
- 5. Provide a platform to the students to interact with leading teachers, scientists and industry practitioners

Program Outcomes

The students completing Int. M. Tech. program in Chemical Engineering will

- 1. have sound knowledge of engineering, sciences, mathematics, and programming fundamentals
- 2. be able to solve complex problems by applying principles of engineering, sciences, mathematics and programming
- 3. be able to design, conduct experiments and analyze the data generated
- 4. have knowledge of fundamentals and innovation to solve the problems related to energy, food, environment, healthcare, etc.
- 5. have ability to keep abreast with the scientific literature, new technologies and new developments
- 6. work on complex problems in team and multidisciplinary situations
- 7. help government, society and industry to do technology development related activities for chemical and allied industries
- 8. cater to the needs of chemical industry, research organizations and academic institutes
- 9. set-up their own ventures and generate employment
- 10. promote awareness in society about Chemical Engineering profession

Graduate Attributes

- 1. Problem analysis and solving skills
- 2. Experience with industry practices and
- 3. Familiar with usage of modern tools, techniques
- 4. Communication Skills
- 5. Capacity to analyze new concepts
- 6. Capacity to analyze and interpret experimental data
- 7. Capacity to analyze business trends
- 8. Capacity to design, optimize and operate equipment and plants safely, economically and effectively
- 9. Design and Development of solutions to industrial and societal needs
- 10. Skills related to Project Management and Economics
- 11. Skills to analyze scientific literature including patents
- 12. Ethics

List of subjects

Stud	y 1 (T1)									
Sr.	Type of	IOCB	Jalna	Subjects	Credits	Hrs	/Wee	k		
No.	course	Code (3)	Code (4)	,						
						L	Т	Р	E. S.	Total
1	BS	BST3101	BST4101	Chemistry - I	4	3	1	0	50	100
2	BS	BST3102	BST4102	Physics – I	4	3	1	0	50	100
3	BS	BST3103	BST4103	Mathematics-I	4	3	1	0	50	100
4	HU	HUT3101	HUT4101	Communication Skills/English	3	2	1	0	50	100
5	CE	CET3101	CET4101	Introduction to Chemical Engineering and	3	2	1	0	50	100
				Chemical Industries.						
6	ES	ESP3101	ESP4101	Engineering Graphics-I	3	1	0	4	50	100
7	ES	ESP3102	ESP4102	Engineering Applications of Computers-I	2	0	0	4	50	100
8	BS	BSP3101	BSP4101	Chemistry Laboratory -I	2	0	0	4	50	100
				TOTAL	25	14	5	12	400	800
Stud	y 2 (T2)					1				
			Code	Subjects	Credits	-	/weel	1		
	DC	DCT2404	DCT 440.4	Chamistra II		L	T	P	E. S.	Total
9	BS	BST3104	BST4104	Chemistry-II	4	3	1	0	50	100
10	BS	BST3105	BST4105	Physics -II	3	2	1	0	50	100
11	BS	BST3106	BST4106	Mathematics-II	4	3	1	0	50	100
12	CE	CET3102	CET4102	Material & Energy Balance Calculations	4	3	1	0	50	100
13	CE	CET3202	CET4103	Chemical Engineering Thermodynamics - I	3	2	1	0	50	100
14	HU	BSP3102	BSP4102	Chemistry Laboratory-II	2	0	0	4	50	100
15	BS	ESP3102	ESP4102	Engineering Applications of Computers-II	3	1	0	4	50	100
16	ES	BSP3103	BSP4103	Physics Laboratory	2	0	0	4	50	100
				TOTAL	25	14	5	12	400	800
IPT 1	(T2)									
17	IP	1002404	1004404	In-Plant Training	8	1	1	1	1	
		1003101	IPP4101		0					
Stud	y 3 (T4)	IPP3101	IPP4101	in France Franking	0					
Stud	y 3 (T4)	1003101	Code	Subjects	Credits	Hrs,	/weel	k		
Stud	y 3 (T4)					Hrs, L	/weel	k P	E. S.	Total
Stud 18	y 3 (T4) BS	BST3201		Subjects Chemistry - III		-			E. S. 50	Total 100
			Code	Subjects Chemistry - III Introduction to Biological Sciences &	Credits	L	Т	Р		
18 19	BS BS	BST3201 BST3202	Code BST4201 BST4202	Subjects Chemistry - III Introduction to Biological Sciences & Bioengineering	Credits 4	L 3 3	T 1	Р 0	50	100
18 19 20	BS BS CE	BST3201 BST3202 CET3201	Code BST4201 BST4202 CET4201	Subjects Chemistry - III Introduction to Biological Sciences & Bioengineering Momentum Transfer	Credits 4	L 3 3 3	T 1	Р 0	50 50 50	100 100 100
18 19 20 21	BS BS CE CE	BST3201 BST3202 CET3201 CET3202	Code BST4201 BST4202 CET4201 CET4202	Subjects Chemistry - III Introduction to Biological Sciences & Bioengineering Momentum Transfer Chemical Engineering Thermodynamics- II	Credits 4 4 4 3	L 3 3 3 2	T 1 1 1 1 1	P 0 0 0 0 0	50 50 50 50	100 100 100 100
18 19 20 21 22	BS BS CE CE ES	BST3201 BST3202 CET3201 CET3202 EST3201	Code BST4201 BST4202 CET4201 CET4202 EST4201	Subjects Chemistry - III Introduction to Biological Sciences & Bioengineering Momentum Transfer Chemical Engineering Thermodynamics- II Engineering and solid Mechanics	Credits 4 4 4 3 3	L 3 3 3 2 2 2	T 1 1 1 1 1 1	P 0 0 0 0 0 0 0	50 50 50 50 50	100 100 100 100 100
18 19 20 21 22 23	BS BS CE CE ES ES	BST3201 BST3202 CET3201 CET3202 EST3201 EST3202	Code BST4201 BST4202 CET4202 CET4201 CET4202 EST4201 EST4202	Subjects Chemistry - III Introduction to Biological Sciences & Bioengineering Momentum Transfer Chemical Engineering Thermodynamics- II Engineering and solid Mechanics Electrical Engineering and Electronics	Credits 4 4 4 3 3 3	L 3 3 2 2 2 2	T 1 1 1 1 1 1 1 1	P 0 0 0 0 0 0 0 0	50 50 50 50 50 50 50	100 100 100 100 100 100
18 19 20 21 22 23 24	BS BS CE CE ES ES ES	BST3201 BST3202 CET3201 CET3202 EST3201 EST3202 ESP3201	Code BST4201 BST4202 CET4201 CET4201 CET4202 EST4201 EST4202 ESP4201	Subjects Chemistry - III Introduction to Biological Sciences & Bioengineering Momentum Transfer Chemical Engineering Thermodynamics- II Engineering and solid Mechanics Electrical Engineering and Electronics Engineering Laboratory	Credits 4 4 3 3 3 3 2	L 3 3 2 2 2 2 0	T 1 1 1 1 1 1 1 0	P 0 0 0 0 0 0 0 0 0 4	50 50 50 50 50 50 50 50	100 100 100 100 100 100 100
18 19 20 21 22 23	BS BS CE CE ES ES	BST3201 BST3202 CET3201 CET3202 EST3201 EST3202	Code BST4201 BST4202 CET4202 CET4201 CET4202 EST4201 EST4202	Subjects Chemistry - III Introduction to Biological Sciences & Bioengineering Momentum Transfer Chemical Engineering Thermodynamics- II Engineering and solid Mechanics Electrical Engineering and Electronics Engineering Laboratory Engineering Applications of Computers-III	Credits 4 4 4 3 3 3 3 2 3 3	L 3 3 2 2 2 2 0 1	T 1 1 1 1 1 1 1 0 0 0	P 0 0 0 0 0 0 0 0 4 4 4	50 50 50 50 50 50 50 50 50	100 100 100 100 100 100 100 100
18 19 20 21 22 23 24	BS BS CE CE ES ES ES	BST3201 BST3202 CET3201 CET3202 EST3201 EST3202 ESP3201	Code BST4201 BST4202 CET4201 CET4201 CET4202 EST4201 EST4202 ESP4201	Subjects Chemistry - III Introduction to Biological Sciences & Bioengineering Momentum Transfer Chemical Engineering Thermodynamics- II Engineering and solid Mechanics Electrical Engineering and Electronics Engineering Laboratory	Credits 4 4 3 3 3 3 2	L 3 3 2 2 2 2 0	T 1 1 1 1 1 1 1 0	P 0 0 0 0 0 0 0 0 0 4	50 50 50 50 50 50 50 50	100 100 100 100 100 100 100
18 19 20 21 22 23 24 25	BS BS CE CE ES ES ES ES ES	BST3201 BST3202 CET3201 CET3202 EST3201 EST3202 ESP3201	Code BST4201 BST4202 CET4201 CET4201 CET4202 EST4201 EST4202 ESP4201	Subjects Chemistry - III Introduction to Biological Sciences & Bioengineering Momentum Transfer Chemical Engineering Thermodynamics- II Engineering and solid Mechanics Electrical Engineering and Electronics Engineering Laboratory Engineering Applications of Computers-III	Credits 4 4 4 3 3 3 3 2 3 3	L 3 3 2 2 2 2 0 1	T 1 1 1 1 1 1 1 0 0 0	P 0 0 0 0 0 0 0 0 4 4 4	50 50 50 50 50 50 50 50 50	100 100 100 100 100 100 100 100
18 19 20 21 22 23 24	BS BS CE CE ES ES ES ES ES (T5)	BST3201 BST3202 CET3201 CET3202 EST3201 EST3202 ESP3201 ESP3202	Code BST4201 BST4202 CET4201 CET4202 EST4201 EST4202 ESP4201 ESP4202	Subjects Chemistry - III Introduction to Biological Sciences & Bioengineering Momentum Transfer Chemical Engineering Thermodynamics- II Engineering and solid Mechanics Electrical Engineering and Electronics Engineering Laboratory Engineering Applications of Computers-III TOTAL	Credits 4 4 4 3 3 3 2 3 2 6 2 6 6 6 6 6 6 6 6 6 6 6 6	L 3 3 2 2 2 2 0 1	T 1 1 1 1 1 1 1 0 0 0	P 0 0 0 0 0 0 0 0 4 4 4	50 50 50 50 50 50 50 50 50	100 100 100 100 100 100 100 100
18 19 20 21 22 23 24 25	BS BS CE CE ES ES ES ES ES	BST3201 BST3202 CET3201 CET3202 EST3201 EST3202 ESP3201	Code BST4201 BST4202 CET4201 CET4201 CET4202 EST4201 EST4202 ESP4201	Subjects Chemistry - III Introduction to Biological Sciences & Bioengineering Momentum Transfer Chemical Engineering Thermodynamics- II Engineering and solid Mechanics Electrical Engineering and Electronics Engineering Laboratory Engineering Applications of Computers-III	Credits 4 4 4 3 3 3 3 2 3 3	L 3 3 2 2 2 2 0 1	T 1 1 1 1 1 1 1 0 0 0	P 0 0 0 0 0 0 0 0 4 4 4	50 50 50 50 50 50 50 50 50	100 100 100 100 100 100 100 100
18 19 20 21 22 23 24 25 IPT 2	BS BS CE CE ES ES ES ES IP	BST3201 BST3202 CET3201 CET3202 EST3201 EST3202 ESP3201 ESP3202	Code BST4201 BST4202 CET4201 CET4202 EST4201 EST4202 ESP4201 ESP4202	Subjects Chemistry - III Introduction to Biological Sciences & Bioengineering Momentum Transfer Chemical Engineering Thermodynamics- II Engineering and solid Mechanics Electrical Engineering and Electronics Engineering Laboratory Engineering Applications of Computers-III TOTAL	Credits 4 4 4 3 3 3 2 3 2 6 2 6 6 6 6 6 6 6 6 6 6 6 6	L 3 3 2 2 2 2 0 1	T 1 1 1 1 1 1 1 0 0 0	P 0 0 0 0 0 0 0 0 4 4 4	50 50 50 50 50 50 50 50 50	100 100 100 100 100 100 100 100
18 19 20 21 22 23 24 25 IPT 2	BS BS CE CE ES ES ES ES ES (T5)	BST3201 BST3202 CET3201 CET3202 EST3201 EST3202 ESP3201 ESP3202	Code BST4201 BST4202 CET4202 EST4201 EST4202 ESP4201 ESP4201 ESP4202	Subjects Chemistry - III Introduction to Biological Sciences & Bioengineering Momentum Transfer Chemical Engineering Thermodynamics- II Engineering and solid Mechanics Electrical Engineering and Electronics Engineering Laboratory Engineering Applications of Computers-III TOTAL In-Plant Training	Credits 4 4 4 3 3 3 3 2 3 2 6 8 8	L 3 3 2 2 2 2 0 1 1 6	T 1 1 1 1 1 0 0 0 6	P 0 0 0 0 0 0 4 4 4 8 8	50 50 50 50 50 50 50 50 50	100 100 100 100 100 100 100 100
18 19 20 21 22 23 24 25 IPT 2	BS BS CE CE ES ES ES ES IP	BST3201 BST3202 CET3201 CET3202 EST3201 EST3202 ESP3201 ESP3202	Code BST4201 BST4202 CET4201 CET4202 EST4201 EST4202 ESP4201 ESP4202	Subjects Chemistry - III Introduction to Biological Sciences & Bioengineering Momentum Transfer Chemical Engineering Thermodynamics- II Engineering and solid Mechanics Electrical Engineering and Electronics Engineering Laboratory Engineering Applications of Computers-III TOTAL	Credits 4 4 4 3 3 3 2 3 2 6 2 6 6 6 6 6 6 6 6 6 6 6 6	L 3 3 2 2 2 2 0 1 1 6	T 1 1 1 1 1 1 1 0 0 0	P 0 0 0 0 0 0 4 4 4 8 8	50 50 50 50 50 50 50 400	100 100 100 100 100 100 100 100
18 19 20 21 22 23 24 25 IPT 2	BS BS CE CE ES ES ES ES IP	BST3201 BST3202 CET3201 CET3202 EST3201 EST3202 ESP3201 ESP3202	Code BST4201 BST4202 CET4202 EST4201 EST4202 ESP4201 ESP4201 ESP4202	Subjects Chemistry - III Introduction to Biological Sciences & Bioengineering Momentum Transfer Chemical Engineering Thermodynamics- II Engineering and solid Mechanics Electrical Engineering and Electronics Engineering Laboratory Engineering Applications of Computers-III TOTAL In-Plant Training	Credits 4 4 4 3 3 3 3 2 3 2 6 8 8	L 3 3 2 2 2 2 0 1 1 16 Hrs,	T 1 1 1 1 1 0 0 6	P 0 0 0 0 0 0 4 4 4 8 8	50 50 50 50 50 50 50 50 50	100 100 100 100 100 100 100 800
18 19 20 21 22 23 24 25 IPT 2 Stud	BS BS CE CE ES ES ES ES (T5) IP y 4 (T6)	BST3201 BST3202 CET3201 CET3202 EST3201 EST3202 ESP3201 ESP3202 IPP3102	Code BST4201 BST4202 CET4201 CET4202 EST4202 EST4201 ESP4201 ESP4202 IPP4102	Subjects Chemistry - III Introduction to Biological Sciences & Bioengineering Momentum Transfer Chemical Engineering Thermodynamics- II Engineering and solid Mechanics Electrical Engineering and Electronics Engineering Laboratory Engineering Applications of Computers-III TOTAL In-Plant Training Subjects	Credits 4 4 4 3 3 3 3 2 3 2 6 8 8 8 5 7 7 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	L 3 3 2 2 2 2 0 1 1 16 Hrs, L	T 1 1 1 1 1 1 0 0 6	P 0 0 0 0 0 0 0 4 4 8 8 7 7 7 7	50 50 50 50 50 50 50 50 400	100 100 100 100 100 100 800 800
18 19 20 21 22 23 24 25 	BS BS CE CE ES ES ES ES (T5) IP Y 4 (T6)	BST3201 BST3202 CET3201 CET3202 EST3201 EST3202 ESP3201 ESP3202 IPP3102 IPP3102	Code BST4201 BST4202 CET4201 CET4202 EST4201 EST4202 ESP4201 ESP4202 IPP4102 IPP4102	Subjects Chemistry - III Introduction to Biological Sciences & Bioengineering Momentum Transfer Chemical Engineering Thermodynamics- II Engineering and solid Mechanics Electrical Engineering and Electronics Engineering Laboratory Engineering Applications of Computers-III TOTAL IN-Plant Training Subjects Energy Engineering	Credits 4 4 4 3 3 3 2 3 26 8 Credits 4	L 3 3 2 2 2 2 2 0 1 1 16 	T 1 1 1 1 1 1 0 0 0 6	P 0 0 0 0 0 0 0 4 4 4 8 8 5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	50 50 50 50 50 50 50 400 400	100 100 100 100 100 100 100 800 800
18 19 20 21 22 23 24 25 IPT 2 Stud 26 27	BS BS CE CE ES ES ES ES (T5) IP Y 4 (T6) ES CE	BST3201 BST3202 CET3201 CET3202 EST3201 EST3202 ESP3201 ESP3202 IPP3102 IPP3102 EST3203 CET3203	Code BST4201 BST4202 CET4201 CET4202 EST4202 ESP4201 ESP4202 ESP4202 IPP4102 IPP4102 Code EST4203 CET4203	Subjects Chemistry - III Introduction to Biological Sciences & Bioengineering Momentum Transfer Chemical Engineering Thermodynamics- II Engineering and solid Mechanics Electrical Engineering and Electronics Engineering Laboratory Engineering Applications of Computers-III TOTAL In-Plant Training In-Plant Training Energy Engineering Heat Transfer	Credits 4 4 4 3 3 3 2 3 2 3 2 6 8 Credits 4 4 4 4 4 4 5 7 7 8 7 7 8 7 7 8 7 7	L 3 3 2 2 2 0 1 1 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	T 1 1 1 1 1 1 0 0 0 6	P 0 0 0 0 0 0 0 4 4 4 8 8 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	50 50 50 50 50 50 50 50 400 E. S. 50 50 50	100 100 100 100 100 100 100 800 800 70tal 100 100

2 T 6 (T	S CE [13] IP	ST CEP3471	CEP4471	Seminar TOTAL In-Plant Training	3 20 8	0 10	0 3	6 12	50 300	100 600
D I 1 I 2 I	CE					-				
D						-				
D						-				
D				Seminar	3	0	0	6	50	11111
)	S	SI SI				-		<u> </u>		
	23		xxT4xxx	Special Elective - V	3	2	1	0	50	100
	ES	ESP3501	ESP4501	Equipment Design and Drawing	4	2	0	4	50	100
э Э	CE	CET3400	CET4400	Multiphase Reaction Engineering	4	2	0	2	50	100
3	CE	CET3406	CET4406	Chemical Industry Process Development and Engineering	3	2	1	0	50	100
7	CE	CE3409	CET4409	Project Management and Economics in	3	2	1	0	50	100
	_					L	Т	Р	E. S.	Tota
			No.	Subjects	Credits		/weel	1		
udy 7	7 (T12)		•							
-	IP	IPP3105	IPP4105	In-Plant Training	8					
<mark>T 5 (T</mark>	-	1002105			0					
				TOTAL	25	12	5	16	400	800
<u>5</u>	S	SP	xxP4402	Special Lab-II	2	0	0	4	50	100
5	CE	CEP3412	CEP4412	Process Simulation Lab-II	2	0	0	4	50	100
1	CE	CEP3402	CEP4402	Chem. Eng. Laboratory-III	4	0	0	8	50	100
3	CE	CEE3408	CET4408	Industrial and Engineering Chemistry	4	3	1	0	50	100
2	CE	CET3405	CET4405	Chemical Process Control	4	3	1	0	50	100
1	CE	CET3403	CE14403	Environmental Engineering and Process Safety	3	2	T	0	50	100
	CE		CET4403	Special Elective-IV	3	2	1	0	50	100
))	S S	ST	xxT4xxx xxT4xxx	Special Elective-III	3	2	1	0	50	100
9	c	ST	xxT4xxx	Special Elective III	3	L 2	T 1	Р 0	E. S. 50	Tota 100
				Subjects	Credits		/weel			- ·
udy 6	5 (T10)				6 "					
<u> </u>					1					
	IP	IPP3104	IPP4104	In-Plant Training	8					
Т 4 (Т	[9]					1		1		
\neg		ł	1		1					
				TOTAL	25	12	5	16	400	800
3	S	SP	XxP4301	Special Lab -I	2	0	0	4	50	100
7	CE	CEP3311	CEP4311	Process Simulation Lab – I	2	0	0	4	50	100
5	CE	CEP3301	CEP4301	Chemical Engineering Laboratory-II	4	0	0	8	50	100
5	CE	CET3304	CET4304 CET4302	Biochemical Engineering	3	2	1	0	50	100
1	CE	CET3304	CET4301	Separation Processes	4	3	1	0	50	100
3	CE	CET3301	CET4301	Chemical Reaction Engineering	4	2	1	0	50	100
1	ES S	EST3404 ST	xxTxxxx	Material Science and Engineering Special II	3	2	1	0	50 50	100
	ES	EET2404	EST4304	Material Science and Engineering	2	L 2	T 1	Р 0	FO	100
				Subjects	Credits		/weel		E. S.	Tota
udy 5	5 (Т8)	T	r		- 1	1				
<u> </u>	IP	IPP3103	IPP4103	In-Plant Training	8					
Т 3 (Т	7)				1					
				TOTAL	26	14	6	12	350	700
2	CE	CEP3202	CEP4202			-	-			100
					-					
-	CE	CEP3201	CEP4201	Mathematical Methods in Chemical	4	2	0	4	50	100
1	HU	HUT3201	HUT4201	IPR and Laws	3	2	1	0	50	100
2				CEP3201 CEP4201	CEP3201 CEP4201 Mathematical Methods in Chemical Engineering	CEP3201 CEP4201 Mathematical Methods in Chemical 4 Engineering 4	CEP3201 CEP4201 Mathematical Methods in Chemical 4 2 Engineering Enging Engineering Engineering <td>CEP3201 CEP4201 Mathematical Methods in Chemical 4 2 0 Engineering Engineering</td> <td>CEP3201CEP4201Mathematical Methods in Chemical4204Engineering4444444</td> <td>CEP3201CEP4201Mathematical Methods in Chemical420450Engineering</td>	CEP3201 CEP4201 Mathematical Methods in Chemical 4 2 0 Engineering Engineering	CEP3201CEP4201Mathematical Methods in Chemical4204Engineering4444444	CEP3201CEP4201Mathematical Methods in Chemical420450Engineering

				Subjects	Credits	Hrs/week				
						L	Т	Р	E. S.	Total
53	CE	CET3541	CET4541	Advanced Transport Phenomena	3	2	1	0	50	100
54	CE	CET3543	CET4543	Advanced Mass Transfer	3	2	1	0	50	100
55	CE	CET3543	CET4543	Advanced Separation Processes	3	2	1	0	50	100
56	ES	EST3501	EST4501	LCA and Sustainability/ NPTEL/ MOOC	3	2	1	0	50	100
57	S	ST	xxT4xxx	Advanced Special Elective - VI	3	2	1	0	50	100
58	HU	HUT3501	HUT4501	Research Methodology	4	3	1	0	50	100
59	CE	CEP3571	CEP4571	Design / Research Project - I	4	0	0	8	50	100
				TOTAL	23	13	6	8	350	700
Stud	y 9 (T15)								-	
				Subjects	Credits	Hrs	Hrs/week			
						L	Т	Р	E. S.	Total
60	HU	HU3402	HUT4402	Perspectives of Society, Science and Technology	3	2	1	0	50	100
61	HU	HU3501	HU4501	Industrial Psychology and Management	3	2	1	0	50	100
62	CE	CET3407	CET4407	Advanced Chemical Reaction Engineering	3	2	1	0	50	100
63	CE	CEE3xx	CET4xxx	Advanced Chemical Eng. Elective - I	3	2	1	0	50	100
64	S	ST	xxT4xxx	Advanced Special Elective - VII	3	2	1	0	50	100
65	CE	CEP3572	CEP4572	Design / Research Project - II	9	0	0	18	50	100
				TOTAL	24	10	5	18	300	600

List of Minor Degrees and Minor Electives:

Lipids SP # Course Course Туре List of Subjects Code Code (IOCB) (MARJ) 1 SLT4302 Theory Introduction to Lipid Technology 2 SLT4303 Theory Chemistry of Lipids and their applications Theory 3 SLT4403 Lipid Processing Technology I 4 SLT4404 Production and Applications of Soaps, Surfactants Theory and Detergents 5 SLT4405 Theory Lipid Processing Technology II 6 SLT4506 Theory **Essential Oils and Cosmetics** 7 SLT4507 Theory Technology of Oleochemicals SFP4301 Lipids Laboratory-I 1 Laboratory 2 SLP4402 Laboratory Lipids Laboratory-II

Foods

SP #	Course Code (IOCB)	Course Code (MARJ)	Туре	List of Subjects
1	SFT3202	SFT4202	Theory	Introduction to Food Technology
2	SFT3301	SFT4301	Theory	Biochemistry/Microbiology
3	SFT3403	SFT4403	Theory	Food Chemistry
4	SFT3404	SFT4404	Theory	Food Processing and Technology I
5	SFT3405	SFT4405	Theory	Food Ingredients and Additives
6	SFT3506	SFT4506	Theory	Food Processing and Technology II
7	SFT3507	SFT4507	Theory	Food Packaging Science and Technology
1	SFP3302	SFP4302	Laboratory	Food Analysis Laboratory
2	SFP3402	SFP4402	Laboratory	Food Processing Laboratory

Pharmaceuticals

SP #	Course Code (IOCB)	Course Code (MARJ)	Туре	List of Subjects
1	SRT3302	SRT4302	Theory	Introduction to Pharmaceutical Technology
2	SFT3201	SFT4201	Theory	Biochemistry and Microbiology
3	SRT3403	SRT4403	Theory	Pharmaceutical Chemistry
4	SRT3507	SRT4507	Theory	Formulation Technology and Drug Delivery
5	SRT3506	SRT4506	Theory	Pharmaceutical Technology and Drug Design
6	SRT3404	SRT4404	Theory	Process Development for Fine Chemicals and API
7	SRT3405	SRT4405	Theory	Natural Product based Pharmaceuticals
1	SRP3401	SRP4401	Laboratory	Pharmaceutical Analysis Laboratory
2	SRP3403	SRP4403	Laboratory	Pharmaceutical Chemistry and Formulation Technology Laboratory

Energy

SP #	Course Code (IOCB)	Course Code (MARJ)	Туре	List of Subjects
1	SET3302	SET4302	Theory	Conventional Energy and Utilization
2	SET3303	SET4303	Theory	Renewable Energy Systems
3	SET3403	SET4403	Theory	Combustion and Chemistry of Fuels
4	SET3404	SET4404	Theory	Energy Conversion and Storage
5	SET3405	SET4405	Theory	Advanced Thermodynamics of Energy Systems
6	SET3506	SET4506	Theory	Materials for Energy Applications
7	SET3507	SET4507	Theory	Energy Management

1	SEP3301	SEP4301	Laboratory	Energy Lab-I
2	SEP3402	SEP4402	Laboratory	Energy Lab-II

Petroleum and Petrochemicals					
	SP #	Course Code (IOCB)	Course Code (MARJ)	Туре	List of Subjects
	1	SPT3302	SPT4302	Theory	Introduction to petroleum technology
	2	SPT3403	SPT4403	Theory	Petroleum refining processes
	3	SPT3404	SPT4404	Theory	Refinery engineering
	4	SPT3506	SPT4506	Theory	Reservoir Technology
	5	SPT3405	SPT4405	Theory	Petrochemicals technology
	6	SPT3507	SPT4507	Theory	Industrial Catalysis
	7	SPT3508	SPT4508	Theory	Petroleum economics and management
	1	SPP3402	SPP4402	Laboratory	Petroleum Characterization Laboratory-I
	2	SPP3403	SPP4403	Laboratory	Petroleum Laboratory-II

Materials and

Polymers

SP #	Course Code (IOCB)	Course Code (MARJ)	Туре	List of Subjects
1	SMT3201	SMT4201	Theory	Introduction to Material Technology
2	SMT3302	SMT4302	Theory	Polymer science and Technology-I
3	SMT3403	SMT4403	Theory	Structure-Property Relationships
4	SMT3404	SMT4404	Theory	Polymer science and technology -II
5	SMT3405	SMT4405	Theory	Materials processing
6	SMT3506	SMT4506	Theory	Nanomaterials
7	SMT3507	SMT4507	Theory	Functional materials
1	SMP3303	SMP4303	Laboratory	Materials Characterization Laboratory
2	SMP3402	SMP4402	Laboratory	Materials processing and characterization laboratory

Textiles

SP #	Course Code (IOCB)	Course Code (MARJ)	Туре	List of Subjects
1	STT3201		Theory	Technology of Fibres and Polymers
2	STT3302		Theory	Technology of Textile Dyeing
3	STT3403		Theory	Technology of Textile Printing
4	STT3404		Theory	Chemistry & Applications of Specialty Chemicals
5	STT3405		Theory	Technology of Finishing
6	STT3507		Theory	Effluent Characterisation and Treatment
7	STT3506		Theory	High-tech and Industrial Fibres
1	STP3401		Laboratory	Analysis of Fibres and fabrics
2	STP3402		Laboratory	Treatment of textiles

Detailed Syllabus

Study	1 (T1)									
Sr. No.	Type of course	IOCB Code (3)	Jalna Code (4)	Subjects	Credits	Hrs/	Hrs/Week			
						L	Т	Р	E. S.	Total
1	BS	BST3101	BST4101	Chemistry - I	4	3	1	0	30	100
2	BS	BST3102	BST4102	Physics – I	4	3	1	0	30	100
3	BS	BST3103	BST4103	Mathematics-I	4	3	3 1 0		30	100
4	HU	HUT3101	HUT4101	Communication Skills/English	3	2	2 1 0		15	50
5	CE	CET3101	CET4101	Introduction to Chemical	0	2	1	0	15	50
				Engineering and Chemical						
				Industries.						
6	ES	ESP3101	ESP4101	Engineering Graphics-I	3	1	0	4	25	50
7	ES	ESP3102	ESP4102	Engineering Applications of	2	0	0	4	25	50
				Computers-I						
8	BS	BSP3101	BSP4101	Chemistry Laboratory -I	2	0 0 4		25	50	
				TOTAL	22	14	5	12	195	550

				L	Т	Р	Tot
Course code			BST4101				
Course title			Chemistry I				
Scheme and			3 L: 1 T: 0 P 4 Credits				
Credits							
Pre-requisites			10+2 level chemistry				
Objectives of the	1		To introduce the students to the fundamentals of				
course			analytical chemistry				
	2		To understand different qualitative and quantitative				
			analytical techniques				
	3		To make the students understand organometallic				
			chemistry and its applications				
Detailed contents							
	1		Analytical Chemistry	24	8		32
		1.1	Introduction to analytical Chemistry: Accuracy precision,				
			Errors, Qualitative and Quantitative analysis, Analytical				
			Perspective, Chemical concentrations. Good laboratory				
			practices.				
		1.2	Correlation between quality and analysis. Evaluation and				
			validation of analytical methods.				
		1.3	Statistical treatment of analytical data and presentation				
			of results.				
		1.4	Conventional methods of analysis - Titrimetric :				
			Principles; Equivalence point and endpoint; detection of				
			end point.				
		1.5	Electrochemical Methods : : General principles and				
			application of pH meter, Conductometer, Potentiometer.				
		1.6	Spectroscopic methods : Principle, Instrumentation,				
			Applications of UV-Vis spectrophotometer and Atomic				
			absorption spectroscopy				
		1.7	Chromatographic separation methods: General principle				
			of chromatography, classification of chromatographic				
			techniques. Principle, technique and applications of				
			paper, thin layer, Ion exchange chromatographic				
			techniques.				

	1	1.8	Modern Chromatographic Techniques : HPLC, GC:				
			Principle, Instrumentation, Applications,				
	2		Inorganic chemistry	6	2		8
		2.1	Organometallics: Metal-ligand bonding, Concepts of				
			sigma and pi bond formation. types of ligands, CO and				
			PPh ₃ lignads.				
		2.2	Basic reactions of organometallic compounds: insertion,				
			migration, oxidative addition, reductive elimination. E.g.				
			Wilkinsons, Grignard Reagent etc.				
			Total	36	12		48
Suggested books	1		Skoog and West's Fundamental of Analytical Chemistry,				
			F. James Holler and Stanley R. Crouch, Cengage Learning				
	2		Instrumental methods of Chemical Analysis, E.W. Ewing,				
			McGraw Hill.				
	3		Instrumental methods of analysis, D.A. Skoog and D.M.				
			Wes				
	4		Concise Inorganic Chemistry, J.D. Lee, Wiley India Edition				
	5		Basic Inorganic Chemistry, F.A. Cotton and G. Wilkinson,				
			John Wiley and Sons				
	6		New Instrumental Methods in Electrochemistry, P.D.				
			Delaha				
	7		Radiochemistry and nuclear chemistry: G.R. Choppin, J.				
			Rydberg, J.O. Lilgenzin, C. Ekberg, AP				
Outcomes			Students will learn				
	CO1		Students will learn basic principles of chemical analysis				
	CO2		Student will able to select chemical and instrumental				
			methods for qualitative and quantitative analysis				
	CO3		Student will learn concept of organometallic chemistry				
			and its application in organic transformation				
Course code			BST4102				
Course title			Physics – I				
Scheme and			3L: 1T: OP 4 credits				
Credits							
Pre-requisites			10+2 level Physics				
Objectives of the	1		To understand basic concepts of Solids and				
course			Semiconductors, Fluid Mechanics, Optics and its				
			applications and ultrasonics.				
			Detailed contents				
	1		Solid State Physics	9	3		12
		1.1	Crystal structure of solids: unit cell, space lattices and				
			Brava is lattice, Miller indices, direction sand				
			crystallographic planes, Cubic crystals: SSC, BCC, FCC,				
		1.2	Diamond cubic structure, hexagonal crystals: HCP, atomic				
			radius, packing fraction, Bragg's law of x-ray diffraction,				
			determination of crystal structure using Bragg				
			spectrometer, liquid crystals: introduction, types, phases				
			and applications				
		1.3	Semiconductor Physics: Formation of energy bands in				
			solids, concept of Fermi level,			<u> </u>	
		1.4	Classification of solids: conductor, semiconductor and				
			insulator, intrinsic and extrinsic semiconductors, effect of				
			doping, mobility of charge carriers, conductivity, Hall				
	2		effect. Fluid Mechanics	6	3		0
	2	2 1		0	3		9
		2.1	Basic concepts of density and pressure in a fluid, ideal and real fluids				
		2.2					
		2.2	Pascal's law, absolute pressure and pressure gauges				

		2.3	Basic concepts of surface tension and buoyancy				
		2.4	Equation of continuity, Bernoulli's equation				
		2.5	Viscosity, Newton's Law of viscosity, non newtonian				
		_	fluids				
	3		Optics and Fibre Optics	6	3		9
		3.1	Diffraction: Introduction to interference and example;	-			-
			concept of diffraction, Fraunhofer and Fresnel diffraction				
			Fraunhofer diffraction at single slit, double slit, and				
			multiple slits; diffraction grating, characteristics of				
			diffraction grating and its applications, magnification and				
			resolution.				
		3.2	Polarisation: Introduction, polarisation by reflection,		<u> </u>		
		5.2	polarisation by double refraction, scattering of light,				
			circular and elliptical polarisation, optical activity.				
		3.3	Fibre Optics: Introduction, optical fibre as a dielectric				
		5.5	wave guide: total internal reflection, numerical aperture				
			and various fibre parameters, losses associated with				
			optical fibres, step and graded index fibres, application of				
			optical fibres.				
	4		Lasers	6	3		9
	4	1 1		0	3		9
		4.1	Introduction to interaction of radiation with matter,				
			principles and working of laser: population inversion, pumping, various modes, threshold population inversion,				
			types of laser: solid state, semiconductor, gas;				
		4.2	application of lasers, applications:				
		4.2	Introduction to interaction of radiation with matter,				
			principles and working of laser				
		4.3	population inversion, pumping, various modes, threshold				
			population inversion				
		4.4	types of laser: solid state,				
			semiconductor, gas				
		4.5	Holography and engineering applications				
	5		Ultrasound	6	3		9
		5.1	Generation of ultrasound: mechanical, electromechanical				
			transducers				
		5.2	Propagation of ultrasound, attenuation, velocity of				
			ultrasound and parameters affecting it, measurement of				
			velocity				
		5.3	Applications of ultrasound				
		Γ	Total	33	15	0	48
Suggested books	1		Physics: Vols. I and II– D. Halliday and R. Resnick, Wiley Eastern.				
	2		Lectures on Physics: Vols. I, II and III –R.P. Feynman, R.B.				
	-		Leighton and M. Sands, Narosa.				
	3		Concepts of Modern Physics– A. Beiser, McGraw-Hill.				
	4		Introduction to Modern Optics – G.R. Fowles, Dover				
	-		Publications.				
	5		A Course of Experiments with LASERs– R. S. Sirohi, Wiley Eastern.				
	6		Optical Fibre Communication – G. Keiser, McGraw-Hill.				
		1					
	6		Ontoelectronics - Wilson and LER Hawkes and od				
	7		Optoelectronics –J. Wilson and J.F.B. Hawkes, 2nd ed, Prentice-HallIndia.				
			Prentice-HallIndia. Ultrasonics: Methods and Applications–J.Blitz,				
	7		Prentice-HallIndia.				

Outcomes		Students will be able to		
	CO1	Understand structures of solids and semiconductors,		
		apply Bragg's law.		
	CO2	Apply Bernoulli equation in simple pipe flows.		
	CO3	Calculate resolving power of optical instruments.		
	CO4	Describe principles of optical fibre communication.		
	CO5	Introduced to the principles of lasers, types of lasers and		
		applications.		
	CO6	Understand application of acoustic cavitation of		
		Chemical Engineering Processes		

Course code			BST4103			
Course title			Mathematics-I			
Scheme and			3 L: 1 T: 0 P 4 Credits			
Credits						
Pre-requisites			10+2 level Mathematics			
Objectives of the	1		To introduce basic concepts of Linear algebra			
course						
	2		Differential calculus			
	3		Integral calculus			
	4		Vector calculus			
			Detailed contents			
	1		Differential calculus:	6	2	 8
		1.1	Higher order derivatives, Mean value theorems, Taylor's			
			theorem and error calculations, convexity of functions,			
			Local Maxima/Minima.			
		1.2	Functions of two or more variables, Limit and continuity,			
			Partial differentiation, Directional derivatives, Total			
			derivatives, Chain Rules of partial derivatives, Taylor's			
			theorem for multivariable functions and its application to			
			error calculations, Local and absolute Maxima/Minima			
	2	ł	Improper integrals, beta and gamma functions,	6	2	8
			differentiation under the integral sign, multiple integrals			
			and its application, Error function			
	3	ł	Vector differential calculus	9	3	12
		3.1	Vectors in 2-Space and 3-Space: Systems of linear			
			equations, matrices and Gauss elimination, Vectors in IRn,			
			notion of linear independence and dependence.			
		3.2	Inner Product (Dot Product), Vector Product (Cross			
			Product), Vector subspaces of IRn, basis of a vector			
			subspace., row space, null space, and column space, rank			
			of a matrix. Determinants and rank of matrices.			
		3.3	Abstract vector spaces, linear transformations, matrix of a			
			linear transformation, change of basis and similarity, rank-			
			nullity theorem and its applications			
		3.4	Vector and Scalar Functions and Fields, Derivatives			
		3.5	Gradient of a scalar field, Directional Derivative			
		3.6	Divergence of a vector field			
		3.7	Curl of a vector field			
	4		Inner product spaces, orthonormal bases, Gram-Schmidt	5	2	7
	-		orthogonalization process, Eigenvalues and eigenvectors,		-	Ĵ
			characteristic polynomials, eigenvalues of special			
			matrices (orthogonal, unitary, Hermitian, symmetric,			
			skew- symmetric, normal), Orthogonal projection and its			
			application to least methods Diagonalization of matrices			
	1	1				
			and its applications stochastic matrices, Matrix			

	5		Vector integral calculus	7	3		10
		5.1	Line Integrals, Path Independence of Line Integrals				
		5.2	Green's Theorem in the Plane				
		5.3	Stokes' theorem and Surface Integrals				
		5.4	Divergence theorem and volume integral				
	6		First-Order ODEs-Introduction, formation and solutions of 1st order ODEs	2	1		3
			Total	35	13	0	48
Suggested books	1		Advanced Engineering Mathematics, Erwin Kreyszig, John- Wiley.				
	2		Advanced Engineering Mathematics S. R. K. Iyengar, R. K. Jain, Narosa.				
	3		Vector Calculus 4 th Edition by Susane Jane Colly, Pearson				
	4		Advanced Engineering Mathematics by D. S. Zill and W. S. Right, Jones & Bartlett Student Edition, 2011.				
	5		Textbook of Engineering Mathematics, N. P. Bali and Dr. Manish Goyal, 8/e, Laxmi Publications, New Delhi				
Outcomes			Students will be able to solve problems related to				
	CO1		Matrix and vector operations				
	CO2		Differential and integral calculus				
	CO3		Vector calculus and applications				

Course code		ESP4101				
Course title		Engineering Graphics-I				
Scheme and Credits		1 L: 1 T: 4 P 3 Credits				
Pre-requisites		10+2 level chemistry				
Objectives of the	1	Students will be able to understand different drawing				
course		view, assembly and working of different machines parts				
		and understanding and preparing Computer aided				
		drawings				
		Detailed contents				
	1	Orthographic views : Lines used, selection of views,	3		9	12
		spacing of views. ISI conventions used In drawing,				
		dimensioning and sections. Drawing required views from				
		given pictorial views (conversion of pictorial views in to				
		orthographic views).				
	2	Isometric projections : Isometric scale, Isometric	3		9	12
		projections and Isometric views / drawings. Circles in				
		isometric view. Isometric views of simple solids and				
		objects.				
	3	Missing Views : Reading and understanding drawing	3		9	12
		views, Drawing third view when two views are given.				
	4	Introduction to Assembly and detailed drawing.	3		9	12
		Preparation of assembly drawing from detailed drawing				
		and vice versa. Assembly such as Plummer block, Stuffing				
		box , valves and pipe joints etc.				
	5	Introduction to solid works software for preparing part	3		9	12
		drawings, assembly drawings and drawing views.				
		Total	15	0	45	60
Suggested books						
	1	N. D. Bhatt, Engineering Drawing, Charotor Publication				
		House, Bombay				
	2	W. J. Luzadder, Fundamentals of Engineering Drawing,				
		Prentice Hall of India.				

	3	N. D. Bhatt, Machine Drawing, Charotor Publication		
		House, Bombay		
	4	K. Venugopal, Engineering Drawing and Graphics, New		
		Age Publication		
	5	R. K. Dhawan, A text book of Engineering Drawing, S.		
		Chand and Co.		
	6	K. L. Narayana, Machine Drawing, New Age Publication		
	7	N. B. Shaha and B. C. Rana, Engineering Drawing, Pearson		
		Education.		
Outcomes				
		Students will be able to		
	CO1	Different drawing views and its interpretation.		
	CO2	Assembly of different machine parts and its working.		
	CO3	Computer aided drawing.		

Course code	1 1	HUT4101			1	
Course title		Communication Skills				
Scheme and Credits		0 L: 0 T: 4 P 2 Credits				
Pre-requisites		10+2 English				
Objectives of the course	1	This is an important course for the effective functioning of an Engineer. Communication skills are required in all courses				
		Detailed contents				
	1	Introduction to communication skills	5	3		
	2	Writing Skills: Technical report writing, scientific paper writing, Review paper writing, letter drafting, email writing, Resume Writing, Job Application/ Cover Letter Writing, etc.	5	3		
	3	Speaking Skills: Presentation skills- Planning and Preparation; Use of Body Language; Dealing with Mental Blocks & Stage Fright	5	3		
	4	Use of audio-visual facilities like powerpoint, LCD. for making effective oral presentation.	5	3		
	5	Group Discussions	2	1		
		Total	0	0	0	36
Suggested books		Elements of Style – Strunk and white				
		Raman, Meenakshi and Sangeeta Sharma. Technical Communication. New Delhi: Oxford University Press. 2018.				
		Sharma, S. D. A Textbook of Scientific and Technical				
		Communication Writing for Engineers and				
		Professionals. New Delhi: Sarup and Sons. 2007				
Outromy	$\left \right $	Chudeata will lague				
Outcomes		Students will learn				
	CO1	Students should be able to write grammar error free				
		technical reports in MS Words or equivalent software.				
	CO2	Students should be able to make power point slides in MS PowerPoint or equivalent software.				

Course code		BSP4101		
Course title		Chemistry Lab-I		
Scheme and		0 L: 0 T: 4 P 2 Credits		
Credits				
Pre-requisites		10+2 level chemistry		
Objectives of the	1	To learn to prepare standard solutions and volumetric		
course		titration		
	2	To learn the quality and quantitative of a sample through		
		different analytical methods		

	3	To learn to collect, collate, and interpret results				
Detailed contents			0	0	48	
	1	Preparation and standardization of volumetric solutions.				
	2	Potentiometric titration: (i) Determination of the				
		strength of weak and strong acids in a mixture of acids.				
	3	Conductometric titration: Determination of total				
		dissolved sulphate in water sample				
	4	Use of pH meter- (i) Use of a pH meter to determine				
		dissociation constant of an acid, isoelectric point of an				
		amino acid.				
	5	UV-Vis spectroscopy: i) to find out the absorption				
		maxima, ii) Beers Lambert Law verification and iii)				
		concentration of a substance from a given sample.				
	6	Separation of compounds by Thin layer chromatography.				
	7	Gas Chromatography:				
		(i) Determination of concentration of a known organic				
		compound in a suitable solvent.				
		(ii) Qualitative Analysis of Hydrocarbon by Gas				
		Chromatography				
	8	High pressure liquid Chromatography (HPLC)				
		Determining the concentration of an active ingredient in				
		a marketed product, for Example: caffeine (food				
		products), vitamin C, paracetamol (pharmaceutical				
		product), and the like.				
		Total	0	0	48	48
Outcomes						
		Students will be able to				
	CO1	Able to prepare and standardized analytical solutions				
	CO2	Able to plan simple analytical experiments for analyte				
		determination				
	CO3	Able to perform qualitative and quantitative analysis of				
		given sample using chromatographic techniques				
	CO4	Able to clearly communicate the results of experimental				

Course code		ESP4102				
Course title		Engineering Applications of Computers-I				
Scheme and Credits		0 L: 0T: 4 P 2 Credits				
Pre-requisites		10+2 level Mathematics				
Objectives of the course	1	To make students familiar with the use of computers for scientific calculations, use of programming languages and the logic for writing computer programs and algorithm development involving problems discussed in the theory.				
Detailed contents						
	1	Introduction to computer programming languages.	0	0	12	12
		Brief introduction to Python, Installation of python and Anaconda				
		Data types, variables, mathematical operations and expressions, Use of python as an advanced scientific calculator with math and cmath modules				
	2	Logical operators, Control Flow (if-else, switch case, etc.) and Loops	0	0	12	12
		Functions and Modules, Object Oriented Programing				
		Dealing with strings, Lists, tuples, Dictionaries				
		File management.				

	3	Algorithm development, arrays, matrices, and matrix algebra	0	0	8	8
	4	Plotting graphs in various format using Matplotlib	0	0	4	4
	5	Use of Numpy, Scipy and Sympy to solve problems			8	
		related to matrices, solutions linear and nonlinear				
-		equations and single variable calculus.				
	6	GUI with Python			4	
		Total	0	0	48	36
Suggested books		Sandeep Nagar, Introduction to Python for Engineers and Scientists. Open Source Solutions for Numerical Computation-Apress (2018) Reema Thareja, Python Programming: Using Problem Solving Approach, Oxford University Press, 2017 Fangoh, Introduction to Python for Computational Science and Engineering, Open Source, available on github.				
Outcomes		Students will able to				
	CO1	use of Numpy, Scipy and Sympy to solve problems related to matrices, solutions linear and nonlinear equations and single variable calculus.				
	CO2	write Python programme to solve simple mathematical and numercial problems.				

Stud	y 2 (T2)									
			Code	Subjects	Credits	Hrs/week				
						L	Т	Р	E. S.	Total
9	BS	BST3104	BST4104	Chemistry-II	4	3	1	0	50	100
10	BS	BST3105	BST4105	Physics -II	3	2	1	0	50	100
11	BS	BST3106	BST4106	Mathematics-II	4	3	1	0	50	100
12	CE	CET3102	CET4102	Material & Energy Balance Calculations	4	3	1	0	50	100
13	CE	CET3103	CET4103	Chemical Engineering Thermodynamics -	3	2	1	0	50	100
				I						
14	HU	HUP3101	HUP4101	Chemistry Laboratory-II	2	0	0	4	50	100
15	BS	BSP3102	BSP4102	Engineering Applications of Computers-II	3	1	0	4	50	100
16	ES	ESP3102	ESP4102	Physics Laboratory	2	0	0	4	50	100
				TOTAL	25	14	5	12	400	800

				L	т	Р	Tot
Course code			BST4104				
Course title			Chemistry II				
Scheme and Credits			3 L: 1 T: 0 P 4 Credits				
Pre-requisites			10+2 level chemistry				
Objectives of	1		To train the students in understanding the reactivity				
the course			and mechanism of organic reactions				
	2		To train students for differentiate the organic				
			symmetric and asymmetric compounds				
	3		To understand the well-known name reactions and				
			its applications in Industry.				
	4		To determine the structures of unknown compounds				
			using spectroscopic methods				
Course title			Detailed contents				
Chemistry-II	1		IUPAC nomenclature of organic compounds	3	1	0	4
	2		Stereochemistry:	5	2	0	7
			2.1 Stereodescriptors: R, S, E, Z. Enantiomers and				
			Diastereomers.				
			2.2 Racemates and their resolution.				
			2.3 Conformations of cyclic and acyclic systems.				
			2.4 Introduction to chiral synthesis				
	3		Reactivity of organic molecules:	10	2		12
			3.1 Structures and Chemical bonding, FMO				
			3.2 Factors influencing acidity, basicity, and reactivity				
			of organic compounds.				
			3.3 Kinetic vs. thermodynamic control of reactions				
			3. 4 Principles of mechanism of organic reactions:				
			intermediates, EPD.				
	4		4.1 Aromaticity of carbocyclic and heterocyclic	8	2		10
			compounds structure and reactions				
			4.2 Mechanism of electrophilic and nucleophilic				
			aromatic substitution reactions				
			4.3 Orienting influence of substituents.				
	5		5.1 Friedel-Crafts and related reactions Gatterman,-	4	2		6
	_		Koch, Hoesch Reaction				_
	6		6.1 Polymerization of olefins, characteristic	2			2
	-		properties of polymers				
	7		Organic Molecules Characterizations by	4	2		6
		7.1	NMR, 1H NMR				
		7.2	IR				
		7.3	Mass Spectrometry				
		,	Simple NMR, Mass spectra and IR combined make				
		1	quick identification possible				

	1	Total	36	12		48
Suggested books	1	Organic chemistry – T. W. G Solomons, C. B. Fryhle, John Wiley and Sons				
	2	Organic chemistry, Clayden, Greeves, Warren, Oxford publication				
	3	Organic Chemistry, Paula Y Bruce, Pearson Education				
	4	March's Advanced Organic Chemistry: Reactions,				
		Mechanisms, and Structure 7 Edition (English,				
		Paperback, Michael B. Smith)				
Outcomes		Students will be able to solve problems related to				
	CO1	Draw the chemical structures of organic molecules.				
	CO2	Determine the reactivity of organic compounds		<u> </u>		
	CO3	Draw the 3D structures and stereochemistry of				
		organic compounds				
	CO4	Solve the problems of how reaction takes place.				
	CO4	Write simple reaction mechanisms and justify the				
	COS	product				
	CO 6					
	CO6	Find out the structures of unknown compound by				
		using spectroscopic method				-
	<u> </u>		—		<u> </u>	_
			L	Т	Р	Tot
Course code		BST4105				
Course title		Physics – II				
Scheme and		2L: 1T: OP 3 credits				
Credits						
Pre-requisites		10+2 level Physics				
Objectives of		To understand dual nature of matter, applications,				
the course		properties of materials in engineering and processes.				
		Detailed contents				
	1	Quantum Mechanics				
		Introduction to quantum physics blackbody radiation,	7	2		9
		explanation using the photon concept, photoelectric				
		effect, Compton effect, deBroglie hypothesis, wave-				
		particle duality, Born's interpretation of the wave				
		function, verification of matter waves, uncertainty				
		principle, Schrodinger wave equation, particle in box,				
		quantum harmonic oscillator, hydrogen atom (no				
		detailed derivation), tunneling effect and scanning				
		tunneling microscopy, probe microscopy				
	2	Electromagnetism				
		Introduction to the 'del' operator and vector calculus,	7	2		9
		revision of the laws of electrostatics, electric current				
		and the continuity equation, revision of the laws of				
		magnetism.				
	3	Dielectric Properties of Materials				
		Polarisation, permeability and dielectric constant,	4	2		6
		polar and non-polar dielectrics, internal fields in a				
		solid, Clausius-Mossotti equation, applications of				
		dielectrics.				
	4	Magnetic Properties of Materials	<u> </u>			
	+ $+$ $+$	Magnetisation, permeability and susceptibility,	4	2		6
		classification of magnetic materials, ferromagnetism,	-	-		Ŭ
		magnetic domains and hysteresis, applications.				
	5	Superconductivity	1			
		Introduction of the superconductivity, behavior of	4	2		6
	1 1		-	2		Ů
		nertect conductor Maisner attect London				
		perfect conductor, Meisner effect, London				
		penetration depth, Heat capacity, Isotope effect, the				
		penetration depth, Heat capacity, Isotope effect, the BCS theory, Type-I superconductor, Type-II				
		penetration depth, Heat capacity, Isotope effect, the				

Suggested reference books		 Physics: Vols. I and II– D. Halliday and R. Resnick, Wiley Eastern. Lectures on Physics: Vols. I, II and III –R.P. Feynman, R.B. Leighton and M. Sands, Narosa. Concepts of Modern Physics– A. Beiser, McGraw- Hill. Introduction to Electrodynamics – D. J. Griffiths, 1999, Person Education. Foundations of Electromagnetic Theory - Reitz, John R.; Milford, Frederick J.; Christy, Robert W. (2008), Addison Wesley. Fundamentals of Modern Physics, Robert Martin Eisberg, 1961, John Wiley. A Textbook of Engineering Physics, MN 				
		Avadhanulu, PG Kshirsagar, TVS Arunmurthy, S.				
0		Chand.				
Outcomes	CO1	Students will be able to				
	CO1 CO2	Perform simple quantum mechanics calculations. Define various terms related to properties of materials				
		such as, permeability, polarization, etc.				
	CO3	Understand the phenomenon of superconductivity				
		and types of superconductor				
			L	Т	Р	Tot
Course code		BST4106				
Course title		Mathematics-II				
Scheme and Credits		3 L: 1 T: 0 P 4 Credits				
Pre-requisites	+	10+2 Mathematics				
Objectives of	1	To introduce basic concepts and some solution				
the course	-	techniques of linear ordinary and partial differential				
		equations				
	2	To introduce concept of eigen values and eigen				
	_	vectors				
	3	To introduce concept of integral transforms and				
		solution of some linear ordinary and partial differential equations				
		Detailed contents				
	1	Higher-Order Linear ODEs:	9	3		12
		 Homogeneous / Non-homogeneous linear ODEs of second and higher order with constant coefficients. Concepts of initial and boundary value problems and some applications. Wronskian, fundamental solution, basis, linear dependence and independence of solutions. Solution by Variation of Parameters. Euler-Cauchy Equations 				
	2	Series Solutions of ODEs and Special Functions: Power Series Method (Frobinuous method)-Legendre's Equation, Legendre Polynomials, Bessel's Equation, Bessel Functions, Orthogonal and Orthonormal Functions	9	3		12
	3	Eigenvalues, Eigenfunctions, Applications of Eigenvalue problems, Symmetric, Skew-symmetric and Orthogonal matrices, Sturm-Liouville Problems	3	1		4
	4	Partial Differential Equations : Origin of partial differential equations, Classification of first order PDE. Solution of some first order PDEs-Lagrange's method. Classification of second order PDE and their solutions by Separation of Variables (Parabolic, Elliptic, Hyperbolic)	6	2		8

	5	Transforms : Laplace Transforms, Fourier Series and Transform, z- transforms Application of transforms to ODE and PDE	8	4		12
		Total	35	13	0	48
Suggested reference books		Advanced Engineering Mathematics, Erwin Kreyszig, John-Wiely. Advanced Engineering Mathematics S. R. K. Iyengar, R. K. Jain, Narosa				
Suggested reference books		 Elements of Partial Differential Equations by I. N. Sneddon, Dover Publications, INC. 2006 An Introduction to Ordinary Differential Equations by Earl A. Coddington, Dover Publications Advanced Engineering Mathematics by D. S. Zill and W. S. Right, Jones & Bartlett Student Edition, 2011. William E. Boyce, Richard C. DiPrima, Elementary Differential Equation, Wiley 				
Outcomes		Students will be able to solve				
	CO1	first and second order ODE by Analytical methods				
	CO2	second order ODEs by power series methods.				
	CO3	linear first and second order PDE by Analytical methods				
	CO4	ODE's and PDE's by using Laplace and Fourier Transforms.				

Course code		CET4102				
Course title		Material and Energy Balance Calculations				
Scheme and Credits		3L: 1T: 0P 4 credits				
Pre-requisites		XIIth Standard Mathematics, Chemistry, Physics, Applied Mathematics – I, Organic Chemistry – I, Applied Physics – I, Analytical Chemistry,				
Objectives of	1	This is a basic Chemical Engineering Course. This				
the course		knowledge will be required in ALL subjects later on.				
		Detailed contents				
	1	Introduction to Chemical Engineering: Chemical Process Industries, Chemistry to Chemical Engineering, Revision of Units and Dimensions	2	1		3
	2	Mole concept, composition relationship and Stoichiometry, Behaviour of gases and vapors	3	1		
	3	Material balances for reacting and non-reacting chemical and biochemical systems including recycle, bypass and purge	12	4		
	4	Introduction to psychrometry humidity and air- conditioning calculations.	8	2		
	5	Introduction to Energy Balances, Energy Balances in systems with and without reactions	8	2		
	6	Unsteady State Material and Energy Balances	ß	2		5
		Total	36	12	0	48
Suggested booksreference		 Chemical Process Principles, Hougen O.A., Watson K. M. Basic Principles and Calculations in Chemical Engineering, Himmelblau, Stoichiometry, Bhatt B.I. and Vora S.M. 				
Outcomes		Students will be able to solve problems related to				
	CO1	Students will be able to convert units of simple quantities from one set of units to another set of units				
	CO2	Students will be able to calculate quantities and /or compositions, energy usages, etc. in various processes and process equipment such as reactors, filters, dryers, etc.				

Course code		CET4103				
Course title		Chemical Engineering Thermodynamics –I				
Scheme and Credits		3L: 1T: 0P 3 credits				
Pre-requisites		XIIth Standard Mathematics, Chemistry, Physics, Applied Mathematics – I, Organic Chemistry – I, Applied Physics – I, Analytical Chemistry,				
Objectives of the course	1	Objectives of the course Principles and application of first and second law of thermodynamics, and phase equilibria. Students should be able to apply mass and energy balances to closed and open systems. They should be able to evaluate the properties of nonideal gases and solve problems involving liquefaction, refrigeration and different power cycles.				
	1	Detailed contents Phases, phase transitions, PVT behaviour; description of materials: Ideal gas law, van der Waals, virial and cubic equations of state; Reduced conditions & corresponding states theories; correlations in description of material properties and behaviour	4	2		6
	2	State functions; Equilibrium; Phase Rule; Reversible process; Constant P,V,T processes; Energy conservation & first law of thermodynamics; Mass and energy balances for open systems, nozzles, diffuser, turbines and pump	4	2		6
	3	Statements of the second law; Heat engines, Carnot's theorem, Thermodynamic Temperature Scales; Entropy; Entropy changes of an ideal gas; Mathematical statement of the second law; Entropy balance for open systems; Calculation of ideal work, Lost work	4	2		6
	4	Thermodynamic property of fluids, Maxwell relations, 2-phase systems, graphs and tables of thermodynamic properties	4	2		6
	5	Thermodynamic analysis of flow process, steam power plants; Rankine cycle; Internal combustion engine, Otto engine, diesel engine; Jet engine.	4	2		6
	6	Carnot refrigerator; Vapor-compression cycle; Absorption refrigeration; Heat pump, Liquefaction processes.	4	2		6
		Total	24	12	0	36
Suggested reference books		 Introduction to Chemical Engineering Thermodynamics: Smith, van Ness, Abbott Chemical, Biochemical and Engineering Thermodynamics: S. I. Sandler Phase Equilibria in Chemical Engineering: Walas Molecular Thermodynamics of Fluid Phase Equilibria: Prausnitz 				
Outcomes		Students will be able to solve problems related to				
	CO1	Perform energy balance calculations in accordance with the first law of thermodynamics				
	CO2	Perform entropy balance calculations ic accordance to the second law of thermodynamics				
	CO3	Perform P, V, T calculations and estimate other thermodynamic properties based on equations of state				
	CO4	Perform analysis of thermodynamic cycles, estimation of efficiency, etc.				

Course code		BSP4102				
Course title		Chemistry Lab-II				
Scheme and		0 L: 0 T: 4 P 2 Credits				
Credits						
Pre-requisites		10+2 level chemistry				
Objectives of	1	To train the students to identify simple organic				
the course		compounds				
	2	To train the students to synthesize synthesis and ,				
Detailed		purify and analyse organic compounds				-
Detailed contents		1. Identification of organic molecules based on physicochemical properties: Organic compounds				
contents		contain different functional groups which undergo				
		characteristic reactions.				
		1.1. Physical properties such as solubility and				
		chemical reactivity in known reactions will also be				
		used in the identification.				
		1.2. Identification of an organic compounds by				
		physical constants methods (melting point and				
		boiling point).				
		2. Purification of organic compounds, liquid-liquid,				
		inorganic-organic, solid-liquid mixtures.				
		3. Organic Synthesis:				
		3.1. One-step synthesis of organic compounds				
		3.2. Common synthetic methods using in reactions				
		for the synthesis of pharmaceutical and biological				
		importance molecules and optimization of reaction				
		conditions.				
		3.3. Progress of the reactions monitoring by thin				
		layer chromatography (TLC) and IR analysis.				-
		4. Organic Sample characterization IR, Mass				
		Spectrometry, GC-MS, NMR 4.1. Spectroscopic techniques like IR and NMR will be				
		utilized to elucidate the structure of organic				
		compounds.				
		5. Size Exclusion Chromatography: determination of				
		molecular weight of macromolecules				
		Total	0	0	48	48
Outcomes			-			
		Students will be able to				
	CO1	Identify simple organic compounds systematically				
	CO2	Determine the synthetic route of known organic				
		compound.				
	CO3	Judge the chemical reactions with specific functional				
		groups				
	CO4	Purify organic compound based on physical				
		properties.				
	ļ ļ					
Course code		BSP4103				
Course title		Physics Laboratory				
Scheme and		0 L: 0 T: 4 P 2 Credits				
Credits						
Pre-requisites		10+2 level chemistry				
Objectives of the	1	Operating basic devices measurment of voltage,				
course		current and photocurrent. Exploring source of				
		monochromatic light and its operation and				
		applications.				
Detailed contents						
	1	LASER diffraction-grating experiment				
	2	Hall effect				
	3	Photoelectric effect				
	4	Ultrasonic-velocity of sound in liquid measurement				
	-	on asome-velocity of sound in inquid measurement				

	5	Thermistor				
	6	Viscosity of liquid-measurement				
	7	Determination of Angle of prism and angle of minimum				
		deviation by using prism				
	8	Determination refractive index of prism using				
		spectrometer				
	9	Dispersion of light and determination of Wavelength by				
		using Prism				
	10	Newton's rings				
	11	Surface tension				
	12	Determination of nanoparticle size through diffraction				
		grating technique				
		Total	0	0	48	48
Suggested books	1	Physics: Vols. I and II D. Halliday and R. Resnick, Wiley				
		Eastern.				
	2	A Course of Experiments with LASERs- R. S. Sirohi, Wiley				
		Eastern.				
	3	Optoelectronics –J. Wilson and J.F.B. Hawkes, 2nd ed,				
		Prentice-Hall India.				
	4	Ultrasonics: Methods and Applications–J.Blitz,				
		Butterworth.				
Outcomes		Students will be able to				
	CO1	Understand monochromatic light source and its				
		applications.				
	CO2	Understand engineering applications of lasers				
	CO3	Measure thermal conductivity, photoelectric current,				
		effect of magnetic field on electric current and its				
		applications				

Stud	у З (Т4)									
			Code	Subjects	Credits	Hrs/week				
						L	Т	Р	E. S.	Total
18	BS	BST3201	BST4201	Chemistry - III	4	3	1	0	30	100
19	BS	BST3202	BST4202	Introduction to Biological Sci. & Bioeng.	4	3	1	0	30	100
20	CE	CET3201	CET4201	Momentum Transfer	4	3	1	0	30	100
21	CE	CET3202	CET4202	Chem Engg Thermodynamics - II	3	2	1	0	15	50
22	ES	EST3201	EST4201	Engineering and solid Mechanics	3	2	1	0	15	50
23	ES	EST3202	EST4202	Electrical Engineering and Electronics	3	2	1	0	15	50
24	ES	ESP3201	ESP4201	Engineering Laboratory	2	0	0	4	25	50
25	ES	ESP3202	ESP4202	Engineering Applications of Computers-	3	1	0	4	25	50
				III						
				TOTAL	26	16	6	8	185	550

Course code			BST4201	L	Т	Р	Tot
Course title			Chemistry III				
Scheme and			3 L: 1 T: 0 P 4 Credits				
Credits							
Pre-requisites			10+2 level chemistry				
Objectives of the	1		To train the students about reaction kinetics,				
course			electrochemistry, interfacial chemistry and catalysis,				
			beyond +2 level				
Course title			Detailed contents				
	1		Kinetics	8	2		10
		1.1	Review of rate of reaction, rate constant, effects of				
			the following on rate of reaction: concentration,				
			temperature.				
		1.2	Derivation of rate expression for Second order				
			reactions, Complex reactions: parallel, consecutive,				
			reversible, chain, steady state reactions.				
		1.3	Kinetics and reaction mechanism				
		1.4	Theories of reaction rate				
	2		Electrochemistry	8	2		10
		2.1	Conductance and transport number				
		2.2	Electromotive force				
		2.3	Electrochemical methods of analysis: Controlled				
			current and controlled potential principles,				
			amplifiers, potentiostat, galvanostat, cyclic				
			voltammetry, chronoamperometry,				
			chronopotentiometry.				
		2.4	Fuels cells, batteries, corrosion				
	3		Surface and Interfacial chemistry	10	4		14
		3.1	Surfaces and interfaces: Surface/interfacial energy				
			and surface/ interfacial tension. Measurement of				
			surface tension				
		3.2	Thermodynamics of surfaces: Gibbs adsorption				
			equation and isotherms. Curved surfaces: Young,				
			Laplace, Kelvin and Thompson equation.				
		3.3	S-L interface: Contact angle, its measurement and				
			wetting phenomena, adhesion, and cohesion.				
		3.4	L-L interface: Surface active agents: Types and				
			applications. Surfactant aggregates. Emulsions, gels,				
			foams, and microemulsions: preparation, stability				
			and applications				
	4		Catalysis	10	4		14
		4.1	Heterogeneous catalysis				
		4.2	Preparation of catalysts, characterization of				
			catalysts, catalyst deactivation.				
		4.3	Kinetics of reactions on solid surfaces				

		4.4 Enzyme and photo- catalysis				
		Total	36	12		48
Suggested books		1. Organic chemistry – T. W. G Solom	ons, C. B.			
		Fryhle, John Wiley and Sons				
		2. Organic chemistry, Clayden, Greev	es, Warren,			
		Oxford publication				
		3. Organic Chemistry, Paula Y Bruce,	Pearson			
		Education				
Suggested books		1. Physical Chemistry, P.W. Atkins an	d J. D. Paula, 8th			
		Edition, Oxford University Press.				
		2. Physical Chemistry, K.J. Laidler and	l J.M. Meiser,			
		2nd Edition, CBS Publishers				
		3. Physical Chemistry: A Molecular Ap	pproach, D.A.			
		Mcquarrie and J.D. Simon				
Suggested		1. Chemical Kinetics and Catalysis, R.	J. Masel, John			
reference books		Wiley and Sons1				
		2. Chemical Kinetics and Reaction dy	namics, Paul H.			
		Houston, McGraw Hill				
		3. Catalytic Chemistry, Bruce C Gates	, John Wiley and			
		Sons				
		4. Principles of Heterogeneous Cataly				
		Thomas and W.J. Thomas, John Wiley	y and Sons.			
Outcomes		Students will be able to				
	CO1	1. understand kinetics, write rate exp				
		predict mechanism of simple reaction	ns based on			
		kinetics.				
	CO2	2. understand electrochemical pheno	omena and			
		application of analytical methods bas	ed on them.			
	CO3	3. understand surface and interfacial	phenomena			
		and use them.				
	CO4	4. learn the principles, design, and ap	plications of			
		catalysis.				
Course code		BST4202				
Course title		Introduction of Biological Sciences ar	nd			
		Bioengineering				
Scheme and		3 L: 1 T: 0 P 4 Credits				
Credits						
Pre-requisites		Xth Standard Biology course, Physical	Chamistry	1	-	
				-		
Objectives of the	1	To understand basic principles of bioc				
course		genetics, molecular biology, and cell b				
		Biological function at the molecular le				
		particularly emphasized and covers the				
		regulation of genes, as well as, the str				
		synthesis of proteins, how these mole	ecules are			
		integrated into cells, and how these c	ells are			
		integrated into multicellular systems a	and organisms.			
		The course also offers important cont	-			
		understand chemical reactions preser				
		organisms.				
		A cell is the smallest self-preserving a	nd self-			
		reproducing unit.	d an an allow			
		Many complex chemical reactions and				
		transport processes occur. A cell looks	s like a chemical			
		plant.				
Course title		Detailed contents				
	1	Introduction to cells, Eukaryotes a	and prokaryotes, 3	1		4
		-				
		Microscopy and cell architecture				
	2	Chemical Components of the cell, Che	emical bonds and 3	1		4

				1		
		some of the types of sugar, Fatty acids and other lipids,				
		The 20 amino acids found in proteins, A survey of the				
		nucleotides, The principal types of weak noncovalent				
		bonds				
	3	Energy, Catalysis, and Biosynthesis, Free energy and	3	1		4
		biological reactions				
	4	Protein Structure and Function, A few examples of	3	1		4
		some general proteins, Four different ways of				
		depicting a small protein, Making and using				
		antibodies, Cell breakage and initial fractionation of				
		cell extracts, Protein separation by chromatography,				
		Protein separation by electrophoresis				
	5	DNA and Charomosomes, DNA replication, repair and	3	1		4
		recombinations, From DNA to Protein: How Cells Read	•	_		-
		the Genome, Control of Gene Expression				
	6	How Genes and genome evolve, analyzing genes and	3	1		4
	0		5	1		4
	┥╻┥	genomes	2	1		4
	7	Membrane Structure, Membrane Transport	3	1		4
	8	How Cell Obtain energy from food, Glycolysis, the	6	2		8
		complete citric acid cycle, Energy Generation in				
		Mitochondria and Chloroplasts, Redox potentials				
	9	Intracellular compartment and transport, cell	3	1		4
		communication, cytoskeleton, cell division				
	10	Sex and Genetics	3	1		4
	11	Bioengineering, tissues, stem cells and cancer	3	1		4
		Total	36	12	1	48
Suggested books		1) Essential cell biology, Bruce Alberts et al, 3rd				
/reference books		Edition, ISBN 978-0-8153-4129-1 Garland Science,				
		Taylor & Francis Group				
		2) Lehninger Principles of Biochemistry,				
		3) David L. Nelson, Albert L. Lehninger, Michael M. Cox				
		ISBN 071677108X, 9780716771081				
Outcomes		Students will be able to			1	
outcomes	CO1	Identify the general structure and function of				
	001	, -				
		carbohydrates, phospholipds, proteins, enzymes and				
		nucleic acids.				
	CO2	Outline the general processes used by the cell to				
		generate cellular energy from sugar and to generate				
		the energy and reducing agent needed for the citric				
		acid cycle.				
	CO3	Describe how DNA was shown to be the genetic				
		material and how DNA is copied.				
	CO4	Describe the structure and regulation of genes, and				
		the structure and synthesis of proteins.				
	CO5	Predict the results of genetic crosses involving two or				
		more traits when the genes involved are linked or				
		unlinked.				
	CO6	Describe how cell divides and mutation takes place.				
	CO7	Describe different microorganism and their				
		reproduction cycles				
	+ +					
			L	Т	Р	Tot
Course code		CET4201				
Course code Course title		CE 14201 Momentum Transfer				
Course title		Momentum Transfer				
Course title Scheme and		Momentum Transfer				

Objectives of the	1	This basic course introduces concepts of momentum				
course	-	transfer to students. Various concepts such as				
course		pressure, momentum, energy are introduced. Laws				
		related to conservation of momentum, energy are				
		taught. Applications of these laws to various				
		engineering situations and process equipment is				
		explained with the help of several problems				
Course title		Detailed contents				
	1	Fluid Statics and applications to engineering	3	1		4
		importance.				
	2	Equations of Continuity and Motion (Cartesian,	8	3		11
		cylindrical, and spherical coordinates) in laminar				
		flows and its applications for the calculation of				
		velocity profiles, shear stresses, power, etc. in various				
		engineering applications.				
	3	Basics of Turbulent flows	2	0		2
	4	Bernoulli's Equation and engineering applications,	6	2		8
		Pressure drop in pipes and Fittings, Piping systems		ļ	<u> </u>	
	5	Fluid moving machinery such as pumps, blowers,	7	2		9
		compressors, vacuum systems, etc.				
	6	Boundary Layer Flows: Blasius equations and solution,	3	1		4
		Von-Karman integral equations and solutions,				
		Boundary layer separation: skin and form drag.	4	2		6
	7	Particle Dynamics, Flow through Fixed and Fluidised Beds,	4	2		6
	8	Gas – liquid Two phase flow: types of flow regimes,	3	1		4
	0	Regime maps, estimation of pressure drop and hold-	5	1		4
		up				
		Total	36	12		48
Suggested		1) Transport Phenomena, Bird R.B., Stewart W.E.,				
reference books		Lightfoot E.N.				
		2) Fluid Mechanics, Kundu Pijush K.				
		3) Fluid Mechanics, F. W. White				
		4) 4. Unit Operations of Chemical Engineering,				
		McCabe, Smith				
Outcomes		Students will be able to				
	CO1	Students should be able to calculate velocity profiles				
		by simplification of equations of motion in simple 1-D				
		flows				
	CO2	Students should be able to calculate boundary layer				
		thicknesses, friction factor				
	CO3	Students will be able to calculate pressure drop,				
		power requirements for single phase flow in pipes.				
	CO4	Students should be able to calculate two phase				
		gas/liquid pressure drop.				
	CO5	Students should be able to calculate power				
					4	
		requirements, NPSH requirements of pumps.				
	CO6	Students should be able to calculate drag force and				
	CO6	Students should be able to calculate drag force and terminal settling velocity for single particles				
		Students should be able to calculate drag force and terminal settling velocity for single particles Students will be able to calculate pressure drop in				
Course and s	CO6	Students should be able to calculate drag force and terminal settling velocity for single particles Students will be able to calculate pressure drop in fixed and fluidized beds.				
Course code	CO6	Students should be able to calculate drag force and terminal settling velocity for single particles Students will be able to calculate pressure drop in fixed and fluidized beds. CET4202				
Course title	CO6	Students should be able to calculate drag force and terminal settling velocity for single particles Students will be able to calculate pressure drop in fixed and fluidized beds. CET4202 Chem Engg Thermodynamics - II				
Course title Scheme and	CO6	Students should be able to calculate drag force and terminal settling velocity for single particles Students will be able to calculate pressure drop in fixed and fluidized beds. CET4202				
Course title Scheme and Credits	CO6	Students should be able to calculate drag force and terminal settling velocity for single particles Students will be able to calculate pressure drop in fixed and fluidized beds. CET4202 Chem Engg Thermodynamics - II 3 L: 1 T: 0 P 4 Credits		T		Tot
Course title Scheme and	CO6	Students should be able to calculate drag force and terminal settling velocity for single particles Students will be able to calculate pressure drop in fixed and fluidized beds. CET4202 Chem Engg Thermodynamics - II 3 L: 1 T: 0 P 4 Credits Applied Mathematics- I and II, Physical Chemistry,		T	P	Tot
Course title Scheme and Credits Pre-requisites	CO6 CO7	Students should be able to calculate drag force and terminal settling velocity for single particles Students will be able to calculate pressure drop in fixed and fluidized beds. CET4202 Chem Engg Thermodynamics - II 3 L: 1 T: 0 P 4 Credits Applied Mathematics- I and II, Physical Chemistry, Chemical Engineering Thermodynamics-I	L	T	P	Tot
Course title Scheme and Credits Pre-requisites Objectives of the	CO6	Students should be able to calculate drag force and terminal settling velocity for single particles Students will be able to calculate pressure drop in fixed and fluidized beds. CET4202 Chem Engg Thermodynamics - II 3 L: 1 T: 0 P 4 Credits Applied Mathematics- I and II, Physical Chemistry, Chemical Engineering Thermodynamics-I This course builds on the preceding course by	L	T	P	Tot
Course title Scheme and Credits Pre-requisites	CO6 CO7	Students should be able to calculate drag force and terminal settling velocity for single particles Students will be able to calculate pressure drop in fixed and fluidized beds. CET4202 Chem Engg Thermodynamics - II 3 L: 1 T: 0 P 4 Credits Applied Mathematics- I and II, Physical Chemistry, Chemical Engineering Thermodynamics-I This course builds on the preceding course by developing the concept of non-ideal mixing and		T	P	Tot
Course title Scheme and Credits Pre-requisites Objectives of the	CO6 CO7	Students should be able to calculate drag force and terminal settling velocity for single particles Students will be able to calculate pressure drop in fixed and fluidized beds. CET4202 Chem Engg Thermodynamics - II 3 L: 1 T: 0 P 4 Credits Applied Mathematics- I and II, Physical Chemistry, Chemical Engineering Thermodynamics-I This course builds on the preceding course by		T	P	Tot

	1	boots of mixing sparingly soluble gases and solids			
		heats of mixing, sparingly soluble gases and solids, electrolytes etc. Student who have taken this course			
		may be expected to intelligently analyze practically			
		the full spectrum of industrial chemical processes.			
Course title	+	Detailed contents			
course the	1	Review of first and second law of thermodynamics	2		2
	2	Vapor-liquid equilibrium: phase rule, simple models	3	1	4
	-	for VLE;VLE by modified Raoult's law; VLE from K-	3	-	-
		value correlations; Flash calculations.			
	3	Solution Thermodynamics: fundamental property	6	2	8
		relationships, free energy and chemical potential,	_		_
		partial properties, definition of fugacity and fugacity			
		coefficient of pure species and species in solution,			
		the ideal solution and excess properties.			
	4	Liquid phase properties from VLE, Models for excess	6	2	8
		Gibbs energy, heat effects and property change on			
		mixing.			
	5	UNIFAC and UNIQUAC models	2	1	3
	6	Liquid-Liquid Equilibria; Vapor-Liquid-Liquid	6	3	9
		Equilibria; Solid-Liquid Equilibria; Solid-Gas Equilibria.			
	7	Chemical reaction equilibria: equilibrium criterion,	4	2	6
		equilibrium constant, evaluation of equilibrium			
		constant at different temperatures, equilibrium			
		conversion of single reactions, multireaction			
		equilibria.			
		Total	29	11	40
Suggested		1. Introduction to Chemical Engineering			
reference books		Thermodynamics: Smith, van Ness, Abbott			
		2. Chemical, Biochemical and Engineering			
		Thermodynamics: S. I. Sandler			
		3. Phase Equilibria in Chemical Engineering: Walas			
		4. Molecular Thermodynamics of Fluid Phase			
Outcomos	-	Equilibria: Prausnitz Students will be able to			
Outcomes	CO1	Use activity coefficient models to calculate excess			
	01	properties of liquids			
	CO2	Use modified Raoult's law to calculate VLE of non-			
	002	ideal mixtures			
	CO3	Calculate chemical equilibrium in non-ideal mixtures			
	CO4	Calcuate solubility of gases in liquids including			
	004	aqueous solutions with electrolyes			
	CO5	Quantitatively describe salting out effect			
	CO6	Estimate mixture properties from group contribution			
		methods			
Course code	1	EST4201			
Course title		Engineering and Solid Mechanics			
Scheme and	<u> </u>	3 L: 1 T: 0 P 3 Credits			
Credits		J LITTON J CIEURS			
Pre-requisites	1				
Objectives of the	1	This subject will help students to understand use of			
course		basics of Applied Mechanics and Strength of			
		Materials.			
		This is the foundation course for a good Design			
		Engineer.			
		In engineering equipments and structures, which			
		different types of forces are to be considered and			
		how to quantify them ?			
	Г	What are different conditions of equilibrium? How			
		to apply equilibrium condition to analyse the			
		to apply equilibrium condition to analyse the			

1	1	1					
			disadvantages of various geometric sections				
			available for engineering design. Study of different types of stresses and strains		-		
			occurring in various components of the structure.				
			Understanding and calculating Shear force and				
			Bending moment in the beams with simple and				
			complex loading. Determination of Bending stresses				
			and shear stresses in the beams. Evaluation of				
			slopes and deflections in the beams with simple and				
			complex loading.				
Course title			Detailed contents	L	т	Р	Tot
Course title	1		Concepts of forces , their types, Resolution of forces,	3	1	P	4
	Т		Composition of forces, Steps in Engineering Design,	3	-		-
			Different types supports and free body diagram.				
	2		Equilibrium of rigid bodies - Conditions of equilibrium.	4	2		6
	2		Determinant and indeterminate structures.	-	2		0
			Equilibrium of beams, trusses and frames problems				
			on analysis of beams and truss. (Both Analytical &				
			Graphical Method)				
	3			3	1		
	5		Concept of moment of Inertia (Second moment of area) its use. Parallel axis theorem. Problems of	5	1		4
			finding centroid and moment of Inertia of single				
			figures, composite figures. Perpendicular axis				
	4		theorem, Polar M.I., Radius of gyration. Stresses and Strains - Tensile and compressive	3	1		4
	4			5	1		4
			stresses, strains, modulus of elasticity, modulus of				
			rigidity, bulk modulus. Relation between elastic				
			constants. Lateral strain, Poisson's ratio, volumetric				
			strain. Thermal stresses and strains. Problems based				
			on stresses and strains. Stresses and Strains				
			Relationship and Strain Deformation relationship.	2	2		-
	5		Shear Force and Bending Moment - Basic concept,	3	2		5
			S.F. and B.M. diagram for cantilever, simply				
			supported beams (with or without overhang) under				
			various loading. Problems with concentrated and				
	6		U.D. loads.	-			•
	6		Bending stress & shear Stress: Derivation of basic	5	3		8
			formula for Bending, Shear stress, Bending stress				
			Distribution and Shear stress distribution for various				
			loading and geometric sections. Problems of				
			Cantilever, simply supported and Beams with				
			overhang.	-	-		-
	7		Slope and Deflection of beams - Basic concept, Slope	3	2		5
			and Deflection of cantilever and simply supported				
			beams under standard loading. Macaulay's method.				
	-		Simple problems of finding slopes and deflections.	-	-		_
	8		Thick and Thin cylinders - concept of radial,	5	2		7
			longitudinal stresses, behaviour of thin cylinders.				
	l		Problems on thin cylindrical.				
			Total	24	12		36
Suggested							
reference books	<u> </u>						
		1	Engineering Mechanics Vol I Statics by B. N.				
		-	Thadani, Publisher Wenall Book Corporation				
		2	Introduction to Mechanics of Solids by Egor Popov,				
	ļ		Prentice Hall of India Pvt. Ltd				
		3	Mechanics of Materials by Ferdinand Beer and E.				
			Russel Johnston, Tata McGraw Hill Publishing Co. Ltd.				
		4	Fundamentals of applied Mechanics by Dadhe,				
			Jamdar and Walavalkar, Sarita Prakashan Pune				
		5	Engineering Mechanics by S. Timoshenko and D. H.				
			Young, McGraw Hill Publications				

	I	6	Strength of Materials by Ferdinand Singer and				
		0	Andrew Pytel, Harper Colins Publishers Ltd				
		7	Concrete Technology by A. M. Neville, Pearson				
		-	Education				
		8	Fundamental of Fibre reinforced composite				
		_	materials by A. R. Busell and J. Renard, Taylor &				
			Francis				
Outcomes			Students will be able to				
	CO1		Understand conditions of equilibrium and how to				
			apply conditions of equilibrium for engineering				
			applications.				
	CO2		Understand use of centroid and moment of inertia for				
			design problems.				
	CO3		Understand different stresses induced when				
			structures subjected to various loadings.				
	CO4		Understand the concepts of shear force, bending				
			moment and deflections in beams.				
	CO5		Understand design procedure for thin and thick				
			cylinders.				
	CO6		Understand various materials used for structures and				
			their properties.				
Course code	1	і	EST4202				
Course title							
			Electrical Engineering and Electronics				
Scheme and			3 L: 1 T: 0 P 3 Credits				
Credits							
Pre-requisites			XIIth Standard Physics and Mathematics courses, Applied Physics - II				
Objectives of the			Students will get an insight to the importance of				
course			Electrical Energy in Chemical Plants . The students will				
			understand the basics of electricity, selection of				
			different types of drives for a given application				
			process. They will get basic knowledge as regards to				
			Power factor improvement and thyristor application				
			in industries.				
Course title			Detailed contents	L	т	Р	Tot
	1		Basic Laws: Ohm's law, Kirchhoff's circuit laws,	7	2		9
			Voltage divider rule and Current divider rule; Network				
			theorems: Mesh Analysis, Nodal Analysis,				
			Superposition, Thevenin's theorems.				
	2		A.C. Fundamentals: Generation of sinusoidal voltage,	7	2		9
			frequency of generated voltage, definition and				
			numerical values of average value, root mean square				
			value, form factor and peak factor of sinusoidally				
			varying voltage and current, phasor representation of				
			alternating quantities, A.C. through resistance,				
			inductance and capacitance, simple RL, RC and RLC				
			circuits. Power, power factor, Phasor diagram				
			solution of AC circuits. Series and parallel circuits				
	3	1	3-phase Power: Advantages of 3-phase power,	2	2		4
			Generation of 3-phase power, Three-phase balanced				
			circuits, voltage and current relations in star and delta				
			connections. Measurement of three phase power				
			connections. Measurement of three phase power				
	4		using two wattmeter method	3	1		4
	4		using two wattmeter method Single Phase Transformers: Necessity of transformer,	3	1		4
	4		using two wattmeter method Single Phase Transformers: Necessity of transformer, Principle of operation, Types and construction of	3	1		4
	4		using two wattmeter method Single Phase Transformers: Necessity of transformer, Principle of operation, Types and construction of transformers, EMF equation, Types of Losses.	3	1		4
			using two wattmeter method Single Phase Transformers : Necessity of transformer, Principle of operation, Types and construction of transformers, EMF equation, Types of Losses. Power factor improvement methods, concept of most				
			using two wattmeter method Single Phase Transformers: Necessity of transformer, Principle of operation, Types and construction of transformers, EMF equation, Types of Losses.				

	7	I	Electrical drives in Industries, their characteristics and	2	2		4
	-		starting methods and speed control. and their	-	-		
			suitability for various applications.				
				24	12		36
Suggested books	1		Electrical Engineering Fundamentals by Vincent				
reference books			Deltoro				
	2		Basic Electrical Engineering Machines by Nagrath,				
			Kothari				
	3		Basic Electrical Engineering by D.C. Kulshreshtha				
	4		Principles of Electrical Engineering and Electronics by				
			V.K.Mehta				
	5		Network Analysis and Synthesis by Ravish R Singh				
	6		Circuit Theory (Analysis And Synthesis by A.				
			Chakrabarti				
	7		Electrical Machines by P.S. Bhimbra				
	8		Electrical Technology by B.L.Theraja, A.K.Theraja Vol				
	•		I,II,IV				
	9		Electronic devices and circuits by Boylstead,				
	10		Nashelsky Principles of Electronics by V.K.Mehta and Rohit		<u> </u>		
	10		Mehta				
	11		Thyristors and their applications by M.Ramamurthy				
	11		Power Electronics by P.S. Bhimbra				
	12						
Outcomes	<u> </u>		Students will be able to understand				
Outcomes	CO1		The basic concepts of D.C., single phase and three				
	01		phase AC supply and circuits Solve basic electrical				
			circuit problems				
	CO2		The basic concepts of transformers and motors used				
			as various industrial drives.				
	CO3		The concept of power factor improvement for			1	
			industrial installations and concept of most				
			economical power-factor				
	CO4		The basic concepts of electronic devices and their			1	
			applications as thyristor's and speed control of				
			drives.				
Course code			ESP4201				
Course title			Engineering Laboratory				
Scheme and			0 L: 1 T: 2 P 2 Credits				
Credits							
Pre-requisites							
Objectives of the							
course							
Course title			Detailed contents	L	Т	Р	Tot
	1		Electrical Engineering Experiments				
		1.1	Study of RLC circuits				
		1.2	Load test on transformer				
		1.3	Load test on induction motor				
		1.4	Study of 3 phase circuits with Star connected load				
		1.5	Study of 3 phase circuits with Delta connected load				
	2		Electronics Engineering Experiments				
		2.1	Study of C.R.O. and its applications.				
		2.2	Study of half wave, full wave and bridge rectifier				
			circuits				
		2.3	Study of input and output characteristics of a				
			transistor.				
		2.4	Study of various logic gates and their application in				
			logic circuits.				
	<u> </u>	2.5	Study of UJT and UJT relaxation oscillator.				
	<u> </u>	2.6	Study of operational amplifier circuits.				
	3	L	Mechanical Fabrication Experiments				

1	1	2.1	For loorning the designs and fabrication of any				
		3.1	For learning the designs and fabrication of any				
			mechanical/ electrical /design components , Lathe				
			machines are necessary for learning operations such				
			as Turning , Spot facing , chamfering, Knurling etc.				
		3.2	For learning the welding operations such as arc				
			welding , butt welding, lap welding etc. which will be				
			useful to develop their skills of Pressure vessel, heat				
			exchanger etc. fabrication.				
	4		Strength of Materials experiments				
		4.1	Universal Testing Machine				
		4.2	Izod Impact Testing machine				
		4.3	Brinell Hardness testing				
			Total	0	0		48
Suggested							
reference books							
Outcomes			Students will be able to understand				
	CO1		Practically the tensile strength, flexural strength,				
			hardness, modulus, % elongation of any material				
Course code		1	ESP4103				
Course code							
			Engineering Applications of Computers-II				
Scheme and			1 L: OT: 4 P 3 Credits				
Credits							
Pre-requisites	<u> </u>		10+2 level Mathematics				
Objectives of the	1		To make students familiar with basic nemerical				
course			methods to solve simple problems arising in				
			engineering. To devlop Python programmes to solve				
			problems in numerical analysis and anlyse its				
			qualitative behaviour.				
Detailed				L	т	Р	Tot
contents							
	1		Review of Python basics: Control Flow, Loops and				
			functions, matplotlib. Introduction to Pandas				
			Brief introduction to error analysis	3	0	12	15
			Numerical method of finding roots of nonlinear				
			equations of one and two variables: Bisection,				
			Secant, Regula-Falsi and Newton-Raphson methods,				
			Newton's method for solving systems of nonlinear				
			equations				
			(Algorithm and python programme developments of				
			these methods.)				
	2		Solution of Linear Algebraic Equations: Methods like	3	0	12	15
			Gaussian elimination and matrix inversion, LU				
			decomposition.				
			Numerical solution of linear algebraic equations:				
			Jacob, Gauss-Siedel methods, and relaxation iterative				
			methods Convergence criteria for various iterative				
			methods.				
			(Algorithm and python programme developments of				
			these methods.)				
	3		Interpolation and Approximation:	3	0	12	15
			Newton's forward and backward interpolation,				
			Lagrange interpolation and Linear Spline				
			interpolation.				
			(Algorithm and python programme developments of				
			these methods.)				
	4		Numerical Differentiation and Integration:	3	0	12	15
	1		Numerical differentiation using various interpolation	3	J		15
			formulae.				
			Integration: Trapezoidal rule, Simpson's rule,				
			integration. Trapezoidal fulle, Simpson's fulle, integration with unequal segments, Quadrature				
			methods.				
	1	I	memous.				

		(Algorithm and python programme developments of these methods.)				
		Total	12	0	48	60
Suggested books		Sandeep Nagar, Introduction to Python for Engineers and Scientists. Open Source Solutions for Numerical Computation-Apress (2018) Reema Thareja, Python Programming: Using Problem Solving Approach, Oxford University Press, 2017 Fangoh, Introduction to Python for Computational Science and Engineering, Open Source, available on github.				
Outcomes		Students will able to				
	CO1	use Numpy, Scipy and Sympy to solve problems related to matrices, solutions linear and nonlinear equations and single variable calculus.				
	CO2	write Python programme to solve simple mathematical and numercial problems.				

Stud	у 4 (Т6)									
			Code	Subjects	Credits	Hrs/	/week	(
						L	Т	Р	E. S.	Total
26	ES	EST3203	EST4203	Energy Engineering	4	3	1	0	30	100
27	CE	CET3203	CET4203	Heat Transfer	4	3	1	0	30	100
28	CE	CET3204	CET4204	Mass Transfer Operations	4	2	2	0	30	100
29	S	S <i>x</i> T3101	SxT4101	Special Subject I	3	2	1	0	15	50
30	HU	HUT3201	HUT4201	IPR and Laws	3	2	1	0	15	50
31	CE	CEP3201	CEP4201	Mathematical Methods in Chemical	4	2	0	4	50	100
				Engineering						
32	CE	CEP3202	CEP4202	Chemical Engineering Laboratory-I	4	0	0	8	50	100
				TOTAL	26	14	6	12	220	600

Course code		CET4203				
Course title		Heat Transfer				
Scheme and		3 L: 1 T: 0 P 4 Credits				
Credits						
Pre-requisites		Momentum and Mass transfer, Applied Mathematics				
		I and II, Material and Energy Balance				
Objectives of the	1	This is a basic course that deals with heat transfer,				
course		heat exchangers and their design. Heat transfer				
		forms one of the basic pillars of Chemical				
		Engineering Education and is required in all future				
		activities.				
Course title		Detailed contents	L	т	Р	Tot
	1	Revision of Basics of Heat transfer: Steady state and	2	-	<u> </u>	2
	-	unsteady state conduction, Fourier's law, Concepts	2			~
		of resistance to heat transfer and the heat transfer				
		coefficient. Heat transfer in Cartesian, cylindrical				
		and spherical coordinate systems, Insulation, critical radius . extended surfaces, fin performance				
		evaluation, effectiveness of fins. Transient heat conduction.				
	2		2	-		
	2	Convective heat transfer in laminar and turbulent	3	1		4
		boundary layers. Theories of heat transfer and				
	-	analogy between momentum and heat transfer.				
	3	Heat transfer by natural convection. Heat transfer	2			2
		outside various geometries in forced convection,				
		such as, single spheres, banks of tubes or cylinders,				
		packed beds and fluidised beds				
	4	Heat transfer in laminar and turbulent flow in	3	1		4
		circular pipes: Double pipe heat exchangers:				
		Concurrent, counter-current and cross flows, mean				
		temperature difference, NTU – epsilon method for				
		exchanger evaluation.				
	5	Shell and tube heat exchangers: Basic construction	8	2		10
		and features, TEMA exchanger types, their				
		nomenclature, choice of exchanger type, correction				
		to mean temperature difference due to cross flow,				
		multipass exchangers. Design methods for shell and				
		tube heat exchangers such as Kern Method, Bell –				
		Delaware method				
	6	Finned tube exchangers, air-cooled cross flow	2	1		3
		exchangers and their process design aspects				
	7	Compact Exchangers: Plate, Plate fin, Spiral, etc.:	2	1		3
		Construction, features, advantages, limitations and				
		their process design aspects				
	8	Condensation of vapours: theoretical prediction of	6	2		8
	-	heat transfer coefficients, practical aspects,	-			
		horizontal versus vertical condensation outside				

		superheating and subcooling			<u> </u>	-
	9	Heat transfer to boiling liquids: Process design	6	2		8
		aspects of evaporators, natural and forced circulation reboilers				
	10	Heat transfer in agitated vessels: coils, jackets,	2			2
	10	limpet coils, calculation of heat transfer coefficients,	-			-
		heating and cooling times, applications to batch				
		reactors and batch processes				
	11	Basics of Radiative heat transfer	2			2
		Total	38	6		48
Suggested		1. Process Heat Transfer, Kern D.Q.				
reference books		2. Heat Exchangers, Kakac S., Bergles A.E., Mayinger				
		F 3. Process Heat Transfer, G. Hewitt				
Outcomes		Students will be able to				
Outcomes	CO1	Calculate temperature profiles in a slab at steady				
		state				
	CO2	Calculate heat transfer coefficients in various				
		equipment like double pipe heat exchangers, shell				
		and tube heat exchangers, plate heat exchangers,				
		condensation, evaporation, agitated tanks.				
	CO3	Calculate heat duty/outlet temperatures/pressure				
		drops/area required for various equipment like double pipe heat exchangers, shell and tube heat				
		exchangers, plate heat exchangers, condensation,				
		evaporation, agitated tanks.				
	CO4	Identify and select type of shell and tube exchanger				
		based on TEMA classification.				
Course code		EST4203	L	Т	Р	Tot
Course title		Energy Engineering				
Scheme and		3 L: 1 T: 0 P 4 Credits				
Credits						
Pre-requisites		Chemical Engineering Thermodynamics-I, Material				
		and Energy Balance Calculations, Applied Physics I				
		and II, Applied Mathematics – I and II				
Objectives of the	1	Students will be able to understand various				
course		equipments like steam turbine, gas turbine, pumps,				
Course title		compressors and power transmission system. Detailed contents				
Course title	1		4	2		6
	2	Properties of Steam Boilers Steam turbine	4			-
	3	Condenser	-	1		4
	4		3	1 2		4
	5	Steam power plant cycles	4			-
	6	Pumps Compressors and blowers	3	1		4
	6 7	Steam nozzles	3	1		4
	8		3			
	8	Belt, chain and gear drive Bearings	3	1		4 4
	10	Refrigeration	3	1		4
	10	Internal combustion engine, Otto engine, diesel	3	1		4
	L 11	engine; Jet engine cycles	3	1		4
		Total	35	13		48
Suggested		1. Thermodynamics by P.K.Nag	35	13		40
reference books		2. Power plant by Morse				
	1					
		3 Heat Engines by PT Balani				
Outcomes		3. Heat Engines by P.L.Balani Students will be able to				

	CO2	1	List the features and functions of various power				
	002		transmission system				
	CO3		List the features of refrigeration systems				
Course code			CET4204				
Course title			Mass Transfer Operations				
Scheme and			3 L: 1 T: 0 P 4 Credits				
Credits							
Pre-requisites			Material & Energy Balance Calculations, Physical				
			Cheiistry, Organic Chemistry-I and II, Chem. Eng.				
			Thermodynamics-I, Momentum and Mass Transfer				
Objectives of the	1		This is a basic Chem. Eng. course. The principles				
course			learnt in this course are required in almost all the				
			courses and throughout the professional career of				
			Chemical Engineer				
Course title			Detailed contents	L	т	Р	Tot
	1		Diffusion	4	2		6
	2		Convective mass transfer and mass transfer	2	1		3
			coefficient				_
	3		Interfacial mass transfer	4	2		6
	4		Single Equilibrium Stage, Flash Calculations and	4	2		6
			Cascade systems: Binary vapor–liquid systems,				
			bubble-point, and dew-point calculations, Cascade				
			configurations, co-current, counter-current, cross-				
			current, and other configurations				
	5		Absorption and Stripping of dilute mixtures:	8	2		10
			Fundamentals of absorption, equilibrium curves,				
			Operating lines from material balances, Number of				
			equilibrium stages, Kremser Equation, Stage				
			efficiency and column performance, Trayed and				
			packed columns, Rate based methods for packed				
			columns (HTU, NTU), Design considerations: loading				
			and flooding zones, pressure drop and column				
			diameter				
	6		Distillation of binary mixtures: Differential	8	3		11
			distillation, Flash or equilibrium distillation,				
			Fractionating column and multistage column, design				
			and analysis factors, degrees of freedom,				
			specifications, reflux, reflux ratio, need for reflux, McCabe-Thiele, Lewis-Sorel methods of estimation				
			of number of plates, Operating and feed lines,				
			minimum and optimum reflux ratio, Tray and column				
			efficiency , Packed column distillation: rate based				
			methods: HETP, HTU, Ponchon Savarit method ,				
			Batch, azeotropic, and extractive distillation,				
			Distillation equipment and sizing				
	7		Drying of solids: Mechanism of drying, drying rate	4	2		6
			curves, Estimation of drying time , Drying Equipment,				_
			operation, Process design of dryers, material and				
			energy balances in direct dryers, Drying of				
			bioproducts				
			Total	34	14		48
Suggested		1	Richardson, J.F., Coulson, J.M., Harker, J.H.,			1	
reference books			Backhurst, J.R., 2002. Chemical engineering: Particle				
			technology and separation processes. Butterworth-				
			Heinemann, Woburn, MA.				
		2	Seader, J.D., Henley, E.J., 2005. Separation Process				
			Principles, 2 ed. Wiley, Hoboken, N.J.				
		3	Svarovsky, L., 2000. Solid-Liquid Separation.				
	1		Butterworth-Heinemann, Woburn, MA.				

			Operations of Chemical Engineering, 7 ed. McGraw-				
			Hill Science/Engineering/Math, Boston.				
		5	McCabe, W., Smith, J., Harriott, P., 2004. Unit				
			Operations of Chemical Engineering, 7 ed. McGraw-				
		6	Hill Science/Engineering/Math, Boston. Green, D., Perry, R., 2007. Perry's Chemical				
		0	Engineers' Handbook, Eighth Edition, 8 ed. McGraw-				
			Hill Professional, Edinburgh.				
		7	Dutta, B.K., 2007. Principles of Mass Transfer and				
			Separation Process. Prentice-Hall of India Pvt. Ltd,				
			New Delhi.				
Outcomes			Students will be able to				
	CO1		Know the significance and usage of different				
			particulate characterization parameters, and				
	602		equipment to estimate them		<u> </u>		
	CO2		Describe Size reduction energy requirements, estimate performance of equipment, selection and				
			sizing of equipment				
	CO3		Analyze filtration data and select systems based on				
			requirements, estimate filtration area for given				
			requirements, understand filter aids and their usage				
	CO4	1	Draw T-y-x diagrams, and y-x diagrams, operating				
			lines, feed line, bubble point, dew point calculations,				
			ternary phase diagrams, partition coefficient				
	CO5		Describe two common modes of drying, industrial				
			drying equipment				
	CO6		Calculate mass transfer coefficient in various				
			equipment, Calculate height and diameter required, minimum solvent required in absorption, calculate				
			height and diameter required, minimum reflux				
			required in distillation				
Course code		1	HUT4201				
Course title			IPR and Laws				
Scheme and			2 L: 1 T: 0 P 3 Credits	L	т	Р	Total
Credits							
Pre-requisites							
Objectives of the	1		To provide basic knowledge about all the branches of				
course			IPR viz. Copyrights, Trademarks, Patents,				
			Geographical Indicators, Industrial Designs, etc			<u> </u>	
	2		To provide the knowledge about national and				
	3		international aspects of IPR To provide advanced knowledge about Indian Patent		<u> </u>	-	
	5		Law				
	4	1	To impart knowledge about filing a patent,				
	·		performing a patent search, drafting a patent and				
			infringement analysis				
Course title			Detailed contents				
	1		Introduction, History of IPR (history of patents in	2	1	0	3
			particular), Rationale behind IPR, Economics of IPR,				
			features of IPR.				
	2		features of IPR. Introduction to patents, trademarks, copyrights,	2	1	0	3
	2		features of IPR. Introduction to patents, trademarks, copyrights, geographical indicators, industrial designs, trade	2	1	0	3
			features of IPR. Introduction to patents, trademarks, copyrights, geographical indicators, industrial designs, trade secrets				_
	2		features of IPR. Introduction to patents, trademarks, copyrights, geographical indicators, industrial designs, trade secrets Definition of patent, Term of patent, patentabilty	2	1	0	3
			features of IPR. Introduction to patents, trademarks, copyrights, geographical indicators, industrial designs, trade secrets Definition of patent, Term of patent, patentabilty criteria, inventions not patententable, Process and				_
			features of IPR. Introduction to patents, trademarks, copyrights, geographical indicators, industrial designs, trade secrets Definition of patent, Term of patent, patentabilty criteria, inventions not patententable, Process and product patents				_
			features of IPR. Introduction to patents, trademarks, copyrights, geographical indicators, industrial designs, trade secrets Definition of patent, Term of patent, patentabilty criteria, inventions not patententable, Process and				_

		History, Salient features of: Indian Patent Act 1970,				
		1999 amendment, 2002 amendment, 2005				
		amendment, WTO-TRIPs and Indian legislation				
		Use of TRIPS flexibilities in Indian Patent law				
		Section 3(d), Pre grant opposition, Compulsory				
		licencing (with case studies)				
	5	Procedure for Patent application	6	3	0	9
		Who can file a patent, Where to file a patent, Patent				
		office procedures				
		Practical aspects of patenting: Patent search,				
		acquiring a patent, patent specification and it parts,				
		patent claims , infringement analysis				
		Case studies/ additional information for patenting in				
		various chemical technology fields – national and				
		international.				
		e.g. Salient features of patenting in the US: The				
		Hatch Waxman Act with reference to generic Drugs,				
		The Orange book, The contents of ANDA and				
		bioequivalence. Patent Certification (Para-I, Para-II,				
		Para-III and Para-IV)				
		Total	24	12	0	36
Suggested	1	Indian Patent Act				
reference books						
		Handbook of Patenting: Parikshit Bansal				
Outcomes		Students will be able to				
	CO1	Distinguish between different types of intellectual				
		property				
	CO2	List conditions for filing intellectual property				
		protections				
Course code		CEP4202				
Course title		Chemical Engineering Laboratory-I				
Scheme and		0 L: 0 T: 8 P 4 Credits				
Credits						
Pre-requisites		Momentum Transfer, Chemical Engineering				
		Thermodynamics 1, Mass transfer				
Objectives of the	1	Chemical Engineering lab provides students the first				
course		hand experience of verifying various theoretical				
	-	concepts learnt in theory courses				
	2	It also exposes them to practical versions of typical				
		chemical engineering equipments and servers as a				
	3	bridge between theory and practice This particular lab focuses on fluid dynamics,				
	5	thermodynamics and mass transfer				
Detailed			L	т	Р	Tot
contents			-		ſ	101
	1	Fluid Flow (9-11 experiments)			50	50
	2	Fluidization (1-2 experiments)			10	10
	3	Sedimentation (1-2 experiments			10	10
	4	Thermodynamics (3-4 experiments)			16	16
	5	Mass transfer (1-2 experiments)			10	10
	-	Total	0	0	96	96
Outcomes						
		Students will be able to				
		Learn how to experimentally verify various				
	CO1					
	CO1					
	CO1 CO2	theoretical principles Visualize practical implementation of chemical				

	соз	Capability to visualize and understand chemical				
		engineering unit operations related to fluid and				
		particle mechanics, and mass transfer				
	CO4	Able to clearly communicate the results of				
		experimental work in oral and written formats.				
Course code		CEP4201				
Course title		Mathematical Methods in Chemical Eng.				-
Scheme and Credits		2 L: 1 T: 2 P 4 Credits				
Pre-requisites		Applied Mathematics – I and II, Momentum and				
·		Mass Transfer, Chem. Eng. Operations, Chem. Engg. Thermodynamics I and II				
Objectives of the	1	In this course advanced mathematical tools are				
course		covered which will help students to solve complex				
		problems in Chemical Engineering. This course will				
		serve as a bridge between the applied mathematics				
		courses and their application to Chemical				
		Engineering problems. Specifically, the techniques				
		learnt in this course will help problem formulation				
		and solution in Chemical Reaction Engineering, Chemical Process Control, Heat Transfer and				
		Transport Phenomena.				
Course title		Detailed contents	L	т	Р	Tot
course the	1	Vector algebra: scalar & vector product (application	2	•	4	6
		to fluid flow problems)				
	2	PDEs: Types, solution (penetration theory, 2D	4		8	12
		conduction, counter-current heat exchanger,				
		reaction-diffusion, dispersion model, etc.)	-			
	3	Fourier transforms (diffusion equations)	2		4	6
	4	Linear algebra (matrix theory) (stability analysis, scaling of equations)	4		8	12
	5	Bifurcation analysis (sensitivity analysis)	4		8	12
	6	Perturbation analysis (for boundary flow problems,	4		8	12
		solution of equations, model reduction etc.)				
	7	Optimization (Linear)	4		8	12
Courses to 1	$\left \right $	Total	24	0	48	72
Suggested reference books						
Outcomes		Students will be able to				
	CO1	Formulate a Chemical Engineering problem into a mathematical problem				
	CO2	Solve (analytically or numerically) ODE and PDE				
		equations encountered in Chemical Engineering				
		Applications				
	CO3	Assess stability of Chemical Engineering systems				

Stud	y 5 (T8)								
			Subjects	Credits	Hrs/	/week		E. S.	Total
					L	Т	Р		
31		EST4304	Material Science and Engineering	3	2	1	0	15	50
32			Special II	3	2	1	0	15	50
33		CET4301	Chemical Reaction Engineering	4	3	1	0	30	100
34		CET4304	Separation Processes	4	3	1	0	30	100
35		CET4302	Biochemical Engineering	3	2	1	0	15	50
36		CEP4301	Chemical Engineering Laboratory-II	4	0	0	8	50	100
37		CEP4311	Process Simulation Lab – I	2	0	0	4	25	50
38			Special Lab -I	2	0	0	4	25	50
			TOTAL	25	12	5	16	205	550

Course code		CET4301				
Course title		Chemical Reaction Engineering				
Scheme and		3 L: 1 T: 0 P 4 Credits				
Credits						
Pre-requisites		Physical Chemistry, Material & Energy Balance				
		Calculations, Applied Mathematics I and II,				
		Momentum and Mass Transfer, Chem Engg				
		Thermodynamics I and II				
Objectives of the	1	Chemical Reaction Engineering is concerned with the				
course		utilisation of chemical reactions on a commercial				
		scale. This course is very relevant but not limited to				
		the following industries: Inorganic chemicals, organic				
		chemicals, petroleum & petrochemicals, Pulp &				
		paper, Pigments & paints, rubber, plastics, synthetic				
		fibres, Foods, Dyes and intermediates, Oils,				
		oleochemicals, and surfactants, Minerals, cleansing				
		agents, Polymers and textiles, Biochemicals and				
		biotechnology, pharmaceuticals and drugs,				
		Microelectronics, energy from conventional and non-				
		conventional resources, Metals				
Course title		Detailed contents	L	т	Р	Tot
Chemical	1	Batch reactor (BR), continuous stirred tank reactor	-	•	•	2
Reaction	-	(CSTR), plug flow reactor (PFR), packed-bed reactor				-
Engineering		(PBR)				
Lingineering	2	Design equations for BR, CSTR, PFR, PBR, and				6
	2	applications of design equations to various series-				0
		and parallel- combinations of flow reactors				
	3	Rate laws and stoichiometry				4
	4	•				6
		Isothermal reactor design applied to BR, CSTR, PFR, PBR				0
	5	Analysis of rate data: differential method, integral				4
		method				
	6	Multiple reactions				4
	7	Reaction mechanisms, pathways, bioreactions				4
	8	Catalysis and catalytic reactors, catalyst deactivation,				6
		external diffusion effects on heterogeneous				
		reactions, diffusion and reaction in solid catalysts;				
	9	Introduction to non-isothermal reactor design				4
	10	Residence time distribution in reactors; models for				4
	-	non-ideal reactors				
	11	Mass transfer with chemical reaction in fluid-fluid				4
		and fluid-fluid-solid systems; Model contactors, pilot				
		plants, and collection of scale-up data				
		Total				48
		Floments of Chemical Departies Excises with				
Suggested books		Elements of Chemical Reaction Engineering – H.				
/reference books		Scott FOGLER				

		Chemical Reaction Engineering – Octave LEVENSPIEL				
		The Engineering of Chemical Reactions – Lanny D.				
		SCHMIDT				
		An introduction to Chemical Engineering Kinetics and				
		Reactor Design – Charles HILL				
		Heterogeneous Reactions, Vol. I and II – L. K.				
		Doraiswamy, M. M. Sharma				
Course code &		Outcomes				
title		Students will be able to				
	CO1	design chemical reactors optimally, using minimum				
	603	amount of data	-			
	CO2	design experiments in a judicious way to get the				
	CO3	required data, if not available fix some problems related to operability and				
	COS	productivity				
	CO4	maintain and operate a process in a safe manner		+		
	CO4	increase capacity and/or selectivity and/or safety by				
	005	improving/changing the reactor type/sequence				
		and/or operating conditions				
Course code		EST4304		<u> </u>		
Course title		Material Science and Engineering		1		
Scheme and		2 L: 1 T: 0 P 3 Credits				
Credits						
Pre-requisites		Structural Mechanics, Applied Physics I and II				
Objectives of the	1	Selection of MOC for a given application,				
course	-	maintenance and corrective measures for various				
		engineering materials.				
Course title		Detailed contents	L	т	Р	Tot
Material Science	1	Engineering Materials: Classification, study of ferrous				2
and Engineering		and non-ferrous materials				
	2	Phase diagrams of steel, brass and the applications				3
		of phase diagrams				
	3	Effect of structure on properties: subatomic to				3
		macroscopic level				
	4	Modification and control of material properties				4
	5	Polymeric materials, Ceramic materials, Composite				4
		materials and Smart materials				
	6	Corrosion Engineering: Electrochemical principles,				8
		different types of corrosion, Polarisation,				
		mechanisms of corrosion control and prevention,				
		preventive coatings. Corrosion behavior of important				
		alloys such as stainless steels, brass etc.				
	7	Theory of failure: Crystal defects, plastic				8
		deformation. Types of mechanical failure, fracture ,				
	_	fatigue and creep		<u> </u>		
	8	Criteria for selection of materials in chemical process				4
		industry Total				20
		Total				36
Suggested books	1	The Eccence of Materials for Engineers Dehart M				
Suggested books /reference books	1	The Essence of Materials for Engineers, Robert W.				
/ reference DOOKS	2	Messler, Jr.				
	2 3	Materials Science and Engineering, Raghavan V. Materials Science and Engineering, Van Vlack L.H.				
	3 4	Engineering Materials and Applications, Flin R.A.,				
	4	Engineering Materials and Applications, Flin R.A., Trojan P.K.				
		IIUjali P.N.				
Outcomes						
Outcomes		Outcomer				
Outcomes		Outcomes Studente will be able to				
Outcomes	C01	Outcomes Students will be able to Students will be able to draw simple Phase Diagram				

1	соз	List types of corrosion and describe method to				
		control them				
	CO4					
Course code		CET4304				
Course title		Separation Processes				
Scheme and		3 L: 1 T: 0 P 4 Credits				
Credits						
Pre-requisites		Material & Energy Balance Calculations, Chemical				
		Engineering Operations – I, Chem. Eng.				
		Thermodynamics-I and II, Momentum Transfer,				
		Applied Mathematics I and II				
Objectives of the	1	This is a course further built up on and in				
course		continuation with Chem. Engg. operations. It forms				
		the basis oc Chemical Engineering Principles and				
		hence it is required in almost all the courses and				
		throughout the professional career of a Chemical				
		Engineer.				
Course title		Detailed contents	L	Т	Р	Tot
Separation	1	Extraction and Leaching of ternary systems: Ternary				15
Processes		diagrams, Hunter-Nash graphical method and				
		Maloney–Schubert graphical equilibrium-stage				
		method, Solvent Selection, Operating point, number				
		of stages, maximum solvent to feed ratios, minimum				
		reflux, minimum number of stages, Introduction to				
		reactive extraction, aqueous two phase extraction,				
		extraction of biomolecules, supercritical fluid				
		extraction, Solid-liquid extraction: Solid - liquid				
		equilibria, efficiency, performance evaluation,				
		Equipment for extraction, leaching and their sizing,				
		Design considerations				
	2	Adsorption and Ion exchange: Liquid Adsorption, Ion-				8
		Exchange Equilibria, Equilibria in Chromatography,				
		Breakthrough Curves, Kinetic and transport				
		considerations, Convection-Dispersion Model,				
		Separation Efficiency (Plate Height or Bandwidth), Correlations for Transport-Rate Coefficients,				
		Equipment for sorption operations, Scale-Up and				
		Process Alternatives, Adsorptive Membranes,				
		simulated-moving-bed operation, modes of				
		operation				
	3	Crystallization: Theory of solubility and				8
	-	crystallization, phase diagram (temp/solubility				
		relationship), Supersaturation, Nucleation, Crystal				
		Growth, Population balance analysis, method of				
		moments for rate expressions for, volume, area and				
		length growth, CSD distribution, MSMPR operation,				
		evaporative and cooling (rate expressions), most				
		dominant size, ideal classified bed, Precipitation,				
		Melt crystallization, Process design of crystallizers				
		and their operation				
	4	Humidification and Cooling Towers: Method of				9
		changing humidity and equipment, Cooling tower				
		process design, counter-current, concurrent and				
		cross current, mass and heat balances in bulk and				
		interfaces, Estimation of air quality, performance				
		evaluation of cooling towers.				
	5	Membrane Separations: Types of separations,				8
		reverse osmosis, ultrafiltration, gas separation,				
		vapour permeation and pervaporation, dialysis,				
		electrodialysis, nanofiltration, Transport Through				
		Porous Membranes, Resistance Models, Liquid				
		Diffusion Through Pores, Gas Diffusion Through				

	1					
		Porous Membranes, Transport Through Nonporous				
		Membranes, Solution-Diffusion for Liquid Mixtures,				
		Gas Mixtures, Concentration Polarization and				
		Fouling, Membrane modules, arrangement of				
		modules in cascades, performance criteria and				
		design considerations				
		Total				48
Suggested books	1	Richardson, J.F., Coulson, J.M., Harker, J.H.,				
/reference books	-	Backhurst, J.R., 2002. Chemical engineering: Particle				
/ Tereference books		technology and separation processes. Butterworth-				
		Heinemann, Woburn, MA.				
	2					
	2	Seader, J.D., Henley, E.J., 2005. Separation Process				
		Principles, 2 ed. Wiley, Hoboken, N.J.				
	3	McCabe, W., Smith, J., Harriott, P., 2004. Unit				
		Operations of Chemical Engineering, 7 ed.				
		McGrawHill Science/Engineering/Math, Boston.				
	4	Green, D., Perry, R., 2007. Perry's Chemical				
		Engineers' Handbook, Eighth Edition, 8 ed.				
		McGrawHill Professional, Edinburgh.				
	5	Dutta, B.K., 2007. Principles of Mass Transfer and				
		Separation Process. Prentice-Hall of India Pvt. Ltd,				
		New Delhi.				
Outcomes	1					
Cattonics		Students will be able to				
	CO1	List situations where liquid–liquid extraction might				
	01					
		be preferred to distillation, Make a preliminary				
		selection of a solvent using group-interaction rules,				
		Size simple extraction equipment				
	CO2	Differentiate between chemisorption and physical				
		adsorption, List steps involved in adsorption of a				
		solute, and which steps may control the rate of				
		adsorption, Explain the concept of breakthrough in				
		fixed-bed adsorption				
	CO3	Explain how crystals grow, Explain the importance of				
		supersaturation in crystallization. Describe effects of				
		mixing on supersaturation, mass transfer, growth,				
		and scale-up of crystallization				
	CO4	Explain membrane processes in terms of the				
	04					
		membrane, feed, sweep, retentate, permeate, and				
		solutemembrane interactions. Distinguish among				
		microfiltration, ultrafiltration, nanofiltration, virus				
		filtration, sterile filtration, filter-aid filtration, and				
		reverse osmosis in terms of average pore size.				
	CO5	Explain common idealized flow patterns in				
		membrane modules.				
	CO6					
	CO7					
Course code		CET/202				
Course code		CET4302				
Course title		Biochemical Engineering				
Scheme and Credits		2 L: 1 T: 0 P 3 Credits				
Pre-requisites		Chemical Reaction Engineering, Introduction to				
		Biological Sciences and Bioengineering, Physical				
		Chemistry, Material and Energy Balance Calculations,				
		Chem Engg Thermodynamics I and II, Chem Engg				
		Operations				
Objectives of the	1	This course integrates Biological sciences and				
course	-	chemical engineering and a requisite for Biobased				
course						
0		Industry		_	-	.
Course title	-	Detailed contents	L	Т	Р	Tot
Biochemical	1	Introduction to Biotechnology: Role of chemical				4
Engineering	1	engineers in biotechnology. Basic of Genetic				

		Engineering and Tissue Culture : Recombinant DNA				
		technology				
	2	Structure function relations of enzymes;				8
		Classification, Mechanism of Enzyme action, Enzyme				
		kinetics, inhibition and regulation, Enzyme				
		purification and characterization, Coenzymes,				
		cofactors, Enzyme reactors, thermostabilization, immobilization of enzymes, Enzymes as industrial				
		catalysts- Examples				
	3	Bioprocess Development, Plant and animal cell				12
	5	cultures for the production of biochemicals,				
		Immobilized cells, Kinetics of microbial growth,				
		models and simulations, Batch and continuous				
		culture, Mixed microbial culture, Biochemical				
		process development and bioreactors using				
		biological catalysts, Integration of downstream				
		processing with bioprocessing				
	4	Transport phenomena in bioreactions and				4
		bioreactors				
	5	Fundamentals of fermentation-submerged				4
		fermentation, Fermenter design and basic				
		biochemical engineering aspects of fermentation				
	6	Reactor design for biochemical reactions and scale				4
		up, Process Design for bioproducts, Bioreactor				
		design, Scale up of bioreactions/reactors,			L	
	7					
		Total				36
Suggested books	1	Biochemical Engineering Fundamentals, Bailey and				
reference books	2	Olis, Wiley				
	Z	Biotransformations and Bioprocesses, Doble, Anilkumar and Gaikar, Marcel Dekker				
Outcomes			-			
outcomes		Students will be able to				
	CO1	calculate microbial/enzymatic kinetics parameters			<u> </u>	
	CO2	Design enzyme reactors and scale up fermenters			<u> </u>	
	CO3	calculate biomass production/substrate	+			
		requirements				
	CO4	decide process parameters				
	CO5	estimate energy equipments/oxygen requirements				
	CO6	estimate bio-reactor size/time for a given				
		microbial/enzymatic process.				
Course code		CEP4301				
Course title		Chemical Engineering Laboratory-II	-			
Scheme and		0 L: 0 T: 8 P 4 Credits				
Credits						
Pre-requisites		Heat Transfer, Mass Transfer				
Objectives of the	1	Chemical Engineering lab provides students the first				
course		hand experience of verifying various theoretical				
		concepts learnt in theory courses				
	2	It also exposes them to practical versions of typical				
		chemical engineering equipments and servers as a				
	ļ!	bridge between theory and practice		<u> </u>		
	3	This particular lab focuses on heat transfer and mass				
	 	transfer		<u> </u>		
Detailed	├ ───┤		L	т	Р	Tot
contents			L		P	101
contents	1	Heat Transfer (6-7 experiments)			50	
	2	Mass Transfer (3-4 experiments)			10	
				(1 10	
					10	
	2 3 4	Sedimentation (1-2 experiments Thermodynamics (3-4 experiments)			10 16	

	5	Mass transfer (1-2 experiments)			10	
		Total	0	0	96	96
Outcomes						
		Students will be able to				
	CO1	Learn how to experimentally verify various				
		theoretical principles				
	CO2	Visualize practical implementation of chemical				
		engineering equipments				
	CO3	Capability to visualize and understand chemical				
		engineering unit operations related to fluid and				
		particle mechanics, and mass transfer				
	CO4	Able to clearly communicate the results of				
		experimental work in oral and written formats.				
Course code		CEP4311				
Course title		Process Simulation Lab-1				
Scheme and	\vdash	0 L: 0 T: 4 P 2 Credits				
Credits						
Pre-requisites	\vdash	Chemical Engineering Thermodynamics, Separation				
The requisites		process				
Objectives of the	1	To learn write programs on Chemical Engineering				
course	_	processes and equipment				
	2	To learn the design aspects equipments through				
	-	programming				
	3	To Learn the solving process of Chemical Engineering				
		problems through computational techniques				
Detailed			L	т	Р	Tot
contents			_	-	-	
	1	Programming of equation of state, fugacity				
		calculation, excess Gibbs energy models				
	2	Computation of vapor-liquid equilibria and liquid-				
		liquid equilibria				
	3	Bubble point and dew point calculation				
	4	Computation of absoption and stripping unit				
	5	Computation of distillation unit				
	6	Computation of multistage liquid-liquid extractor				
	7	Computation of cooling tower				
		Total	0	0	48	48
Outcomes			-	-		
		Students will be able to				
	CO1	Able to write algorithms of chemical engineering				
		problems				
	CO2	Able to design chemical engineering problems and				
		equipment				
	CO3	Able to perform qualitative and quantitative analysis				
		of chemical engineering problems computationally				
	CO4	Able to clearly communicate the results of modelling				

Stud	y 6 (T10)									
				Subjects	Credits	Hrs/	/week	(
						L	Т	Р	E. S.	Total
39	S	ST	xxT4xxx	Special Elective-III	3	2	1	0	50	100
40	S	ST	xxT4xxx	Special Elective-IV	3	2	1	0	50	100
41	CE	CET	CET4403	Environmental Engineering and Process	3	2	1	0	50	100
				Safety						
42	CE	CET	CET4405	Chemical Process Control	4	3	1	0	50	100
43	CE	CEE	CET4408	Industrial and Engineering Chemistry	4	3	1	0	50	100
44	CE	CEP	CEP4402	Chem. Eng. Laboratory-III	4	0	0	8	50	100
45	CE	CEP	CEP4412	Process Simulation Lab-II	2	0	0	4	50	100
46	S	SP	xxP4402	Special Lab-II	2	0	0	4	25	50
				TOTAL	25	12	5	16	350	700

Course code		CET4405				
Course title		Chemical Process Control				
Scheme and		3 L: 1 T: 0 P 4 Credits				
Credits						
Pre-requisites		Material and Energy Balance Calculations, Applied				
		Mathematics I and II, Mathematical Methods in				
		Chem Engg., Momentum and Mass Transfer,				
		Chemical Reaction Engineering, Heat Transfer, Chem				
		Engg Operations, Separation Processes,				
Objectives of the	1	Process control plays a very critical role in the				
course		context of actual operation of a chemical plant.				
		Most of the core chemical engineering courses focus				
		on the steady state operation. In the real life				
		environment, process is continuously subjected to				
		various disturbances which deviates the operation				
		from the designed steady state. This course				
		specifically prepares students to assess the impact of				
		such disturbances and equip them with the tools				
		available with the chemical engineer to tackle these				
		situations.				
Course title		Detailed contents	L	т	Р	Tot
Chemical Process	1	Introduction to process control: Motivation,	2	1		3
Control		importance, components of control system, control				
		relevant process modeling				
	2	Dynamics of first, second and higher order systems:	6	3		9
		Examples systems, characterizing parameters,				
		features, etc.				
	3	Feedback control: Motivation, elements of feedback	3	1		4
		control, servo problem, regulatory problem, effect				
		of proportional, integral and derivative action,				
		responses of P, PI and PID controllers				
	4	Controller selection and design: Controller selection	3	1		4
		guidelines, controller design criteria, common				
		control loops (level, pressure, flow, temperature),				
		reactor control, distillation control				
	5	Controller tuning: Open loop tuning, closed loop	3	1		4
		tuning, direct synthesis, commercial controller				
		tuning packages				
	6	Stability analysis: Laplace domain analysis, frequency	3	1		4
		domain analysis				
	7	Introduction to Multivariable and advanced control:	6	3		9
		Cascade control, dynamic matrix control, internal				
		model control, basics of ratio control, split range				
		control, override control, adaptive control,				
		inferential control, model predictive control,				

	8	Digital control: Discrete time systems, basics of z- transforms, stability analysis	3	1		4
	9	Electronics for control systems: Distributed control system, Programmable Logic Controllers, SCADA, HMI	3	1		4
	10	Instrumentation: Basic measurement devices and working principles for level, flow, pressure and temperature, types of control valves, etc.	2	1		3
		Total	34	14	0	48
Suggested books		Stanhananaulas, C. Chamical Process Control: An				
Suggested books /reference books		Stephanopoulos, G.Chemical Process Control: An Introduction to Theory and Practice.				
		Bequette, B.W.Process Control: Modeling, Design, and Simulation.				
		Seborg, D.E. and Mellichamp, D.A. and Edgar, T.F.				
		and Doyle, F.J.Process Dynamics and Control. Johnson, C.D.Process Control Instrumentation				
		Technology.				
Course code &		Outcomes				
title		Students will be able to				
	CO1	Understand the importance of process dynamics (unsteady state operation)				
	CO2	Design a control strategy for key unit operations (reactor, distillation column, etc)				
	CO3	Tune a controller to reject disturbances or manage				
		operating point transitions				
	CO4	Understand working principles of basic instruments				
		available for flow, pressure, level and temperature measurement				
	CO5	Describe modern industrial control system				
		architecture				
Course code		HUT4202				
Course title		Environmental Studies and Process Safety				
Scheme and Credits		3 L: 1 T: 0 P 4 Credits				
Pre-requisites		Material & Energy Balance Calculations, Chemical				
		Reaction Engineering, Chemical Engineering Operations, Momentum and Mass Transfer,				
		Biochemical Engg., Chem Engg Thermodynamics I				
		and II				
Objectives of the	1	The course 'Environmental Engineering and Process				
course		Safety' is highly relevant in all fields of activities, and				
		process industry in particular. The above clearly highlights the necessity and				
		significance of the course. This course will certainly				
		add value to our chemical engineering graduates.				
		A chemical engineer working in any function of				
		process industry should have working knowledge of all the prevailing safety, environment, and health				
		standards, and may be involved in / responsible for				
		any or all of the following:				
		- site process safety, environmental affairs				
		- assisting the Health Safety Environment (HSE) team				
		 employee safety observations and pre-job risk assessments 				
		- implementation of HSE policies and guidelines to				
1	1	halp ansure that all employees contractors and				
		help ensure that all employees, contractors, and				
		visitors enjoy high levels of safety, health and				

Analyses Analyses Image: and Layer of Protection Analyses Image: analyses <thimage: analyses<="" th=""> Image: analyses <thim< th=""><th>I</th><th> </th><th>reduction of risk by facilitating Process Hazard</th><th></th><th></th><th></th><th></th></thim<></thimage:>	I		reduction of risk by facilitating Process Hazard				
environmental -incident investigations for process safety and environmental incidents -receprising information that would be pertinent to process safety documentation and follow through							
Course title environmental incidents image: second to a source information is well documented image: second to a source information is well documented image: second to a source information is well documented image: second to a source information is well documented image: second to a source information is well documented image: second to a source information is well documented image: second to a source information is well documented image: second to a source information is well documented image: second to a source information is well documented image: second to a source information is well documented image: second to a source information is well documented image: second to a source information is well documented image: second to a source information is source information is well documented image: second to a source information is well documented image: second to a source information is and and is information information is and and is information information is and and is information information information is and and is information information information informatin information is and and is information information inf			and Layer of Protection Analyses				
Course title - recognising information that would be pertinent to process safety documentation and follow through with site personnel to ensure information is well documented - adveloping and updating site Policies and Procedures related to process safety and environmental. - apatol and other project teams to identify and resolve regulatory issue, analyse process and property hazards, and establish protective measures to mitigate risks to a tolerable level. - apatol and other project teams to identify and resolve regulatory issue, analyse process and property hazards, and establish protective measures to mitigate risks to a tolerable level. - apatol - assisting the plant with government interfaces and inspections. - training using internal and external resources; provides guidance to site management for implementation of programs including but not limited to waste management for approprise agenices to assure compliance with federal, state and local regulations. Responds to corporate requests in a timely manner. - obtaining new or revised environmental permits that provide operational flexibility within the schedule established for new projects. Ensure that the operating units can meet all provisions and provide to to enable compliance. - providing environmental guidance; develop procedures and training, and HSE support as needed. - a tot - participate in site objectives in the areas of community relations. - 1 4 3 Pollution revention in chemical manufacturing, effluent valorisation. - - - 4 Air pollutants: sources (specific quality, noise, water). ISO 14000- control, fugute emissions (source and courding, effluent valorisation modeling, air pollution							
Course title process safety documentation and foliow through with site personnel to ensure information is well documented - developing and updating site Policies and Procedures related to process safety and environmental. - capital and other project teams to identify and resolve regulatory issues, analyse process and properly hazards, and establish protective measures to mitigate risks to a tolerable level. - assisting the plant with government interfaces and inspections. - training using internal and external resources; provides guidance to site management for implementation of programs or controls to comply with environmental regulatores. - propart plant with government interfaces and inspections. - training using internal and external resources; provides guidance to site management, spill prevention & response, etc. - propartial agencies to assure compliance with federal, state and local regulations. Responds to corporate requests in a timely manner. - obbining new or revised environmental permits that provide operational flexibility within the schedule established for new projects. Ensure that the operating units cam were all provisions and provide tools to enable compliance. - participate in site objectives in the areas of community relations. Course title Detailed contents I Introduction dail prevailing international standards an needed. - participate in site objectives in the areas of community relations. Process Safety Z Environmental impact assessment, Life cycle 3 1 4 4 A projution, air quality, poliutants: sources (specific poliuton), environmental source (spant (LQA)) S Noise pollution. S Noise p							
Course title 9 Verticipate in site objectives in the areas of community relations. 1 1 9 7 Course title 0 0 0 1 1 2 1 4 Environmental - appliation subsection of programs or controls to comply with environmental requirements. - appliation with site part with government interfaces and inspections. - raining using internal and external resources; provides guidance to site management, spill prevention & response, etc. - proper averagination of programs or controls to comply with environmental requirements. - managing site environmental programs including but not limited to waste management, spill prevention & response, etc. - properation and submission of reports to appropriate agencies to assure compliance with federal, state and local regulations. Responds to corporate requests in a timely manner. - obtaining new or revised environmental programs and provide tools to enable compliance. - providing environmental guidance; develop procedures and training, and HSE support as needed. - participate in site objectives in the areas of community relations. 3 1 4 Process Safety 2 Environmental laws and regulations; Standards (air quality, noise, water), 150 14000- 3 1 4 4 Air pollution; Air pollutants; sources (specific vater control), are pollution, air quality, pollutants minimisation and control), efficitive emission (source and control), evality pollutants, effects, and dispersion m							
Course title decommental - adveloping and updating site Policies and Procedures related to process safety and environmental. i							
Course title developing and updating site Policies and Procedures related to process safety and environmental.							
Course title Procedures related to process safety and environmental. - aptata and other project teams to identify and resolve regulatory issues, analyse process and property hazards, and establish protective measures to mitigate risks to a tolerable level. - assisting explanation interfaces and inspections. - training using internal and external resources; provides guidance to site management for implementation of programs or controls to comply with environmental regulations. - assisting explanation interfaces and inspections. - training using internal and external resources; provides guidance to site management, spill prevention & response, etc. - preparation and submission of reports to appropriate agencies to assure compliance with federal, state and local regulations. Responds to corporate requests in a titude y manner. - obtaining new or revised environmental permits that provide operational flexibility within the schedule established for new projects. Ensure that the operating units can meet all provisions and provide tools to enable compliance. - providing environmental guidance; develop procedures and training, and HSE support as needed. - a participate in site objectives in the areas of community relations. 1 I 4 Process Safety 2 Environmental laws and regulations; Standards (air quality, noise, water), ISO 14000+ 3 1 4 4 Ar pollution, prevention in chemical manufacturing, effluent valorisation 3 1 4 5 Noise pollution, sir quality, pollutants minimisation and control, fugitive emissions (source and control), regulatins), effects, and							
Course titleProcess SafetyProcess SafetyImage Same Same Same Same Same Same Same Sam							
Course title - capital and other project teams to identify and resolve regulatory issues, analyse process and property haards, and establish protective measures to mitigate risks to a tolerable level. - assisting the plant with government interfaces and inspections. - training using internal and external resources; provides guidance to site management for implementation of programs or controls to comply with environmental requirements. - managing site environmental programs including but not limited to waster management, spill prevention & response, etc. - preparation and submission of reports to appropriate agencies to assure compliance with federal, state and local regulations. Responds to corporate requests in a timely manner. - obtaining new or revised environmental permits that provide operational flexibility within the schedule established for new projects. Ensure that the operating units can meet all provisions and provide tools to enable compliance. - providing environmental guidance; develop procedures and training, and HSE support as needed. - participate in site objectives in the areas of community relations. Environmental 1 Introduction to all prevailing international standards is environmental lingual cons; standards (air quality, noise, water), ISO 14000+ 3 1 4 4 Air pollution prevention in chemical manufacturing, effluent valorisation 3 1 4 5 Noise pollutants: sources (specific pollutants: environment (HGE); Fourier and colling, air pollution; air quality, pollutants minimistion and control, fugitive emissions (source and control), air quality, policatis minimistation and control, fugitive emission (
course titleresolve regulatory issues, analyse process and property hazards, and establish protective measures to miligate risks to a tolerable level. - assisting the plant with government interfaces and inspections. - training using internal and external resources; provides guidance to site management for implementation of programs or controls to comply with environmental requirements. - preparation and submission of reports to appropriate agencies to assure compliance with federal, state and local regulations. Responds to corporate requests in a timely manner. - obtaining new or revised environmental programs including put not limited to ease environmental programs including provide submission of reports to appropriate agencies to assure compliance with federal, state and local regulations. Responds to corporate requests in a timely manner. - obtaining new or revisions and provide tools to enable compliance. - providing environmental guidance; develop procedures and training, and HSE support as needed. - participate in site objectives in the areas of community relations.LTPTotEnvironmental Process Safety2Environmental guidance; develop procedures and training, and HSE support as needed. - participate in site objectives in the areas of community relations.3144A repollution, Air pollutants: sources (specific assessment (LCA)31263Pollution, prevention in chemical manufacturing, opliutants), effects, and dispersion modelling, air pollution, air quality, pollutants: sources (specific water pollution, air quality, pollutants; fourdowater assessment (LCA)3144Air pollution, removal of specific water water polluti							
Course titleproperty hazards, and establish protective measures to mitigate risks to a tolerable level. - assisting the plant with government interfaces and inspections. - training using internal and external resources; provides guidance to site management for implementation of programs or controls to comply with environmental requirements. - managing site environmental programs or controls to comply with environmental requirements. - meanaging site environmental programs including but not limited to waste management, spill prevention & response, etc. - preparation and submission of reports to appropriate agencies to assure compliance with federal, state and local regulations. Responds to corporate requests in a timely manner. - obtaining new or revised environmental provides parational flexibility within the schedule established for new projects. Ensure that the operating units can meet all provisions and provide tools to enable compliance. - providing environmental guidance; develop procedures and training, and HSE support as needed. - participate in site objectives in the areas of community relations.tTPTotEnvironmental efficient on all prevailing international standards a guility, noise, water), ISO 14000+31442Environmental manuta assessment, Life cycle assessment (LCA)31444Air pollution; Air pollutants isources (specific pollutants), effects, and dispersion modelling, air pollutants), effects, and dispersion modelling, air pollutants), effects, and tippersion							
Course title111 <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>							
Course titleinspections. 							
Course title- training using internal and external resources; implementation of programs or controls to comply with environmental requirements. - manging site environmental programs including but not limited to waste management, spill prevention & response, etc. - preparation and submission of reports to appropriate agencies to assure compliance with federal, state and local regulations. Responds to corportate requests in a timely manner. - obtaining new or revised environmental permits that provide operational fexibility within the schedule established for new projects. Ensure that the operating units can meet all provisions and provide tools to enable compliance. - providing environmental guidance; develop procedures and training, and HSE support as needed. - participate in site objectives in the areas of commutity relations.LTPTotCourse title1Detailed contentsLTPTotProcess Safety2Environmental laws and regulations; Standards (air quality, noise, water), 150 14000+ effluent valorisation3143Pollution; Air pollutants: sources (specific pollutinta); effects, and dispersion modelling, air pollution; Air pollutants: sources (specific pollutinta); effects, and dispersion modelling, air pollution, air quality, pollutants: minimisation and control, fugitive emissions (source and control), S1014Air pollution; Groundwater and surface water pollution, envoal of specific water contaminants; Solid waste; Hazardous waste3145Noise pollution3146Wastewater treatment; Groundwater and surface water pollution, foronal of specific wat			- assisting the plant with government interfaces and				
Course titleprovides guidance to site management for implementation of programs or controls to comply with environmental requirements. - managing site environmental programs including but not limited to waste management, spill prevention & response, etc. - preparation and submission of reports to appropriate agencies to assure compliance with federal, state and local regulations. Responds to corporate requests in a timely manner. - obtaining new or revised environmental permits that provide operational flexibility within the schedule established for new projects. Ensure that the operating units can meet all provisions and provide tools to enable compliance. - providing environmental guidance; develop procedures and training, and HSE support as needed. - participate in site objectives in the areas of community relations.LTPTotCourse title1Introduction to all prevailing international standards a featile, assessment (LCA)314422Environmental impact assessment, Life cycle assessment (LCA)31443Pollution prevention in chemical manufacturing, effluent valorisation and control, fugitive emissions (source and surface mollutants), effects, and dispersion modelling, air pollutants), effects, and dispersion modelling, air pollutants), effects, and dispersion modelling, air pollutants, revend and surface water pollution, removal of specific water endition and control, fugitive emissions (source and outrol),3144Air pollutants; biold water and surface water pollution, removal of specific water endition, removal of specific water endition, removal of specific water endition, removal of specific water endition,			inspections.				
Course titleDetailed contentsLTPTotEnvironmental1Introduction to all provision and submission of capord and submission of the ports to appropriate agencies to assure compliance with federal, state and local regulations. Responds to corporate requests in a timely manner. - obtaining new or revised environmental permits that provide operational flexibility within the schedule established for new projects. Ensure that the operating units can meet all provisions and provide tools to enable compliance. - providing environmental guidance; develop procedures and training, and HSE support as needed. - participate in site objectives in the areas of community relations.LTPTotEnvironmental Engineering and Process Safety2Environmental impact assessment, Life cycle assessment (LGA)31443Pollution prevention in chemical manufacturing, effluent valorisation and control, fugitive revision and control, rule valorisation and control, fugitive emission and control, rule revision and control, rule revision and control, rule revision and control rules; standards (air quality, noise, water), ISO 14000+11444Air pollution, revention in chemical manufacturing, effluent valorisation and control, rule valorisation and control, rule valorisation and control, rule valorisation and control, rule rule rule rule rule rule, rule cycle assessment (LGA)1146Wastewater treatment; Groundwater and surface water pollution, removal of specific water contaminants; Solid waste; Hazardous waste revers rule rule rule, rule cycle, environgen, rule, rule cycle,							
Course titleimaging site environmental programs including but not limited to waste management, spill prevention & response, etc. - preparation and submission of reports to appropriate agencies to assure compliance with federal, state and local regulations. Responds to corporate requests in a timely manner. - obtaining new or revised environmental permits that provide operational flexibility within the schedule established for new projects. Ensure that the operating units can meet all provisions and provide tools to enable compliance. - protroiding environmental guidance; develop procedures and training, and HSE support as needed. - participate in site objectives in the areas of community relations.LTPTottEnvironmental Improvemental laws and regulations; Standards (air quality, noise, water), ISO 14000+314APollution prevention in chemical manufacturing, effluent valorisation and control, fugitive emission (source and surface pollutants), effects, and dispersion modelling, air pollutants), effects, and dispersion modelling, air pollutants, inclusing the revision (source and surface water pollution, revends and surface water pollution, revends and surface water pollution, revends (source and surface water po							
 - managing site environmental programs including but not limited to waste management, spill prevention & response, etc. - preparation and submission of reports to appropriate agencies to assure compliance with federal, state and local regulations. Responds to corporate requests in a timely manner. - obtaining new or revised environmental permits that provide operational flexibility within the schedule established for new projects. Ensure that the operating units can meet all provisions and provide tools to enable compliance. - providing environmental guidance; develop procedures and training, and HSE support as needed. - participate in site objectives in the areas of community relations. Introduction to all prevailing international standards of Health, Safety, and Environment (HSE); Environmental Engineering and Process Safety 2 Environmental ilaws and regulations; Standards (air quality, noise, water), ISO 14000- effluent valorisation 2 Environmental ilaws and regulations; Standards (air quality, noise, water), ISO 14000- effluent valorisation 2 Environmental ilaws and regulations; Standards (air quality, noise, water), ISO 14000- effluent valorisation 2 Environmental ilaws and regulations; Standards (air quality, noise, water), ISO 14000- effluent valorisation 2 Environmental ilaws and regulations; Standards (air quality, noise, water), ISO 14000- effluent valorisation 3 1 4 4 effluent valorisation 4 Air pollution; Air pollutants: sources (specific pollutants), effects, and dispersion modelling, air polluton, air quality, pollutants minimisation and control, fugitive emissions (source and control), 5 Noise pollution, removal of specific water contaminants; Solid waste; Hazardous waste water pollution, removal of specific water contaminants; Solid waste; Hazardous waste water pollution, removal of specific water c							
but not limited to waste management, spill prevention & response, etc. - preparation and submission of reports to appropriate agencies to assure compliance with federal, state and local regulations. Responds to Corporate requests in a timely manner. - obtaining new or revised environmental permits that provide operational flexibility within the schedule established for new projects. Ensure that the operating units can meet all provisions and provide tools to enable compliance. - providing environmental guidance; develop procedures and training, and HSE support as needed. - participate in site objectives in the areas of community relations.LTPTotCourse titleDetailed contentsLTPTotEnvironmental Engineering and Process Safety1Introduction to all prevailing international standards genery, noise, water), ISO 14000+ genery and in pollution, prevention in chemical manufacturing, effluent valorisation1143Pollution, prevention in chemical manufacturing, effluent valorisation3144Air pollution; Air pollutants: sources (specific pollutants), effects, and dispersion modelling, air polluton, air quality, pollutants infinimisation and control, fugitive emissions (source and control), UK; Bhopal, India; Seveso, Italy; Pasadena, Texas; Texas City, Texas; Jacksonville, Florida; Port Wentworth, Georgia)3148Toxicology; Industrial hygiene314							
course titleprevention & response, etc. - preparation and submission of reports to appropriate agencies to assure compliance with federal, state and local regulations. Responds to corporate requests in a timely manner. - obtaining new or revised environmental permits that provide operational flexibility within the schedule established for new projects. Ensure that the operating units can meet all provisions and provide tools to enable compliance. - providing environmental guidance; develop procedures and training, and HSE support as needed. - participate in site objectives in the areas of community relations.LTPTotCourse titleDetailed contentsLTPTotEnvironmental Engineering and Process Safety1Introduction to all prevailing international standards Environmental laws and regulations; Standards (air quality, noise, water), ISO 14000+3144Air pollution prevention in chemical manufacturing, effluent valorisation1125Noise pollution; Air pollutants: sources (specific pollutans), effects, and dispersion modelling, air pollutans), effects, and dispersion modelling, air 							
Course title- preparation and submission of reports to appropriate agencies to assure compliance with fedderal, state and local regulations. Responds to corporate requests in a timely manner. - obtaining new or revised environmental permits that provide operational flexibility within the schedule established for new projects. Ensure that the operating units can meet all provisions and provide tools to enable compliance. - providing environmental guidance; develop procedures and training, and HSE support as needed. - participate in site objectives in the areas of community relations.LTPTotCourse titleDetailed contentsLTPTotEnvironmental Process Safety1Introduction to all prevailing international standards doi Health, Safety, and Environment (HSE); Environmental impact assessment, Life cycle3143Pollution prevention in chemical manufacturing, effluent valorisation1144Air pollution; Air pollutants: sources (specific pollutant), effects, and dispersion modelling, air pollutant), effects, and dispersion modelling, air pollutants, effects, and specific water contaminants; Solid waster, Hazardous waste3146Wastewater treatment; Groundwater and surface water pollution, removal of specific water contaminants; Solid waster, Hazardous waste1017Inherent safety; Major disasters (e.g., Filkborough, UK; Bhopal, India; Seveso, Italy; Pasadena, Texas;							
Appropriate agencies to assure compliance with federal, state and local regulations. Responds to corporate requests in a timely manner. - obtaining new or revised environmental permits that provide operational flexibility within the schedule established for new projects. Ensure that the operating units can meet all provisions and provide tools to enable compliance. - providing environmental guidance; develop procedures and training, and HSE support as needed. - participate in site objectives in the areas of community relations.LTPTottCourse titleDetailed contentsLTPTottEnvironmental Environmental angerering and Process Safety1Introduction to all prevailing international standards of Health, Safety, and Environment (HSE); quality, noise, water), ISO 14000+3142Environmental impact assessment, Life cycle assessment (LCA)3143Pollution; Air pollution; Air pollutions; stondards (air pollutants), effects, and dispersion modelling, air pollutants, effects, and dispersion modelling, air pollutants, effects, and dispersion modelling, air pollution, removal of specific water contaminants; Solid waste; Hazardous waste1046Wastewater treatment; Groundwater and surface water pollution, removal of specific water contaminants; Solid waste; Hazardous waste1017Inherent safety; Major disasters (e.g. Flixborough, UK; Bhopal, India; Seveso, Italy; Pasadena, Texas; Texas (Tky, Texas; Jacksonville, Florida; Port Wertworth, Georgia)314							
Course titleDetailed controlLTPTotEnvironmental Process Safety1Introduction to all prevailing international laws and regulations. Standards (arr quality, noise, water), ISO 14000+1TPTotPollution, air quality, pollutants ison control, figtive emission (HSE); Environmental impact assessment, Life cycle3144Pollution, air quality, pollutants: sources (specific pollution, air quality, pollutants: sources (specific pollution, air quality, pollutants ison and provide tools to alloge controlling, air pollution, air quality, pollutants ison and controlling, are pollution, removal of specific water contaminats; Solid waster, Hazardous water1146Wastewater treatment; Groundwater and surface water pollution, reward of specific water contaminats; Solid waster, Hazardous water3147Inherent safety; Major disasters (e.g. Filkborough, UK; Bhopal, India; Seveso, Italy; Pasadan, Texas; Texas (Tky, Texas; Jacksonville, Florida; Port Wentworth, Georgia)31018Toxicology; Industrial hygiene310144							
Course titleCorporate requests in a timely manner. - obtaining new or revised environmental permits that provide operational flexibility within the schedule established for new projects. Ensure that the operating units can meet all provisions and provide tools to enable compliance. - providing environmental guidance; develop procedures and training, and HSE support as needed. - participate in site objectives in the areas of community relations.LTPTotCourse titleDetailed contentsLTPTotEnvironmental Engineering and Process Safety1Introduction to all prevailing international standards (Auguality, noise, water), ISO 14000+3142Environmental impact assessment, Life cycle assessment (LCA)3143Pollution prevention in chemical manufacturing, effluent valorisation1124Air pollution, air quality, pollutants: sources (specific pollutants), effects, and dispersion modelling, air pollution, air quality, pollutants: minimisation and control, fugitive emissions (source and control),3146Wastewater treatment; Groundwater and surface water pollution, removal of specific water contaminants; Solid waste; Hazardous waste4267Inherent safety; Major disasters (e.g. Flixborough, UK; Bhopal, India; Seveso, Italy; Pasadena, Texas; Texas City, Texas; Jacksonville, Florida; Port Wentworth, Georgia)1018Toxicology; Industrial hygiene314							
Course title- obtaining new or revised environmental permits that provide operational flexibility within the schedule established for new projects. Ensure that the operating units can meet all provisions and provide tools to enable compliance. - providing environmental guidance; develop procedures and training, and HSE support as needed. - participate in site objectives in the areas of community relations.ITPTottCourse titleDetailed contentsLTPTotEnvironmental Engineering and Process SafetyIntroduction to all prevailing international standards easesment (LCA)3142Environmental impact assessment, Life cycle assessment (LCA)3143Pollution prevention in chemical manufacturing, effluent valorisation1124Air pollution; Air pollutants: sources (specific pollution, air quality, pollutants sources (specific pollution, air quality, pollutants sources and control), outrol, fuguitive emissions (source and control), outrol, fuguitive emissions (source and control), UK; Bhopal, India; Seveso, Italy; Pasadena, Texas; Texas City, Texas; Jacksonville, Florida; Port Wentworth, Georgia101146Mastery Hazardous waste revas City, Texas; Jacksonville, Florida; Port Wentworth, Georgia31446Mastery Hazardous waste revas City, Texas; Jacksonville, Florida; Port Wentworth, Georgia101147Inherent safety; Major disasters (e.g. Flixborough, UK; Bhopal, India; Seveso, Italy; Pasadena, Texas; Texas City, Texas; Jacksonville, Florid							
Course titleSchedule established for new projects. Ensure that the operating units can meet all provisions and provide tools to enable compliance. - providing environmental guidance; develop procedures and training, and HSE support as needed. - participate in site objectives in the areas of community relations.ITPTotCourse titleDetailed contentsLTPTotEnvironmental Engineering and Process Safety1Introduction to all prevailing international standards and regulations; Standards (air quality, noise, water), ISO 14000+31142Environmental impact assessment, Life cycle assessment (LCA)311244Air pollution prevention in chemical manufacturing, effluent valorisation111245Noise pollution, Air pollutants: sources (specific pollutants), effects, and dispersion modelling, air pollution, air quality, pollutants minimisation and control, fugitive emissions (source and control),3146Wastewater treatment; Groundwater and surface water pollution, removal of specific remains; Solid waste; Hazardous waste10117Inherent safety; Major disasters (e.g. Flixborough, UK; Bhopal, India; Seveso, Italy; Pasadena, Texas; Texas City, Texas; Jacksonvile, Florida; Port Wentworth, Georgia)314							
Course titleimage: bit the operating units can meet all provisions and provide tools to enable compliance. - providing environmental guidance; develop procedures and training, and HSE support as needed. - participate in site objectives in the areas of community relations.image: bit test of t			that provide operational flexibility within the				
Course titleprovide tools to enable compliance. - providing environmental guidance; develop procedures and training, and HSE support as needed. - participate in site objectives in the areas of community relations.LTPTottCourse titleDetailed contentsLTPTottEnvironmental Engineering and Process Safety1Introduction to all prevailing international standards of Health, Safety, and Environment (HSE); Environmental laws and regulations; Standards (air quality, noise, water), ISO 14000+3142Environmental impact assessment, Life cycle assessment (LCA)31123Pollution prevention in chemical manufacturing, effluent valorisation11124Air pollution; Air pollutants: sources (specific pollutants), effects, and dispersion modelling, air pollutants), effects, and dispersion modelling, air pollutants, air quality, pollutant sminimisation and control, fugitive emissions (source and control),3146Wastewater treatment; Groundwater and surface water pollution, removal of specific water contaminants; Solid waste; Hazardous waste1017Inherent safety; Major disasters (e.g. Flixborough, Wentworth, Georgia)10118Toxicology; Industrial hygiene3114			schedule established for new projects. Ensure that				
Course title- providing environmental guidance; develop procedures and training, and HSE support as needed. - participate in site objectives in the areas of community relations.LTPTotEnvironmental Engineering and Process Safety1Introduction to all prevailing international standards of Health, Safety, and Environment (HSE); Environmental laws and regulations; Standards (air quality, noise, water), ISO 14000+31442Environmental impact assessment, Life cycle assessment (LCA)31443Pollution prevention in chemical manufacturing, effluent valorisation control, fugitive emissions (source and control),31446Wastewater treatment; Groundwater and surface water pollution, air quality, Poloutants pollution, air quality, polasters (e.g. Flixborough, UK; Bhopal, India; Seveso, Italy; Pasadena, Texas; Texas City, Texas; Jacksonville, Florida; Port Wentworth, Georgia)1011148Toxicology; Industrial hygiene31444							
Course titleprocedures and training, and HSE support as needed. - participate in site objectives in the areas of community relations.LLNPTotCourse titleDetailed contentsLTPTotEnvironmental Engineering and Process Safety1Introduction to all prevailing international standards quality, noise, water), ISO 14000+31V42Environmental laws and regulations; Standards (air quality, noise, water), ISO 14000+31443Pollution prevention in chemical manufacturing, effluent valorisation31444Air pollution; Air pollutants: sources (specific pollutants), effects, and dispersion modelling, air pollution, air quality, pollutants minimisation and control, fugitive emissions (source and control),31446Wastewater treatment; Groundwater and surface water pollution, removal of specific water contaminants; Solid waste; Hazardous waste10111 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
Course titleDetailed contentsLTPTotEnvironmental Engineering and Process Safety1Introduction to all prevailing international standards of Health, Safety, and Environment (HSE); Environmental laws and regulations; Standards (air quality, noise, water), ISO 14000+3142Environmental impact assessment, Life cycle assessment (LCA)3143Pollution prevention in chemical manufacturing, effluent valorisation11124Air pollution; Air pollutants: sources (specific pollutants), effects, and dispersion modelling, air pollution, air quality, pollutants minimisation and control, fugitive emissions (source and control),3146Wastewater treatment; Groundwater and surface water pollution, removal of specific water contaminants; Solid waste; Hazardous waste4267Inherent safety; Major disasters (e.g. Flixborough, UK; Bhopal, India; Seveso, Italy; Pasadena, Texas; Texas City, Texas; Jacksonville, Florida; Port Wentworth, Georgia)314							
Course titleDetailed contentsLTPTotEnvironmental Engineering and Process Safety1Introduction to all prevailing international standards of Health, Safety, and Environment (HSE); Environmental laws and regulations; Standards (air quality, noise, water), ISO 14000+3142Environmental impact assessment, Life cycle assessment (LCA)3143Pollution prevention in chemical manufacturing, effluent valorisation1124Air pollution; Air pollutants: sources (specific pollutants), effects, and dispersion modelling, air pollutants), effects, and dispersion modelling, air pollution, air quality, newater treatment; Groundwater and surface water pollution, removal of specific water contaminants; Solid waste; Hazardous waste3146Wastewater treatment; Groundwater and surface water pollution, removal of specific water contaminants; Solid waste; Hazardous waste (K; Bhopal, India; Seveso, Italy; Pasadena, Texas; Texas City, Texas; Jacksonville, Florida; Port Wentworth, Georgia)1018Toxicology; Industrial hygiene314							
Course titleImage: community relations.Image: community relations. </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
Course titleDetailed contentsLTPTotEnvironmental Engineering and Process Safety1Introduction to all prevailing international standards of Health, Safety, and Environment (HSE); Environmental laws and regulations; Standards (air quality, noise, water), ISO 14000+3142Environmental impact assessment, Life cycle assessment (LCA)3143Pollution prevention in chemical manufacturing, effluent valorisation1124Air pollution; Air pollutants: sources (specific pollutants), effects, and dispersion modelling, air pollution, air quality, pollutants minimisation and control, fugitive emissions (source and control),3146Wastewater treatment; Groundwater and surface water pollution, removal of specific water contaminants; Solid waste; Hazardous waste1017Inherent safety; Major disasters (e.g. Flixborough, UK; Bhopal, India; Seveso, Italy; Pasadena, Texas; Texas City, Texas; Jacksonville, Florida; Port Wentworth, Georgia)314							
Environmental Engineering and Process Safety1Introduction to all prevailing international standards of Health, Safety, and Environment (HSE); Environmental laws and regulations; Standards (air quality, noise, water), ISO 14000+3142Environmental impact assessment, Life cycle assessment (LCA)3143Pollution prevention in chemical manufacturing, effluent valorisation1124Air pollution; Air pollutants: sources (specific pollutants), effects, and dispersion modelling, air pollution, air quality, pollutants minimisation and control, fugitive emissions (source and control),3146Wastewater treatment; Groundwater and surface water pollution, removal of specific vater contaminants; Solid waste; Hazardous waste1017Inherent safety; Major disasters (e.g. Flixborough, UK; Bhopal, India; Seveso, Italy; Pasadena, Texas; Texas City, Texas; Jacksonville, Florida; Port Wentworth, Georgia)314	Course title		· · · · · · · · · · · · · · · · · · ·	-	т	р	Tot
Engineering and Process Safetyof Health, Safety, and Environment (HSE); Environmental laws and regulations; Standards (air quality, noise, water), ISO 14000+a2Environmental impact assessment, Life cycle assessment (LCA)3143Pollution prevention in chemical manufacturing, effluent valorisation1124Air pollution; Air pollutants: sources (specific pollutants), effects, and dispersion modelling, air pollution, air quality, pollutants minimisation and control, fugitive emissions (source and control),3146Wastewater treatment; Groundwater and surface water pollution, removal of specific water contaminants; Solid waste; Hazardous waste4267Inherent safety; Major disasters (e.g., Flixborough, UK; Bhopal, India; Seveso, Italy; Pasadena, Texas; Texas City, Texas; Jacksonville, Florida; Port Wentworth, Georgia)101		1				F	
Process SafetyEnvironmental laws and regulations; Standards (air quality, noise, water), ISO 14000+Image: Constant of the system2Environmental impact assessment, Life cycle assessment (LCA)3143Pollution prevention in chemical manufacturing, effluent valorisation1124Air pollution; Air pollutants: sources (specific pollutants), effects, and dispersion modelling, air pollution, air quality, pollutants minimisation and control, fugitive emissions (source and control),3146Wastewater treatment; Groundwater and surface water pollution, removal of specific water contaminants; Solid waste; Hazardous waste4267Inherent safety; Major disasters (e.g. Flixborough, UK; Bhopal, India; Seveso, Italy; Pasadena, Texas; Texas City, Texas; Jacksonville, Florida; Port Wentworth, Georgia)314		_		3	-		-
quality, noise, water), ISO 14000+Image: Constraint of the system of the s							
2Environmental impact assessment, Life cycle assessment (LCA)3143Pollution prevention in chemical manufacturing, effluent valorisation11124Air pollution; Air pollutants: sources (specific pollutants), effects, and dispersion modelling, air pollution, air quality, pollutants minimisation and control, fugitive emissions (source and control),3145Noise pollution3146Wastewater treatment; Groundwater and surface water pollution, removal of specific water contaminants; Solid waste; Hazardous waste1017Inherent safety; Major disasters (e.g. Flixborough, Wentworth, Georgia)1018Toxicology; Industrial hygiene314	/						
assessment (LCA)Image: Constraint of the second		2		3	1		4
effluent valorisationImage: Constraint of the second s							
4Air pollution; Air pollutants: sources (specific pollutants), effects, and dispersion modelling, air pollution, air quality, pollutants minimisation and control, fugitive emissions (source and control),3145Noise pollution3146Wastewater treatment; Groundwater and surface water pollution, removal of specific water contaminants; Solid waste; Hazardous waste4267Inherent safety; Major disasters (e.g. Flixborough, UK; Bhopal, India; Seveso, Italy; Pasadena, Texas; Texas City, Texas; Jacksonville, Florida; Port Wentworth, Georgia)1018Toxicology; Industrial hygiene314		3	Pollution prevention in chemical manufacturing,	1	1		2
pollutants), effects, and dispersion modelling, air pollution, air quality, pollutants minimisation and control, fugitive emissions (source and control),Image: Control (Control), and Control), and Control, fugitive emissions (source and control),Image: Control, and Control, fugitive emissions (source and control),5Noise pollution3146Wastewater treatment; Groundwater and surface water pollution, removal of specific water contaminants; Solid waste; Hazardous waste4267Inherent safety; Major disasters (e.g. Flixborough, UK; Bhopal, India; Seveso, Italy; Pasadena, Texas; Texas City, Texas; Jacksonville, Florida; Port Wentworth, Georgia)1018Toxicology; Industrial hygiene314							
pollution, air quality, pollutants minimisation and control, fugitive emissions (source and control),Image: Source and control),5Noise pollution3146Wastewater treatment; Groundwater and surface water pollution, removal of specific water contaminants; Solid waste; Hazardous waste4267Inherent safety; Major disasters (e.g. Flixborough, UK; Bhopal, India; Seveso, Italy; Pasadena, Texas; Texas City, Texas; Jacksonville, Florida; Port Wentworth, Georgia)1018Toxicology; Industrial hygiene314		4		3	1		4
control, fugitive emissions (source and control),Image: Control fugitive emissions (source and control),5Noise pollution3146Wastewater treatment; Groundwater and surface water pollution, removal of specific water contaminants; Solid waste; Hazardous waste4267Inherent safety; Major disasters (e.g. Flixborough, UK; Bhopal, India; Seveso, Italy; Pasadena, Texas; Texas City, Texas; Jacksonville, Florida; Port Wentworth, Georgia)1018Toxicology; Industrial hygiene314							
5Noise pollution3146Wastewater treatment; Groundwater and surface water pollution, removal of specific water contaminants; Solid waste; Hazardous waste4267Inherent safety; Major disasters (e.g. Flixborough, UK; Bhopal, India; Seveso, Italy; Pasadena, Texas; Texas City, Texas; Jacksonville, Florida; Port Wentworth, Georgia)1018Toxicology; Industrial hygiene314							
6Wastewater treatment; Groundwater and surface water pollution, removal of specific water contaminants; Solid waste; Hazardous waste4267Inherent safety; Major disasters (e.g. Flixborough, UK; Bhopal, India; Seveso, Italy; Pasadena, Texas; Texas City, Texas; Jacksonville, Florida; Port Wentworth, Georgia)1018Toxicology; Industrial hygiene314		-		2	1		
water pollution, removal of specific water contaminants; Solid waste; Hazardous wasteImage: Contaminants; Solid waste; Hazardous wasteInherent safety; Major disasters (e.g. Flixborough, UK; Bhopal, India; Seveso, Italy; Pasadena, Texas; Texas City, Texas; Jacksonville, Florida; Port Wentworth, Georgia)Image: Contaminants Model of the sevence of the sev							
contaminants; Solid waste; Hazardous wasteImage: Contaminants; Solid waste; Hazardous wasteImage: Contaminants; Solid waste; Hazardous waste7Inherent safety; Major disasters (e.g. Flixborough, UK; Bhopal, India; Seveso, Italy; Pasadena, Texas; Texas City, Texas; Jacksonville, Florida; Port Wentworth, Georgia)1018Toxicology; Industrial hygiene314		6		4	2		ь
7Inherent safety; Major disasters (e.g. Flixborough, UK; Bhopal, India; Seveso, Italy; Pasadena, Texas; Texas City, Texas; Jacksonville, Florida; Port Wentworth, Georgia)1018Toxicology; Industrial hygiene314							
UK; Bhopal, India; Seveso, Italy; Pasadena, Texas; Texas City, Texas; Jacksonville, Florida; Port Wentworth, Georgia)Image: Comparison of the second se		7		1	0		1
Texas City, Texas; Jacksonville, Florida; Port Wentworth, Georgia)Image: Constraint of the second s		,		-	0		1
Wentworth, Georgia) Image: Constraint of the second s							
8 Toxicology; Industrial hygiene 3 1 4							
		8		3	1		4
		9	Source models; Toxic release and dispersion models	3	1		4

	10	Fires and explosions; Concepts to prevent fires and	1	1		2
		explosions				
	11	Chemical reactivity	3	1		4
	12	Reliefs and reliefs sizing; Hazard identification; Risk assessment	3	1		4
	13	Safety procedures and designs	1	1		2
	14	Some case histories	2	1		3
		Total	34	14	0	48
Suggested books					-	
ouggested books	1	Chemical Process Safety: Fundamentals with			1	
	-	Applications – Daniel A. CROWL and Joseph F.				
		LOUVAR				
	2	Guidelines for Process Safety Management,				
	-	Environment, Safety, Health, and Quality – Center				
		for the Chemical Process Safety of the American				
		Institute of Chemical Engineers (AIChE)				
	3	Environmental Engineers' Handbook – Irene LIU			1	
	5	(Editor)				
	4	Chemical Process Safety Learning from Case Histories – Roy E. SANDERS				
	5	Guidelines for Process Safety Documentation –				
	-	Center for the Chemical Process Safety of the				
		American Institute of Chemical Engineers (AIChE)				
	6	Environmental and Health and Safety Management:				
	•	A Guide to Compliance – Nicholas P.				
		CHEREMISINOFF, Madelyn L. GRAFFA				
	7	Environmental Pollution Control Engineering – C. S.				
		Rao				
<u> </u>	8	Environmental Engineering – H. S. Peavy				
Outcomes						
54001103		Students will be able to				
	CO1	calculate BOD / COD for a given composition of				
	001	effluent stream, Estimation of bio Kinetics				
	CO2	calculate adiabatic lapse rate and determine				
	02	conditions for suitability of atmospheric dispersion,				
		effective stack height, chimney design				
	CO3	calculate concentrative of pollutant at any point in			-	
	005	the neighbourhood of emission given atmospheric				
		conditions like wind, dispersion, environmental				
		factors etc.				
	CO4	calculate size/time/power required for primary				
	204	clarifier, secondary treatment, tertiary treatment,				
		sizing of different types of Biological treatments etc.				
	CO5	identify hazards in a given process and assess the				
	205	same and provide solutions for operating safely.				
	CO6	specify safety requirements for storage and handling				
	200	of a given chemical.				
Courses on the						
Course code		CET4408				
Course title		Industrial and Engineering Chemistry				
Scheme and Credits		3 L: 1 T: 0 P 4 Credits				
		Vilth Standard Chamistry and Develop Organiz				
Pre-requisites		XIIth Standard Chemistry and Physics, Organic				
		Chemistry I & II, Material & Energy Balance				
Obiesting of th		Calculations, Physical Chemistry				
Objectives of the	1					
course				_		
Course title	<u> </u>	Detailed contents	L	T	Р	Tot
Chemical Process	1	Overview of Indian chemical industry, raw material	2	1		3
Control		and energy sources, role of catalysis, inorganic				
	-	products, organic intermediates and final products				
	2	Petroleum refining and cracking operations	4	2		6

1	1 - 1					
	3	Industrial processes for ammonia, syngas and	4	2		6
		hydrogen, methanol, chemicals from oxo-synthesis		2		6
	4	Organic chemicals based on methanol and ethanol (e.g., formaldehyde, acetaldehyde, acetic acid)	4	2		6
	5	Petrochemicals: e.g., ethylene oxide, α -olefins, vinyl	4	2		6
		acetate, phenol, aniline, LAB, phthalic anhydride, PTA				
	6	Polymers (e.g., polyethylene / polypropylene)	2	1		3
	7	Manufacturing of inorganic acids (sulfuric and nitric	2	1		3
	-	acid)	-	_		•
	8	Chlor-alkali industry (chlorine, caustic soda, soda	1	1		2
		ash)				
	9	Fertilizers (urea and phosphates)	1	1		2
	10	Industrial processes using bio-catalysts	1	1		2
	11	Production of industrial gases	1	1		2
	12	Coal: Classification, sampling, analysis, and selection;	3	1		4
	13	gasification, Combustion	2	1		3
	15	Total	31	17	0	48
			51	1/	U	40
Suggested books		Encyclopedia of Chemical Technology, Kirk-Othmer				
/reference books		Ulmann's Encyclopedia of Industrial Chemistry				
-		Industrial Organic Chemistry, Weissermel & Arpe				
		Chemical Process Industries, Shreve B. Austin				
		Fuels Handbook, Johnson				
		Chemical Process Technology, Moulijn, M. and van				
		Dippen				
Course code &		Outcomes				
title	601	Students will be able to				
	CO1	Draw process flow diagrams/process block diagrams for the manufacture of various				
		chemicals from process description				
	CO2	List out various alternatives for carrying out a				
	001	particular process and provide recommendations for				
		the best choice				
	CO3	List coal utilization technologies and advantages of				
		clean coal technology				
	CO4	List Principles of combustion systems for solid, liquid and gaseous fuel				
6						
Course code Course title		CEP4402 Chemical Engineering Laboratory-III				
Scheme and		0 L: 0 T: 8 P 4 Credits				
Credits						
Pre-requisites		Chemical reaction Engineering, Separation Process,				
Objectives of the	1	Chemical Process Control Chemical Engineering lab provides students the first				
course	-	hand experience of verifying various theoretical				
		concepts learnt in theory courses				
	2	It also exposes them to practical versions of typical				
		chemical engineering equipments and servers as a				
		bridge between theory and practice				
	3	This particular lab focuses on Chemical reaction				
		Engineering, Separation Process, Chemical Process Control				
Detailed			L	т	Р	Tot
contents					F	101
	1	Mass Transfer Experiments (2-3 experiments)				
	2	Chemical Reaction Engineering (6-8 experiments)				
	3	Transport Phenomena (3-5 experiments)				
	4	Process Control (3-4 experiments)				

	5	Residence time distribution in CSTR				
		Total	0	0	96	96
Outcomes						
		Students will be able to				
	CO1	Learn how to experimentally verify various				
		theoretical principles				
	CO2	Visualize practical implementation of chemical				
		engineering equipments				
	CO3	Develop experimental skills				
	CO4	Able to clearly communicate the results of experimental work in oral and written formats.				
					_	
Course code		CEP4412	L	T	Р	Total
Course title		Process Simulation Lab-2				
Scheme and Credits		0 L: 0 T: 4 P 2 Credits				
Pre-requisites		Transport phenomena, Chemical reaction				
		Engineering, Separation process, Process Simulation				
		Lab-1				
Objectives of the	1	To learn write programs on Chemical Engineering				
course		processes and equipments				
	2	To learn the design aspects equipment through programming				
	3	To learn the solving process of Chemical Engineering				
		problems through computational techniques				
Detailed			L	т	Р	Tot
contents						
	1	Unsteady state heat and mass transfer				
	2	Fluid flow inside a pipe, heat transfer profile of flowing fluid				
	3	Terminal velocity, pump and friction factor				
	4	Computation of agitated vessel				
	5	Computation of heat exchanger				
	6	Computation of single-effect evaporator				
	7	Computation of dryer				
	8-12	Process simulation with Aspen Plus/other Process				
		Simulation Software				
		Total	0	0	48	48
Outcomes						
		Students will be able to				
	CO1	Able to write algorithms of chemical engineering problems				
	CO2	Able to design chemical engineering problems and equipments				
	CO3	Able to perform qualitative and quantitative analysis				
	203	of chemical engineering problems computationally				
	CO4	Able to clearly communicate the results of modelling				
		work in oral and written formats.				

Stud	y 7 (T12)									
			No.	Subjects	Credits	Hrs/	/week	(
						L	Т	Р	E. S.	Total
47	CE	CE	CET4409	Project Management and Economics in Chemical Industry	3	2	1	0	50	100
48	CE	CET	CET4406	Process Development and Engineering	3	2	1	0	50	100
49	CE	CEP3201	CEP4201	Mathematical Methods in Chemical Engineering/Optimization Chem. Eng. Proc.	4	2	0	2	50	100
50	ES	ESP	ESP4501	Equipment Design and Drawing	4	2	0	4	50	100
51	S	ST	xxT4xxx	Special Elective - V	3	2	1	0	50	100
52	CE	CEP	CEP4471	Seminar	3	0	0	6	50	100
				TOTAL	20	10	3	12	300	600

Course code		HUT4401				
Course title		Project Management and Economics in Chemical				
		Industry				
Scheme and		2 L: 1 T: 0 P 3 Credits				
Credits						
Pre-requisites		Material and Energy Balance Calculations, Equip Des				
		and Dwg I, Energy Engineering, Ind Eng Chem.				
Objectives of the	1	This course is required for the future professional				
course		career				
Course title		Detailed contents	L	Т	Р	Tot
Project	1	Introduction to greenfield projects and global nature				4
Management		of projects; Impact of currency fluctuations on				
and Finance in		Project justification and cash flows andConcepts of				
Chemical		"Quality by Design" including typical design				
Industry		deliverables and understanding constructability,				
maastry		operability and maintainability during all stages of				
		project execution. Meaning of Project Engineering,				
	-	various stages of project implementation				6
	2	Relationship between price of a product and project				6
		cost and cost of production, EVA analysis. Elements				
		of cost of production, monitoring of the same in a				
		plant, Meaning of Administrative expenses, sales				
		expenses etc. Introduction to various components of				
		project cost and their estimation. Introduction to				
		concept of Inflation, location index and their use in				
		estimating plant and machinery cost. Various cost				
		indices, Relationship between cost and capacity.				
	3	Project financing: debt: Equity ratio, Promoters'				4
		contribution, Shareholders' contribution, source of				
		finance, time value of money. Concept of interest,				
		time value of money, selection of various alternative				
		equipment or system based on this concept. Indian				
		norms, EMI calculations. Depreciation concept,				
		Indian norms and their utility in estimate of working				
		results of project. Working capital concept and its				
		relevance to project.				
	4	Estimate of working results of proposed project.				5
		Capacity utilization, Gross profit, operating profit,				
		profit before tax, Corporate tax, dividend, Net cash				
		accruals. Project evaluation: Cumulative cash flow				
		analysis Break-Even analysis, incremental analysis,				
		various ratios analysis, Discounted cash flow analysis				
	5	Process Selection, Site Selection, Feasibility Report				5
	6	Project: Conception to Commissioning: milestones,				4
		Project execution as conglomeration of technical and				
		non technical activities, contractual details. Contract:				
		Meaning, contents, Types of contract. Lumpsum				

I	1	Turnkov (ISTK) Eng Progurament and Construction				
		Turnkey (LSTK), Eng, Procurement and Construction (EPC), Eng, Procurement and Construction				
		Management (EPCM). Mergers and Acquisitions				
	7	Reading of Balance Sheets and evaluation of Techno-				6
						0
	8	commercial Project Reports.				2
	8	PERT, CPM, bar charts and network diagrams				2
					-	
		Total				36
Suggested books						
Suggested books	1	Chemical Project Economics, Mahajani V. V. and				
/reference books		Mokashi S M.				
	2	Plant Design and Economics for Chemical Engineers,				
		Peters M.S., Timmerhaus K.D.				
	3	Process Plant and Equipment Cost Estimation,				
		Kharbanda O.P.				
Outcomes						
		Outcomes				
		Students will be able to				
	CO1	Calculate working capital requirement for a given				
		project				
	CO2	Calculate cost of equipment used in a plant total				
		project cost				
	CO3	Calculate cash flow from a given project				
	CO4	Select a site for the project from given alternatives				
	CO5	List out various milestones related to project concept				
		to commissioning				
Course code		CET4407				
Course title		Multiphase Reaction Engineering				
Scheme and		2 L: 1 T: 0 P 3 Credits				
Credits						
Pre-requisites		Chemical Reaction Engineering , Momentum and				
		Mass Transfer (CET 1101: Semester III), Heat				
		Transfer, Chemical Reaction Engineering, Chemical				
		Engineering Operations Separation Processes, Chem				
		Engg Thermodynamics I and II				
Objectives of the	1	Multiphase Reaction Engineering is concerned with				
course	-	the utilisation of chemical reactions on a commercial				
course		scale. This course is very relevant but not limited to				
		the following industries: Inorganic chemicals,				
		organic chemicals, petroleum & petrochemicals,				
		Pulp & paper, Pigments & paints, rubber, plastics,				
		synthetic fibres, Foods, Dyes and intermediates, Oils,				
		oleochemicals, and surfactants, Minerals, cleansing				
		agents, Polymers and textiles, Biochemicals and				
		biotechnology, pharmaceuticals and drugs,				
		Microelectronics, energy from conventional and				
		non-conventional resources, Metals				
Course title	ļ	Detailed contents	L	т	Р	Tot
	1	Classification of multiphase reactors, qualitative	L		r -	2
Multiphase Reaction	T	description, examples of industrial importance				2
	2					
Engineering	_	Hydrodynamics, scale-up, process design and performance of the following major classes of				
		multiphase reactors, case studies and problems,				
		multiphase reactors, case studies and problems, w.r.t:				
	3	multiphase reactors, case studies and problems, w.r.t: - Stirred tank reactors,				6
	3	multiphase reactors, case studies and problems, w.r.t: - Stirred tank reactors, - Bubble columns, packed bubble columns,				6 6
	4	multiphase reactors, case studies and problems, w.r.t: - Stirred tank reactors, - Bubble columns, packed bubble columns, sectionalised bubble columns,				6
		multiphase reactors, case studies and problems, w.r.t: - Stirred tank reactors, - Bubble columns, packed bubble columns,				-

	6	Eluid fluid reactors such as spray columns, packed				6
	0	 Fluid-fluid reactors such as spray columns, packed columns, plate columns, static mixers, rotating disc 				0
		contactors				
	7				-	6
	8	- Fixed bed reactors, trickle bed reactors,				6
	8	 Solid-liquid and gas-solid fluidised bed reactors, 				6
		solid-gas transport reactors				
		Total			_	36
Suggested books	1	Heterogeneous Reactions, Vol. I and II – L. K.				
/reference books		Doraiswamy, M. M. Sharma				
	2	Fluid Mixing and Gas Dispersion in Stirred Reactors –				
		G. B. Tatterson				
	3	Bubble Column Reactors – W. D. Deckwer				
	4	Fluidisation – D. Kunni and O. Levenspiel				
	5	Gas Liquid Reactions – P. V. Danckwerts				
	6	Fluidisation – J. F. Davidson and D. Harrison				
	7	Random Packings and Packed Tower Design – R. F.				
Outcomes		Strigel				
		Students will be able to				
	CO1	calculate operating regime for a given reaction.				
	CO2	calculate intrinsic kinetics from the data on model				
		contactors.				
	CO3	calculate conversion / selectivity / size /				
		temperature / pressure / power required for				
		conducting a given multiphase reaction equipment.				
Course code		CET4406				
Course title		Process Development and Engineering				-
		2 L: 1 T: 0 P 3 Credits			-	_
Scheme and		2 L: 1 1: 0 P 3 Credits				
Credits						_
Pre-requisites		All chemical Engineering subjects, Material Science and Engineering, Env Engg and Proc Safety				
Objectives of the	1	This course integrates all the chemical engineering				
course		and allied subjects for appropriate design of process				
		plants, in selection of processes and evaluating				
		alternatives				
Course title		Detailed contents	L	т	Р	Tot
Process	1	Development of a preliminary Process System:	-	-	-	2
Development	-	Modular approach				-
and Engineering	2	Multiple process synthesis, selection of process,				2
and Engineering	2					2
		basic economic evaluation				-
	3	Sequencing of operations and integration in				2
	<u> </u>	processes				-
	4	Process Engineering aspects of low and medium				4
		volume chemicals including process development.				
		Batch vs continuous vs semi-batch processes-Scale				
		up Scale up aspects; identification of controlling				
		steps of process				
	5	Concept of dedicated and multiproduct plant				3
		facilities, pilot plant, mini plants				
	6	Development and evaluation of alternative flow				3
		sheets				-
	7	Green Engineering principles				3
	8	Utilisation of energy; cost of utilities, heat exchange				3
		networks				-
	-	Process intensification				3
	9					3
	9 10	Preparation of Conceptual process and				
	-	instrumentation diagrams.				
	-	instrumentation diagrams. Preparation of process specifications for typical				3
	10	instrumentation diagrams.				3
	10	instrumentation diagrams. Preparation of process specifications for typical				3

		Total				36
Suggested books	1	Industrial Chemical Process Design, D. L. Erwine				
/reference books	2	Laboratory Chemical Process Development,				
		Anderson N.				
	3	Organic Unit Processes, Groggins				
	4	Chemical Process Engineering: Design and				
		Economics, Silla H.				
	5	Handbook of Chemical Process Development,				
	6	Chandalia S. B.				
Courses and a R	6	Conceptual Chemical Plant Design, Douglas J. M.				
Course code & title		Outcomes Students will be able to				
uue	CO1	to select a strategy for a process from amongst the				
	01	alternatives				
	CO2	Determine strategy for carrying out a particular				
	02	process				
	CO3	Prepare specifications for a particular equipment				
	CO3					
	04	Calculate utility requirements				
Course code		ESP4501				
Course title		Equipment Design and Drawing				
Scheme and Credits		2 L: 0 T: 4 P 4 Credits				
Pre-requisites		Equipment Design and Drawing-I, Structural				
The requisites		Mechanics, Material Sci and Engg				
Objectives of the	1	Chemical Engineers should have knowledge about				
course	-	Mechanical Design of Chemical Process Equipments				
		such as Reaction Vessels, Heat Exchangers				
		,Distillation Columns etc . This will also be useful for				
		using Design software which is widely used in				
		chemical industries.				
Course title		Detailed contents	L	т	Р	Tot
Equipment	1	Mechanical Design of Reaction Vessels .	4		8	12
Design and		a) Design of shells subjected to internal and external				
Drawing		pressures.				
		b) Types of Jackets /Coils used for heating and				
		cooling in reaction vessels and their design. c) Type				
		of agitators and their design.				
		d) Design of agitator system components such as				
		also fits at a fifting the second secon				
		shafts, stuffing box etc.				
	2	High Pressure Vessels.	4		8	12
		High Pressure Vessels. a) Construction and design.				12
	2 3	High Pressure Vessels. a) Construction and design. Mechanical Design of Heat Exchangers	4		8 8	12 12
		 High Pressure Vessels. a) Construction and design. Mechanical Design of Heat Exchangers a) Types of heat exchangers such as double pipe, 				
		High Pressure Vessels. a) Construction and design. Mechanical Design of Heat Exchangers				
		 High Pressure Vessels. a) Construction and design. Mechanical Design of Heat Exchangers a) Types of heat exchangers such as double pipe, 				
		 High Pressure Vessels. a) Construction and design. Mechanical Design of Heat Exchangers a) Types of heat exchangers such as double pipe, shell and tube type and special heat exchangers. 				
		 High Pressure Vessels. a) Construction and design. Mechanical Design of Heat Exchangers a) Types of heat exchangers such as double pipe, shell and tube type and special heat exchangers. Design of heads, flanges, nozzles, compensation for pressure vessels 				
		 High Pressure Vessels. a) Construction and design. Mechanical Design of Heat Exchangers a) Types of heat exchangers such as double pipe, shell and tube type and special heat exchangers. Design of heads, flanges, nozzles, compensation for pressure vessels b) Components of shell and tube type heat 				
		 High Pressure Vessels. a) Construction and design. Mechanical Design of Heat Exchangers a) Types of heat exchangers such as double pipe, shell and tube type and special heat exchangers. Design of heads, flanges, nozzles, compensation for pressure vessels b) Components of shell and tube type heat exchangers. 				
		 High Pressure Vessels. a) Construction and design. Mechanical Design of Heat Exchangers a) Types of heat exchangers such as double pipe, shell and tube type and special heat exchangers. Design of heads, flanges, nozzles, compensation for pressure vessels b) Components of shell and tube type heat exchangers. c) Design of various components of heat exchangers 				
		 High Pressure Vessels. a) Construction and design. Mechanical Design of Heat Exchangers a) Types of heat exchangers such as double pipe, shell and tube type and special heat exchangers. Design of heads, flanges, nozzles, compensation for pressure vessels b) Components of shell and tube type heat exchangers. c) Design of various components of heat exchangers such as Fixed tube sheet type,U tube, Floating head 				
		 High Pressure Vessels. a) Construction and design. Mechanical Design of Heat Exchangers a) Types of heat exchangers such as double pipe, shell and tube type and special heat exchangers. Design of heads, flanges, nozzles, compensation for pressure vessels b) Components of shell and tube type heat exchangers. c) Design of various components of heat exchangers such as Fixed tube sheet type,U tube, Floating head etc. 				
	3	 High Pressure Vessels. a) Construction and design. Mechanical Design of Heat Exchangers a) Types of heat exchangers such as double pipe, shell and tube type and special heat exchangers. Design of heads, flanges, nozzles, compensation for pressure vessels b) Components of shell and tube type heat exchangers. c) Design of various components of heat exchangers such as Fixed tube sheet type,U tube, Floating head etc. d) Various codes for heat exchangers. 	4		8	12
		 High Pressure Vessels. a) Construction and design. Mechanical Design of Heat Exchangers a) Types of heat exchangers such as double pipe, shell and tube type and special heat exchangers. Design of heads, flanges, nozzles, compensation for pressure vessels b) Components of shell and tube type heat exchangers. c) Design of various components of heat exchangers such as Fixed tube sheet type,U tube, Floating head etc. d) Various codes for heat exchangers. 				
	3	 High Pressure Vessels. a) Construction and design. Mechanical Design of Heat Exchangers a) Types of heat exchangers such as double pipe, shell and tube type and special heat exchangers. Design of heads, flanges, nozzles, compensation for pressure vessels b) Components of shell and tube type heat exchangers. c) Design of various components of heat exchangers such as Fixed tube sheet type,U tube, Floating head etc. d) Various codes for heat exchangers. Mechanical design of distillation columns a) Types of columns such as tray and packed . Types 	4		8	12
	3	 High Pressure Vessels. a) Construction and design. Mechanical Design of Heat Exchangers a) Types of heat exchangers such as double pipe, shell and tube type and special heat exchangers. Design of heads, flanges, nozzles, compensation for pressure vessels b) Components of shell and tube type heat exchangers. c) Design of various components of heat exchangers such as Fixed tube sheet type,U tube, Floating head etc. d) Various codes for heat exchangers. Mechanical design of distillation columns a) Types of columns such as tray and packed . Types of packings 	4		8	12
	3	 High Pressure Vessels. a) Construction and design. Mechanical Design of Heat Exchangers a) Types of heat exchangers such as double pipe, shell and tube type and special heat exchangers. Design of heads, flanges, nozzles, compensation for pressure vessels b) Components of shell and tube type heat exchangers. c) Design of various components of heat exchangers such as Fixed tube sheet type,U tube, Floating head etc. d) Various codes for heat exchangers. Mechanical design of distillation columns a) Types of columns such as tray and packed . Types of packings b) Various components of columns such as trays, 	4		8	12
	3	 High Pressure Vessels. a) Construction and design. Mechanical Design of Heat Exchangers a) Types of heat exchangers such as double pipe, shell and tube type and special heat exchangers. Design of heads, flanges, nozzles, compensation for pressure vessels b) Components of shell and tube type heat exchangers. c) Design of various components of heat exchangers such as Fixed tube sheet type,U tube, Floating head etc. d) Various codes for heat exchangers. Mechanical design of distillation columns a) Types of columns such as tray and packed . Types of packings 	4		8	12

	5	Design of supports such as bracket, saddle and skirt for chemical process equipment	2		4	6
	6	Engineering flow sheets	4		8	12
	7	Piping and Instrumentation diagrams.	3		6	9
	8		24	0	48	72
		Total				
Suggested	1					
reference books	2					
	3					
	4					
	5					
Outcomes		Students will be able to				
	CO1	Students will be able to design (Mechanical) various				
		parts such as shell, nozzles, for chemical process				
		equipment.				
	CO2	Students will be able to prepare drawing for				
		chemical process equipment.				

Stud	y 8 (T14)									
				Subjects	Credits	Hrs/	/week	(
						L	Т	Р	E. S.	Total
53	CE	CET	CET4541	Advanced Transport Phenomena	3	2	1	0	50	100
54	CE	CET	CET4543	Advanced Mass Transfer	3	2	1	0	50	100
55	CE	CET	CET4543	Advanced Separation Processes	3	2	1	0	50	100
56	ES	EST	EST4501	LCA and Sustainability/ NPTEL/ Chemical	3	2	1	0	50	100
				Safety and Risk Management						
57	S	ST	xxT4xxx	Advanced Special Elective - VI	3	2	1	0	50	100
58	HU	HUT	HUT4501	Research Methodology	4	3	1	0	50	100
59	CE	CEP	CEP4571	Design / Research Project - I	4	0	0	8	50	100
				TOTAL	23	13	6	8	350	700

Course code		HUT4501				
Course title		Research Methodology/Design and Analysis of				
		Experiments				
Scheme and		2 L: 1 T: 0 P 3 Credits				
Credits						
Pre-requisites		Applied Mathematics I				
Objectives of the	1	Modern day manufacturing activities and R&D				
course		activites need decisions taken with a scientific rigour				
		and should be wellsupported by 'statistics'.				
		Chemical engineering graduates who will serve				
		industry as well as postgraduate research students				
		who will serve industry, R&D organisations, or				
		academic research should have a reasonably good				
		background of statistical decision making. This also				
		involves extraction of meaningful data from well-				
		designed minimal number of experiments at the				
		lowest possible material costs. This course will also				
		help the students in all domains of their life by				
		imparting them a vision for critical appraisal and				
		analysis of data.				
Course title		Detailed contents	L	Т	Р	Tot
Design and	1	Overview of statistical analysis of data, statistical				8
Analysis of		sampling, statistical inference, tests of significance,				
Experiments		regression analysis.				
	2	Analysis of variance.				6
	3	Statistical design of experiments, Factorial design,				10
		Response Surface Methodology (RSM).				
	4	Box-Behnken and Plackett Burman methods, Central				12
		Composite Design (CCD)				
		Total				36
Suggested books	1	Design of Experiments in Chemical Engineering:				
/reference books		Živorad R. Lazić				
	2	Design and Analysis of Experiments: D. C.				
		Montgomery				
	3	Introduction to Statistical Quality Control: D. C.				
		Montgomery				
	4	Response Surface Methodology: Process and				
		Product Optimization using Designed Experiments:				
		R. H. Myers, D. C. Montgomery				
Course code &		Outcomes				
title		Students will be able to				
	CO1	Realize importance of statistical analysis of data				
	CO2	Statistically correlate one set of data with another				
		set, and identify whether the correlation is				
		significant or not				

	CO3	List out set of experiments needed for a particular				
		situation/process considering the interation				
		between parameters/numbers of experiments				
	604	needed				
	CO4	Apply the methods of experimental design to optimisation, and to identifying those parameters				
		that are of highest importance				
Course code		CET4541	<u> </u>	<u> </u>		
Course title		Advanced Transport Phenomena				
Scheme and		2 L: 1 T: 0 P 3 Credits				
Credits						
Pre-requisites						
Objectives of the	1					
course						
Course title		Detailed contents	L	Т	Р	Tot
	1	Turbulent flow: basics, Reynolds average Navier- Stokes equations, closure problem, Boussinesques				15
		hypothesis, Prandtl mixing length theory, turbulence				
		models, energy spectrum, Turbulent boundary layer,				
		universal velocity profile				
	2	Gas-liquid and solid-liquid fluidised beds:				12
		Characteristics of particles, Principle of fluidisation				
		and mapping of various regimes, Two phase theory				
		of fluidisation, Bubbles in fluidised bed, Entrainment				
		and Elutriation, Fast fluidised bed, Mixing,				
		segregation and gas dispersion, Heat and mass transfer in fluidised bed, Solid-liquid fluidised bed				
		and three phase fluidised bed, Josid-liquid Indised bed				
		reactors.				
	3	Introduction to Computational Fluid Dynamics				9
		Total				36
Suggested books						
Suggested books	1	Transport Phenomena, R.B. Bird, W.E. Stewart, E.N.				
/reference books		Lightfoot				
	2	Transport Phenomena, R.S. Brodkey				
	3	Momentum, Heat and Mass Transfer, Bennet and Myers				
	4	Fluid Mechanics, Pijush K. Kundu				
	5	Fluid Mechanics, K. Subramanya				
	6	Fluid Dynamics, G.K. Batchelor				
	7					
Outcomes						
		Outcomes				
		Students will be able to				
	CO1	Calculate pressure drop in pipelines and equipment				
		for different situations such as single- and two- phase flow, fixed and fluidized beds (K3)				
	CO2	Describe and discuss equation of motion for				
		turbulent flows (K2)				
	CO3					
	CO4					
Course code		CET4542				
Course title		Advanced Chemical Reaction Engineering				
Scheme and		2 L: 1 T: 0 P 3 Credits				
Credits						
Pre-requisites					<u> </u>	
Objectives of the	1					
course Course title		Detailed contents	L	т	Р	Tot
	. 1		L		r -	101
	1	Theory of mass transfer with chemical reaction				10

	2	 Kinetics of solid-catalysed gas phase reactions: 				10
		Diffusion with reaction in porous catalyst,				
		Mechanism of catalytic reactions. Development of				
		rate equations for solid catalysed fluid phase				
		reactions; Estimation of kinetic parameters				
		External/internal mass and heat transfer resistances				
		in catalyst particles.				
	3	Design of fixed bed catalytic reactor -				10
	_	isothermal, adiabatic, non-isothermal programmed				-
		reactors: • Non-ideal flow in reactors; RTD,				
		Estimation of dispersion/backmixing, dispersed plug				
		flow and tanks in series model, design aspects of				
		reactors with non ideal flow, micro and meso mixing				
		in reactors				
	4	Reactor stability				6
		Total				36
		Total				30
Suggested books	1	Chemical Reaction Engineering, O. Levenspiel				
/reference books	2	Chemical Engineering Kinetics, J.M. Smith				
	3	Elements of Chemical Reaction Engineering, H. Scott				
	<u> </u>	Foggler				
	4	Chemical Reactor Analysis and Design, G.F. Froment,				
		K.B. Bischoff				
	5	Chemical Reaction Analysis, E.E. Petersen				
	6	Heterogeneous Reactions vol. I and II, L.K.				
		Doraiswamy, M.M. Sharma				
	7	Gas Liquid Reactions, P.V. Danckwerts				
	8	Mass Transfer with Chemical Reaction, G. Astarita				
Course code &		Outcomes				
title		Students will be able to				
	CO1	Describe and discuss principles of various types of				
		reactors (K2)				
	CO2	Calculate rates of reactions based on given reaction				
		scheme (K3)				
	CO3	Design various components of reactors used in				
		industrial practice (K5)				
	CO4	Compare various reactors and select an appropriate		1		
	04	reactor for a given situation (K5)				
<u> </u>	<u> </u>			1	[[
Course code	<u> </u>	2451				
Course title		Advanced Separation Processes				
Scheme and		2 L: 1 T: 0 P 3 Credits				
Credits						
Pre-requisites						
Objectives of the	1					
course						
Course title		Detailed contents	L	Т	Р	Tot
Advanced	1	Membrane Separations: Types of separations,	9	3		12
Separation		reverse osmosis, ultrafiltration, gas separation,				
Processes		vapour permeation and pervaporation, dialysis,				
Processes		electrodialysis, nanofiltration				
Processes					1	
Processes		Transport Through Porous Membranes, Resistance				
Processes		Transport Through Porous Membranes, Resistance				
Processes		Transport Through Porous Membranes, Resistance Models, Liquid Diffusion Through Pores				
Processes		Transport Through Porous Membranes, Resistance Models, Liquid Diffusion Through Pores Gas Mixtures: Gas Diffusion Through Porous				
Processes		Transport Through Porous Membranes, Resistance Models, Liquid Diffusion Through Pores Gas Mixtures: Gas Diffusion Through Porous Membranes, Transport Through Nonporous				
Processes		Transport Through Porous Membranes, Resistance Models, Liquid Diffusion Through Pores Gas Mixtures: Gas Diffusion Through Porous Membranes, Transport Through Nonporous Membranes, Solution-Diffusion for Liquid and gas				
Processes		Transport Through Porous Membranes, Resistance Models, Liquid Diffusion Through Pores Gas Mixtures: Gas Diffusion Through Porous Membranes, Transport Through Nonporous Membranes, Solution-Diffusion for Liquid and gas mixtures				
Processes		Transport Through Porous Membranes, Resistance Models, Liquid Diffusion Through Pores Gas Mixtures: Gas Diffusion Through Porous Membranes, Transport Through Nonporous Membranes, Solution-Diffusion for Liquid and gas mixtures Concentration Polarization and Fouling, Membrane				
Processes		Transport Through Porous Membranes, Resistance Models, Liquid Diffusion Through Pores Gas Mixtures: Gas Diffusion Through Porous Membranes, Transport Through Nonporous Membranes, Solution-Diffusion for Liquid and gas mixtures Concentration Polarization and Fouling, Membrane modules, arrangement of modules in cascades,				
Processes		Transport Through Porous Membranes, Resistance Models, Liquid Diffusion Through Pores Gas Mixtures: Gas Diffusion Through Porous Membranes, Transport Through Nonporous Membranes, Solution-Diffusion for Liquid and gas mixtures Concentration Polarization and Fouling, Membrane modules, arrangement of modules in cascades, performance criteria and design considerations	6	2		8
Processes	2	Transport Through Porous Membranes, Resistance Models, Liquid Diffusion Through Pores Gas Mixtures: Gas Diffusion Through Porous Membranes, Transport Through Nonporous Membranes, Solution-Diffusion for Liquid and gas mixtures Concentration Polarization and Fouling, Membrane modules, arrangement of modules in cascades,	6	2		8

1		1				
			components, minimum number of stages, minimum			
			reflux and distribution of non key components,			
			Kremser group method		-	
	3		Chromatographic Separations: Principles of	4	2	6
			chromatographic separation, criteria for effective			
			separation, supports, and methodology and process			
	-		design.			
	4		Separation of Racemic Mixtures: Principles of	3	1	4
			racemic modification and their application in			
			separation of racemic mixtures with specific			
	-		examples.		-	6
	5		Dissociation Extraction, Reactive Extraction, Reactive	4	2	6
			distillation			
			Total			26
Suggested books	1					36
Suggested books /reference books	1		Transport Processes and Separation Process			
Telefence DOOKS	2		Principles, C.J. Geankoplis Separation Processes, C.J. King			
	3					
	3		Separation Process Principles, Authors: J.D. Seader, E.J. Henley			
	4		Principles of Mass Transfer and Separation			
	-		Processes, B.K. Dutta			
	5		Mass Transfer Operations, R.E. Treybal			
	6		Green Separation Processes, C.A.M. Afonso, J.F.			
	Ŭ		Crespo			
	7		Equilibrium Stage Separation Operations in			
			Chemical Engineering, E.J. Henley, J.D. Seader			
			Diffusion: Mass Transfer in Fluid Systems, E.L.			
			Cussler			
	8		Chemical Engineering, Volume 2, J.M. Coulson, J.F.			
	-		Richardson			
	9					
Outcomes						
			Students will be able to			
	CO1		Describe and discuss principles of various advanced			
			separation processes based on membranes,			
			chromatography, distillation, extractions (K2)			
	CO2		Design various components of equipment used in			
			advanced separation processes (K5)			
	CO3		Compare various options and select an appropriate			
			process for a particular separation (K5)			
Course Code			EST4501			
Course Title			LCA and Sustainability			
Credits			2L +1 T = 3 credits			
Course Outcomes			(students will be able to)			
		1	Understand the different types of environmental			
			pollution problems, and their sustainable solutions			
		2	Able to work in the area of sustainability for			
			research and education			
		3	Have a broader perspective in thinking for			
			sustainable practices by utilising the engineering			
			knowledge and principles gained from this course			
		4	??????????			
	1	5	Create a model research project			
		1	Understand the different types of environmental			
		-	pollution problems, and their sustainable solutions			
List of						
List of Proroquisito			Introductory knowledge of linear algebra, probability, chemistry, and economics is			
Prerequisite Courses			recommended.			
Courses	L					

List of Courses		Design / Research Project – II (CEP-4552)		
where this course		besign / hescalent roject in (een 4552)		
will be				
prerequisite				
Course		Today our world is confronted with sustainability		
Description		challenges at an unprecedented scale. Human-		
		induced climate change, the depletion of natural		
		resources including water, and threats to food		
		security threaten to adversely affect people's well-		
		being at a time when many individuals also struggle		
		to overcome poverty, inequity, and other affronts to		
		human rights. The magnitude of these challenges		
		and their wide-ranging adverse ramifications		
		motivate proactive businesses and entrepreneurs to		
		act, whether by participating in efforts to mitigate		
		risk and negative externalities or by innovating to		
		create positive change. This course is relevant as it		
		the students will:		
		Have an increased awareness amongst students on		
		issues in areas of sustainability.		
		Understand the role of engineering and technology		
		within sustainable development.		
		Know the methods, tools, and incentives for		
		sustainable product-service system development.		
		Establish a clear understanding of the role and		
		impact of various aspects of engineering and		
		engineering decisions on environmental, societal,		
		and economic problems.		
Course Contents				
	1	Sustainability:		
		Need and concept; Challenges		
	2	Environment acts and protocols		
	3	Global, regional, and local environmental		
		issues; Natural resources and their pollution		
	4	Carbon credits; Zero waste concept		
	5	Carbon credits		
	6	Zero waste concept		
	7	ISO 14000		
	8	Life Cycle Analysis (LCA):		
	U U	Environmental impact assessment studies		
	9	Sustainable habitat; Green buildings		
	10	Green materials; Conventional and renewable		
	10	sources of materials		
	11	Conventional and renewable sources of energy		
	12	Technology and sustainable development		-
	13	Sustainable urbanisation		
	14	Ecology		
	1	Allen D. T., Shonnard, D. R.; Sustainability		
		Engineering: Concepts, Design, and Case Studies;		
		Prentice-Hall.		
	2	Bradley, A. S., Adebayo, A. O., Maria, P.; Engineering		
		Applications in Sustainable Design and		
		Development; Cengage Learning		
	3	Environmental Impact Assessment Guidelines;		
		Notification of Government of India, 2006		

4	Mackenthun, K. M.; Basic Concepts in		
	Environmental Management, Lewis Publication,		
	London, 1998		
5	ECBC Code 2007, Bureau of Energy Efficiency, New		
	Delhi Bureau of Energy Efficiency Publications-		
	Rating System, TERI Publications – GRIHA Rating		
	System.		
6	Ni Bin Chang; System Analysis for Sustainable		
	Engineering: Theory and Applications; McGraw-Hill		
	Professional.		
7	Twidell, J. W., Weir, A. D.; Renewable Energy		
	Resources, English Language Book Society (ELBS).		
8	Purohit, S. S.; Green Technology – An Approach for		
	Sustainable Environment; Agrobios Publication		

CET-4544: Chemical Safety and Risk Management (3 = 2+1+0; CT = 25; End-sem = 25; Total = 50)

LTPTerm: 8Total contact hours: 36???210Course Outcomes (students will be able to)1List principles of safety, risk management, and material hazardsK12Define safety principles, procedures, standards and regulationsK13Describe safety aspects related to chemicals, fires, electricity, pathogens, etc.K24Apply SHE management principles in the industryK35Assess the risks and environmental impact of projects and processesK46Perform tasks such as hazard identification or plant layout, etc.K3List of Prerequisite Courses1Basic knowledge of chemical processesList of Courses where this course will be prerequisite
1List principles of safety, risk management, and material hazardsK12Define safety principles, procedures, standards and regulationsK13Describe safety aspects related to chemicals, fires, electricity, pathogens, etc.K24Apply SHE management principles in the industryK35Assess the risks and environmental impact of projects and processesK46Perform tasks such as hazard identification or plant layout, etc.K3List of Prerequisite Courses1Basic knowledge of chemical processes
1List principles of safety, risk management, and material hazardsK12Define safety principles, procedures, standards and regulationsK13Describe safety aspects related to chemicals, fires, electricity, pathogens, etc.K24Apply SHE management principles in the industryK35Assess the risks and environmental impact of projects and processesK46Perform tasks such as hazard identification or plant layout, etc.K3List of Prerequisite Courses1Basic knowledge of chemical processes
2Define safety principles, procedures, standards and regulationsK13Describe safety aspects related to chemicals, fires, electricity, pathogens, etc.K24Apply SHE management principles in the industryK35Assess the risks and environmental impact of projects and processesK46Perform tasks such as hazard identification or plant layout, etc.K3List of Prerequisite Courses1Basic knowledge of chemical processes
3 Describe safety aspects related to chemicals, fires, electricity, pathogens, etc. K2 4 Apply SHE management principles in the industry K3 5 Assess the risks and environmental impact of projects and processes K4 6 Perform tasks such as hazard identification or plant layout, etc. K3 List of Prerequisite Courses 1 Basic knowledge of chemical processes
4Apply SHE management principles in the industryK35Assess the risks and environmental impact of projects and processesK46Perform tasks such as hazard identification or plant layout, etc.K3List of Prerequisite Courses1Basic knowledge of chemical processes
5 Assess the risks and environmental impact of projects and processes K4 6 Perform tasks such as hazard identification or plant layout, etc. K3 List of Prerequisite Courses 1 Basic knowledge of chemical processes
 6 Perform tasks such as hazard identification or plant layout, etc. K3 List of Prerequisite Courses 1 Basic knowledge of chemical processes
List of Prerequisite Courses Basic knowledge of chemical processes
1 Basic knowledge of chemical processes
List of Courses where this course will be prerequisite
1 Design / Research Project – II (CEP-4552)
2 This course will be useful for an advanced level course on chemical process safety.
Description of the relevance of this course in the Integrated M. Tech. Program
This course will provide key information on several safety-related aspects in the chemical industry and research
laboratories.
Course Contents (Topics and subtopics) Hours
1 Introduction to Safety and Risk Management
Major industrial disasters and evolution of safety and risk management
2 Material hazard - GHS MSD - physical hazard, toxic hazard and eco-toxicity
MSDS (Material Safety Data Sheet), 16-point MSDS, uniformity in MSDS, details of MSDS, LD50 &
LD10 dosage values; TLV, STEL, Flash, Vapour pressure; Globally Harmonized System (GHS), R&S
phrases
3 PSM elements
Why PSM; Overview of 14 elements
4 Hazard evaluation techniques – What-If, Checklist, HAZOP, FEMA etc.
Overview of each of HAZOP & HAZAN Analysis; Cause and Consequence Analysis; FMEA; LOPA;
Fault Tree Analysis; QRA
5 Hazard identification and assessment – 1.
Basic Hazard identification, assessment & measures
6 Flammability and fire safety-extinguishers
Fire types, Types of fire extinguishers, Agents for fire-fighting, Fire hydrant
7 SHE regulations in India- Factories Act, Water and Environment Act
Statutory regulations in India; Codes and Standards; Scenario at present and vision for future;
Factory Act.
8 Human elements in safety - behaviour safety

9 Laboratory safety

- Basics and Dos & Do not.
- 10 Basic OSH

Occupational hygiene basics.

- 11 Compliance with statutory safety audits
 - Overview of safety audits based on ISO standards (14000)
- 12 Biosafety

Biohazards; Basic microbiology of pathogens; Pathogenic risks; Containment; Biosafety levels; Laboratory facilities for handling pathogens; Personal protective equipment; Disinfection and decontamination; Biohazard waste disposal; Emergency measures.

- 13 Plant layout based on process safety & fire safety-fire hydrant system design Solvent yard, warehouse, and plant layout with the fire safety system design.
- 14 Management Practice in SHE in Plant Operation
 - Man-management, organization management, policy management; Fundamentals of safety management systems for occupational safety, job hazard analysis (confined space, height safety, hot jobs); Chemical and plant security; Cyber security as applicable to Chemical Projects; Management of change; Incident reporting and investigation; Human elements in safety, ergonomics and behavioural safety.
- 15 Hazard assessment 2. Process safety, thermal safety, dust explosion etc. Inherent safety concepts for processes and unit operations; Powder handling hazards - dust explosion.
- 16 Safety in utilities

18

Safety in electrical power generation units including nuclear, steam boilers, boiler feed water, thermic fluids, transformers.

- 17 Storage, handling and transportation of hazardous substances Safety provisions during transport of petroleum products including LNG and other hazardous materials by ship, rail, air cargo and roads; transport emergency; isolated storage; warehouses;
 - colour coding of pipelines; inventory management; packaging and labelling.
 - Environmental Impact Assessment Environmental impact and risk assessment (EIRA), risks of projects, process-related risks, measurement and monitoring tools
- 19 Emergency response plan

Hazard identification and elements of emergency response plan; OHC categorization, control banding and precautions while handling substances; GMP principles

List of Textbooks / Reference Books

- 1 Elements of Industrial Hazards Ratan Raj Tatiya, CRC Press
- 2 Environmental Life Cycle Analysis Ciambrone, D. F., CRC Press
- 3 Handbook on Life Cycle Assessment: Operational Guide to ISO Standards, Kluwer Academic Pub.

CEP-4571: Design/Research Project – I (3 = 2+1+0; CT = 50; End-sem = 50; Total = 100)

Course code: CEP-4571	Course Title: Design/Research Project – I		Credits	= 4
		L	т	Р
Term: 8	Total contact hours: 4571	0	0	4

The Design / Research Project – I is concerned with detailed and critical analysis of literature related to the research OR design topic allotted to the candidate. This will be supervised by two faculty members. The candidate is expected to submit a report as per the guidelines provided below. The report will be evaluated based on the presentation made by the candidate by both the supervisors and one external examiner from the Department OR Industry. A suitable combination of the marks for the report and presentation will be considered for the final evaluation.

Guidelines

1. Typically, the report should contain the following:

- (a) Introduction: 2 pages maximum.
- (b) Exhaustive review of the literature (including figures): 10 12 pages
- (c) Critical analysis of the literature and comments critical analysis should also contain a quantitative comparison of observations, results, and conclusions amongst the various papers.

- Two typed copies of the report on thesis size bond paper (297 mm x 210 mm) are to be submitted to the Coordinator on the date to be decided by the coordinator. In addition, a soft copy of the report should be submitted to the coordinator. The detailed timetable for the presentation would be communicated.
- **3.** The report should be prepared using the Times Roman font (size 12) using 1.5-line spacing leaving a 1-inch margin on all sides. The report should be printed on one side of the paper and should **not** be bound in a hardcover binding. Figures and tables should be shown as a part of the running text. The figures must be sufficiently clear and hand-drawn figures will be acceptable. Particular care must be taken if a figure is photocopied from the source. Each figure must have a sequence number and caption below. Each table must have a sequence number and title at the top.
- 4. Name of the student, title of the problem and year of the examination must be indicated on the top cover of the report. THE NAME OF THE SUPERVISOR (**ONLY THE INITIALS**) MUST APPEAR ON THE BOTTOM RIGHT CORNER OF THE TOP COVER.
- The report must be precise. All important aspects of the topic should be considered and reported. The total number of pages, including tables, figures, and references should <u>not</u> exceed 30. Chapters or subsections <u>need</u> <u>not be</u> started on new pages while getting the report typed.
- **6.** Typographical errors in the report must be corrected by the student. The student will be discredited for any omission in the report. All the symbols used in the text should be arranged in alphabetical order and given separately after conclusions.
- **7.** The list of REFERENCES should be arranged in <u>alphabetical order</u> of the <u>last names</u> of authors. In the text, the reference should be cited with the author's name and year. (author-date style). For example:
- (i) The flow pattern in gas-liquid-solid fluidized beds has been reported in the published literature (Murooka et al., 1982).

OR

- (ii) Murooka et al. (1982) have measured flow patterns in gas-liquid-solid fluidized beds. The title of the article should also be included. The references must be given in the following standard format.
- (a) Format for listing references of articles from periodicals: Murooka S., Uchida K. And Kato Y., Recirculation Turbulent Flow of Liquid in Gas-Liquid-Solid Fluidised Bed", J. Chem. Engg. Japan, 15, 29-34 (1982).
- (b) Format for listing references of Books: Constant R.F., Crystallization, Academic Press, New York, pp. 89-90, 1968.
- (c) Format for listing Thesis:
 Niranjan K., "Hydrodynamic and Mass Transfer Characteristics of Packed Columns", PhD (Tech.) Thesis, University of Mumbai, 1983.
- (d) Format for listing references of Patents in Chemical Abstracts:
 - Cananaush R.M., U.S. Patent 2,647,141, Cf. C.A. 48, 82636 (1954).
- (e) Format for listing Handbooks, Tables, Symposia etc.: Kumar R and Kuloor N.R., "Formation of Drops and Bubbles", in Advances in Chemical Engineering, Vol.8, T.B. Drew et.al. (Eds.) New York, Academic Press, pp.256-364 (1970).
 (f) Format for listing Private Communications and other categories:
 - Sharma, M.M., Private Communication (1984).
- 8. Consistency of units should be maintained in the written report. SI systems should be used. [For SI system Ref: Ind. Chem. Engr., 24, 32, 3 (1983)]. Units used in the literature (if not SI) should be correctly converted.
- **9.** The time allotted for the oral presentation is 20 minutes: additional 10 minutes are provided for questions and answers.

10. INCOMPLETE AND CARELESSLY WRITTEN REPORT IS LIABLE TO BE REJECTED.

- **11.** The last date for submission will NOT be extended on any grounds whatsoever.
- **12.** There must not be any acknowledgement about the guidance by the faculty in the report.

- **13.** The report will be evaluated based on (i) rational approach to the problem, ii) correctness and completeness of the written text and iii) performance in the oral presentation.
- **14.** Word-to-word copying from the published article is not permitted.

Course Outcomes (students will be able to)

1	Collect literature related to an assigned area	K1
2	Understand the lacunae in the literature	К2
3	Analyse the literature and present suitable guidelines	К4
4	Write a neat report following the guidelines	K2, K4
5	Propose a defined plan for the design/research	К6
6	Start the execution of design/research project	K6

List of Prerequisite Courses

All courses taught till date.

List of Courses where this course will be prerequisite

1 CEP-4552 Design/Research Project – II

Description of the relevance of this course in the Integrated M. Tech. Program

This project is a continuation of the Design/Research Project-I. This course enables the students to analyse and utilise the information and data gathered in the Design/Research Project-I on a particular Design/Research topic, and come up with a suitable design AND/OR research conclusion. The student should submit and present a written and oral summary on that topic.

Stud	y 9 (T15)									
				Subjects	Credits	Hrs/	/week	(
						L	Т	Р	E. S.	Total
60	HU	HU	HUT4402	Perspectives of Society, Science and Technology	3	2	1	0	50	100
61	HU	HU	HU4501	Industrial Psychology and Management	3	2	1	0	50	100
62	CE	CET	CET4407	Advanced Chemical Reaction Engineering	3	2	1	0	50	100
63	CE	CEE	CET4xxx	Advanced Chemical Eng. Elective - I	3	2	1	0	50	100
64	S	ST	xxT4xxx	Advanced Special Elective - VII	3	2	1	0	50	100
65	CE	CEP	CEP4572	Design / Research Project - II	9	0	0	18	75	150
				TOTAL	24	10	5	18	325	650

Course code		HUT4402				
Course title		Perspectives of Society Science and Technology				
Scheme and		2 L: 1 T: 0 P 3 Credits				
Credits						
Pre-requisites		All the Science and Engineering Courses so far				
Objectives of the	1	This course is relevant for future professional career				
course		of a Chemical Engineer.				
Course title		Detailed contents	L	т	Р	Tot
Perspectives of	1	History of Science and Technology and its relevance				4
Society Science		in the respective era				
and Technology	2	Recent developments in technology (chemical,				4
		biotechnology energy, telecommunications, etc.) and				
		their influence on society				
	3	Economics and Sustainable Development				4
	4	Value system and Ethics in the profession of				2
		Technology, Science and Engineering.				
	5	Problems before the World and India. Various				2
		approaches in solving them.				
	6	Integrating Issue: Society and Science				4
	7	Industrial disasters and their effect on science and				2
		technology and society				
	8	Environmental degradation, global warming and				2
		their effect on science and technology and society				
	9	IPR issues and their relevance to science and				2
		technology and society				
	10	Some aspects of future of Society, Technology,				2
		Science and Engineering.				
	11	Interdependence of Theology and Science				2
	12	Impact of climate change on the nexus of water,				2
		energy and water				
	13	Technology and World Peace Role of Innovation and				2
		R&D				
	14	Industry-Academia Interaction to Enhance Standard				2
		of Living				
		Total				36
Suggested books						
	1	Science, Technology and Society: An Encyclopedia by				
		Sal Restivo, Oxford University Press 2005				
	2	Science, Technology and Society: A Sociological				
		Appraoach by Wenda K. Bauchspies, Jennifer				
		Croissant, Sal P. Restivo				
	3	Vision of STS: Counterpoints in Science Technology				
		and Society Studies by Stephan H. Cutcliffe, Carl				
		Mitcham, Sunny Press 2012				
	4	· ·				
Outcomes		Students will be able to				
	CO1	List some historical scientific developments				

	CO2	State importance and implications of patents and some of the relevant laws				
Course code		HU4501				
Course title		Industrial Psychology and Management				
Scheme and		3 L, 1 T, 0 P = 4 Credits				
Credits		3 L, 1 I, 0 I - 4 CICUIUS				
Pre-requisites						
Objectives of the	1	This course equips students with human resource				
course	_	management skills to be able to function effectively				
		in their professional career				
Course title		Detailed contents	L	т	Р	Tot
Equipment	1	Introduction & Overview of the course	2	1		3
Design and	2	Changes/Challenges in HRM	2	1		3
Drawing	3	Management Theories	2	1		3
	4	Research Methodology & Statistical Tools	2	1		3
	5	Management of Change	2	1		3
	6	Organizational Culture & Climate	2	1		3
	7	Knowledge Productivity	2	1		3
	8	New Leadership Motivation Theories	2	1		3
	9	Talent Management	2	1		3
	10	Training & Development	1	1		2
	11	Performance Management	1	1		2
	12	Selection and Recruitment	1	1		2
	13	Compensation, Unions and Entrepreneurship	2	1		3
		Total	23	13	0	36
Suggested	1	Personality and Organization, Argyris C.				
reference books	2	The Essence of Leadership, Locke, Edwin A				
	3	Organisational Behaviour, Robbins S				
	4	Managing Human Resources, Bach, S. 2005				
	5	Human Resource Management: A Contemporary				
		Approach, Claydon, T and J. BeardwellFolger, R. and R.				
Outcomes		Students will be able to				
	CO1	Students should be able to explain the fundamental				
		concepts of IPHRM.				
	CO2	Students should be able to analyze practical				
		situations				
	CO3	Students will be able to provide applicable solutions				
Course code		CET4543				
Course title		Advanced Mass Transfer				
Scheme and		2 L: 1 T: 0 P 3 Credits				1
Credits						
Pre-requisites						
Objectives of the	1					
course						
Course title		Detailed contents	L	Т	Р	Tot
	1	Thermodynamic, kinetic and hydrodynamic physical	6	3		9
		phenomena governing interfacial mass transfer				
		and generation of interfacial transfer area.				
	2	Shell balances to set up lumped parameter models	6	3		9
		and more sophisticated differential equation based				
		models to describe mass transfer under various				
		commonly encountered industrial situations.				
	3	The Stefan-Maxwell Unified approach to mass	2	1		3
		transfer.				
	4	Standard algorithms for multicomponent	4	2		6
		countercurrent mass transfer and their applicability.				
	5	Mass Transfer equipment of Industrial significance	6	3		9
		and their quantitative characterization.				
	1	Total	24	12		36

Suggested books /reference books	1	Transport Phenomena, R.B. Bird, W.E. Stewart, E.N. Lightfoot		
	2	Transport Phenomena, R.S. Brodkey		
	3	Momentum, Heat and Mass Transfer, Bennet and Myers		
	4	Fluid Mechanics, Pijush K. Kundu		
	5	Fluid Mechanics, K. Subramanya		
	6	Fluid Dynamics, G.K. Batchelor		
	7			
Outcomes				
		Outcomes Students will be able to		
	CO1	Describe and discuss principles of various mass transfer operations (K2)		
	CO2	Calculate Mass transfer rates for given mass transfer operation (K3)		
	CO3	Design various components of equipment used in mass transfer operations (K5)		
	CO4	Compare various options of mass transfer operations and equipment and select an appropriate equipment / operation for a particular situation (K5)		

Minor Degree: Special Electives

Lipids

SP #	Course Code (IOCB)	Course Code (MARJ)	Туре	List of Subjects
1		SLT4302	Theory	Introduction to Lipid Technology
2		SLT4303	Theory	Chemistry of Lipids and their applications
3		SLT4403	Theory	Lipid Processing Technology I
4		SLT4404	Theory	Production and Applications of Soaps, Surfactants and Detergents
5		SLT4405	Theory	Lipid Processing Technology II
6		SLT4506	Theory	Essential Oils and Cosmetics
7		SLT4507	Theory	Technology of Oleochemicals
1		SFP4301	Laboratory	Lipids Laboratory-I
2		SLP4402	Laboratory	Lipids Laboratory-II

Course		SLT4302				
code						
Course title		Introduction to Lipid Technology				
Scheme		2L: 1T: OP 3 credits	2	1	0	3
and Credits						
Pre-						
requisites						
Descriptio		This course will give an overview of applications of				
n of course		technology and engineering principles in oil and lipid industry				
Objectives	1	Understand the industrial chemistry of oils, fatty				
of the course		acids, surfactants and oleochemicals.				
	2	Understand the chemistry behind the oils, lipids, essential oils.				
	3	Understand and explain the mechanism, theory and				
		practice of oil extraction, refining and modification.				
Syllabus	1	General introduction to oils, fats, waxes and essential oils; Important Minor/ Non-triglyceride Constituents of natural oils and fats; Separation and isolation of fatty acids; Chemical properties of fatty acids and their esters; Chemical analysis of oils	4	2		6
	2	Glyceride Synthesis, acylation procedures, Introduction and removal of protecting groups ; Advanced methods of analysis of oils	4	2		6
	3	Introduction to technology of oil and fat production and edible oil processing; Natural sources of oils and fats, domestic and world production, trade and marketing of oilseeds and oils; Newer sources of oils and fats; Oilseeds processing; Recovering and production of oils and fats from different sources like palm oil, rice bran oil, etc.	8	4		12
	4	Antinutritional constituents of oilseeds; Newer techniques of refining of oils and fats; Manufacture of butter, margarine and ghee, Vanaspati, bakery and confectionery fats and fatty foods; Protection against auto oxidation	8	4		12
			24	12	0	36
Suggested books/	1	The Chemistry of Oils and Fats: Sources, Composition, Properties and Uses, Frank D.				
reference		Gunstone, Blackwell Publishing Ltd, UK (2004)				

	1 - 1	1				
	2	Bailey's Industrial Oil and Fat Products, Sixth Edition				
		Vol. 6: Industrial and Nonedible Products from Oils				
		and Fats, Ed. Fereidoon Shahidi, Wiley Interscience				
		Publication (2005).				
	3	Chemistry and technology of oils and fats by Prof. M.				
		M. Chakrabarti, allied publishers (2003).				
Outcomes		On completion of the course, the students will be				
e accomes		able to				
	CO1	Ability to understand and explain the constitution of				
		Oils and Fats and their importance				
	CO2	Ability to conceptualize and develop the different				
		modes of derivatizations from oils/ fatty acids.				
	CO3	Able to understand fundamental knowledge on				
		basics of post harvest technology for oilseeds,				
		chemistry involved in the oil /fat production and				
		refining				
	r - r	1	L	Т	Р	Total
Course		SLT4303				
code		Chamietery of Linida				
Course		Chemistry of Lipids				
title Scheme		2L: 1T: 0P 3 credits	2	1	0	3
and Credits			2	1	U	5
Pre-						
requisites						
Descriptio		Students will be able to understand the industrial				
n of course		chemistry of oils and fatty acids. They will be trained				
		with respect to basics of sources of oils, minor				
		constituents, physical and chemical properties of				
		oils and fatty acids, various derivatisation pathways				
		and related analytical tools.				
Objectives	1					
of the						
course	2					
	3					
	3					
Syllabus	1	General introduction to oils, fats and waxes:	2	1		3
		Chemical structure, sources and composition.				
		Classification of oils and fats by source type, fatty acid				
		composition and drying properties. Statistics of				
		Indian as well as world production of commercial oil				
		seeds/ oil bearing materials, oils and fats, importance				
		as feedstock for food and chemical industries.				
	2	Physical characteristics of natural oils and fats:	2	1		3
		Oiliness and viscosity, density and expansibility,				
		thermal properties, smoke, fire and flash points,				
		solubility and miscibility, refractive index and				
		molecular refraction, adsorption spectra, electrical				
	3	properties, colour value.	2	1		3
	3	Fatty acids: Nomenclature and classification; saturated, monounsaturated, polyunsaturated fatty	2	1		5
		acid and essential fatty acids. Physical properties of				
		fatty acids and their esters. Polymorphism and crystal				
		structure, solubility, refractivity, optical activity,				
		spectroscopic properties.				
	4	Important minor/ non-triglyceride constituents of	2	1		3
		natural oils and fats: Phospholipids, galactolipids.				
		natural oils and fats: Phospholipids, galactolipids, sphingolipids, diacylglycerols, monoacylglycerols,				
		natural oils and fats: Phospholipids, galactolipids, sphingolipids, diacylglycerols, monoacylglycerols, sulfolipids, waxes, sterols, triterpene alcohols, and				

		vitamins, hydrocarbons, pigments, phenolic compounds etc.				
	5	Separation and isolation of fatty acids: Distillation, crystallization and counter current distribution. Methods of structure determination.	4	2		6
	6	Hydrolysis and esterification: Acid-, base-catalyzed and enzymatic hydrolysis of oils/fats, Fat splitting process. Neutralization, saponification, formation of metallic soaps. Acylation, esterification, interesterification, transesterification.	4	2		6
	7	Chemical reactions of oils/fats and fatty acids: Estolide synthesis. Hydrogenation, halogenation, epoxidation, hydroxylation, ozonolysis, metathesis. Thermal and oxidative polymerization, Diels-Alder reaction, Stereomutation, double bond migration and cyclization.	4	2		6
	8	Glyceride Synthesis, acylation procedures, introduction and removal of protecting groups, 1- monoglycerides, 2-monoglycerides, 1,2-diglycerides, 1,3-diglycerides, Trans fatty acids	4	2		6
Suggested books/	1	Treatise on fats, fatty acids and oleochemicals by O. P. Narula, Vol I & II, Industrial Consultants (India),	24	12	0	36
reference	2	(1994) Bailey's Industrial Oil and Fat Products, Sixth Edition Vol. 6: Industrial and Nonedible Products from Oils and Fats, Ed. Fereidoon Shahidi, Wiley Interscience Publication (2005).				
	3	Chemistry and technology of oils and fats by Prof. M. M. Chakrabarti, allied publishers (2003).				
Outcomes		On completion of the course, the students will be able to				
	CO1	Able to understand fundamental knowledge on basics of post harvest technology for oilseeds, chemistry involved in the oil /fat production and refining				
	CO2	Able to describe the plant and processes for oil/ fat extraction				
	CO3	Able to understand and explain the meal composition, upgradation of meal/ cake and antinutritional factors and detoxification				
	CO4	Able to explain the fat storage, auto oxidation and spoilage				
			L	Т	Р	Total
Course code		SLT4403	-	•		Total
Course title		Lipid Processing Technology I				
Scheme and Credits		2L: 1T: 0P 3 credits	2	1	0	3
Pre- requisites						
Descriptio		This course will give an overview of applications of				
n of course		technology and engineering principles in oil and lipid industry				
Objectives of the course	1	Students will understand the mechanism, theory and practice of oil extraction.				
	2	They will be able to explain refining of oils/fats, fat modification processes.				

	3	Understand and explain the mechanism, theory and				
	5	practice of oil extraction, refining and modification.				
Syllabus	1	Storage, sampling, grading, cleaning, crushing, and	2	1		3
•		heat treatment of oilseeds				
	2	Mechanical expression, solvent extraction, rendering	4	2		6
		and other methods of recovering oils and fats.				
		Economic aspects of these processes.				
	3	Specific methods for the production of palm oil, palm	2	1		3
		kernel oil and rice bran oil.				
	4	Technical refining of oils for industrial uses,	4	2		6
		detoxification and technical products from oil cakes,				
		edible products from oil meals, synthetic fatty				
		material.		_		
	5	Antinutritional constituents of oilseeds. General	4	2		6
		methods of upgrading and utilization of oils, oil cakes				
		and other products, Protein concentrates and				
		isolates from oil meal				
	6	Processes and equipment employed for refining,	4	2		6
		bleaching, deodorization, hydrogenation and				
	7	winterization of oils or edible purposes	2	1		2
	7	Newer techniques of refining of oils and fats	2	1		3
	8	Composition and properties of these spoilage during	2	1		5
		storage of fats, and fat products, protection against auto oxidation				
			24	12	0	36
Suggested	1	The Chemistry of Oils and Fats: Sources,	24	12		30
books/	-	Composition, Properties and Uses, Frank D.				
reference		Gunstone, Blackwell Publishing Ltd, UK (2004).				
	2	Bailey's Industrial Oil and Fat Products, Sixth Edition				
	_	Vol. 6: Industrial and Nonedible Products from Oils				
		and Fats, Ed. Fereidoon Shahidi, Wiley Interscience				
		Publication (2005).				
	3	Chemistry and technology of oils and fats by Prof. M.				
		M. Chakrabarti, allied publishers (2003).				
	4	Fatty Acids in Industry, R. W. Johnson, and E. Fritz,				
		eds., Marcel Dekker, Inc., New York, (1989)				
	5	Oils and Fats Manual, Eds. A. Karleskind and JP.				
		Wolff, Vols. I and II, Intercept Ltd., Andover, U.K.				
		(1996).				
	6	Fatty Acid and Lipid Chemistry, F. D. Gunstone,				
		Blackie Academic and Professional, London, U.K.				
		(1996).				
Outcomes		On completion of the course, the students will be				
		able to				
	CO1	Understand and explain the constitution of oils and				
		fats and their importance as feedstock for food and				
	<u> </u>	chemical industries. (K2)				
	CO2	Analyze and illustrate the physical, chemical and stability characteristics of oils and fats/ fatty				
		acids. (K4)				
	СОЗ	Understand the technical importance of the minor				
		constituents of natural oils and fats.(K2)				
	CO4	Implement different modes of derivatizations of				
		oils/ fatty acids. (K3)				
	1					
	CO5	Identify and interpret the tools for chemical analysis				

			L	Т	Р	Total
Course		SLT4404				
code						

Course		Production and Applications of Soaps, Surfactants				
title		and Detergents				
Scheme and Credits		2L: 1T: 0P 3 credits	2	1	0	3
Pre- requisites						
Descriptio						
n of course				-		-
Objectives of the	1	Students will understand the mechanism, theory and practice of Surfactant production.				
course				-		-
	2	They will be able to explain types of soaps, detergents and their formulations				
Syllabus	1	Raw materials for the soap industry, classification and selection of raw materials, properties of soaps and soap solution. Testing and evaluation, Indian Standard Institution methods, essential oils and other ingredients for soaps.	2	1		3
	2	Phases in soap boiling, processes employed in the manufacture of soap, various types of soaps and cleaning preparations	2	1		3
	3	Detergents, their classification, raw materials, processes, and plants for the manufactures of detergents for domestic and industrial consumption, product evaluation, Indian Standard Institution Methods, essential oils and other ingredients for detergents.	6	3		9
	4	Plant & processes for the production of important anionic, non-ionic, cationic and amphoteric surfactants.	4	2		6
	5	Fluorinated surfactants, new generation surfactants such as Gemini surfactants, silicon surfactants and sugar based surfactants.	4	2		6
	6	Fluorinated surfactants, new generation surfactants such as Gemini surfactants, silicon surfactants and sugar based surfactants.	2	1		3
	7	Application of soaps, surfactants and detergents in food, pharmaceuticals, textile, leather, surface coating, adhesives and other industries	4	2		6
			24	12	0	36
Suggested books/ reference	1	Soaps by Prof. J. G. Kane				
	2	Treatise on fats, fatty acids and oleochemicals by O. P. Narula, Industrial Consultants (India), Vo. I & II (1994)				
	3	Fats, Oleochemicals and surfactants challenges in 21 st Century by V. V. S. Mani and A. D. Shitole, Oxford and IBH Publishing Co. Pvt. Ltd. (1997)				
	4	Manufacture of soaps, other detergents and glycerin by E. Woollatt, John Wiley and Sons (1985)				
Outcomes		On completion of the course, the students will be able to				
	CO1	Able to describe the plant and processes for soaps, surfactants and detergents extraction				
	CO2	Able to understand and raw materials and formulations of common types of surfactants, soaps and detergents				

	CO3	Able to explain new generation of surfactants and quality standards of soaps, surfactants and				
	CO4	detergents Able to explain the industrial applications of soaps				
		and surfactants				
			L	Т	Р	Total
Course		SLT4405				
code						
Course title		Lipid Processing Technology II				
Scheme		2L: 1T: OP 3 credits	2	1	0	3
and Credits						
Pre-						
requisites						
Descriptio						
n of course						
Objectives	1					
of the						
course						
	2					
Syllabus	1	Fat splitting: Hydrolysis of oils and fats; composition of partially split fats, Technology of fat splitting, Effect of temperature, pressure, catalyst and ratio of reactants in hydrolysis of fats; degree of splitting;	7	2		9
	2	Fatty acid fractionation: distillation, crystallization, high purity fatty acid products blends, etc	4	2		6
	3	Hydrogenation of oils: Significane of hydrogenation,	7	2		9
		Catalysts for hydrogenation, kinetics of reaction, effect of operating parameters on kinetics, selectivity and isomer formation, trans fat replacement solutions and technology, worldwide trends & regulations.				
	4	Production of fatty alcohols	4	2		6
	5	Production of bio diesel and green diesel	4	2		6
			26	10	0	36
Suggested books/ reference	1	M.M Chakrabarty. Chemistry and Technology of Oils and Fats. Allied Publishers Pvt. Ltd. New Delhi				
	2	Treatise on fats, fatty acids and oleochemicals by O. P. Narula, Industrial Consultants (India), Vo. I & II (1994)				
	3	Bailey's Industrial Oil and Fat Products, Sixth Edition Vol. 6: Industrial and Nonedible Products from Oils and Fats, Ed. Fereidoon Shahidi, Wiley Interscience Publication (2005).				
	4	Hydrogenation of Oil & Fat Edited by H.B.W. Patterson Applied Science publishers (1983)				
	5	Gupta, M. K., Practical guide to vegetable oil processing. AOCS Press, 2008 Urbana, Illinois.				
	6	Fats and oils, Formulating and Processing for Applications, 3rd Edition, 2009, Richard D.O. Brien.				
	7	Fats and Oils Handbook, Michael Bockisch, 1st Edition, 1998, AOCS Press				
Outcomes						
	CO1					
	CO2					
	CO3					
	CO4					

			L	т	Р	Total
Course code		SLT4506				
Course title		Essential Oils and Cosmetics				
Scheme and Credits		2L: 1T: OP 3 credits	2	1	0	3
Pre- requisites						
Descriptio						
n of course Objectives	1					
of the course						
	2	Students will understand the chemistry of cosmetics products, raw materials and other ingredients required and their significance in cosmetics formulations.				
Syllabus	1	Essential oils: extraction from different sources, separation and purification. Enflurage, Maceration, solvent extraction, supercritical extraction, water distillation, water steam distillation and steam distillation. Analysis of essential oils for RI, optical rotation, density, solubility, boiling point, melting point.	6	2		8
	2	Characteristics and composition of Indian essential oils like sandal wood oil, pine oil, cedar wood oil, palmrosa oil, patchouli, mint, clove, cardamom, cinnamon leaf oils, coriendor oil, ajwan, cumene, vetivert, eucalyptus, rosha oil, citrus oils, orange oils, rose, jasmine juichameli oils etc. Role of essential oil in aroma therapy. Stability studies of essential oil. Evaluation and testing of essential oils by sensory hedonic and substantively and GC tests.	6	2		8
	3	Common ingredients used in cosmetics, surfactants, additives, antioxidants, preservatives. Equipments, plants and machinery used for manufacture.	4	2		6
	4	Formulations of different cosmetic creams such as hair care products, skin creams, Shaving products, after shave products, Aerosol cosmetics, perfumes and aromatic products	4	2		6
	5	Evaluation and Efficacy of cosmetics products. Stability tests and product specifications	3	1		4
	6	Concept of product design, labeling, claiming and claim support understanding of current needs, translation of current needs to products	3	1		4
		P	26	10	0	36
Suggested books/ reference	1	Essential oils (Vol. I to VI) by Guenther E.				
	2	Modern Cosmetics by Thomssen, Universal Publishing Corporation (1951)				
	3	Formulations and functions of cosmetics by Jellinek, Wiley Interscience 1970)				
	4	Hand book of Cosmetic Science and Technology, Third Edition, André O. Barel, Marc Paye, Howard I. Maibach				
	5	Cosmetics, Science and Technology, Edward Sagarin 1957				

	6	Perfume and flavour materials of natural origin by Arctander S.				
Outcomes						
	CO1	Discuss novel process of extraction of essential oils from various natural sources and different types of Essential Oils. (K5)				
	CO2	Select the various ingredients and manufacturing processes for various cosmetics.(K4)				
	CO3	Develop formulations of different cosmetics products (K3)				
	CO4	Summarize stability analysis of cosmetic formulations . (K3)				
			L	т	Р	Total
Course		SLT4507	-			Total
code						
Course title		Technology of Oleochemicals				
Scheme and Credits		2L: 1T: 0P 3 credits	2	1	0	3
Pre-						
requisites Descriptio n of course		Students will understand the chemistry and technology of Oleochemicals involved while				
		processing and manufacturing various Oleochemicals. They will be able to explain its synthesis, applications in various processes, evaluation techniques and schemes according to the				
Objectives	1	chemistry involved.				
of the course	-					
course	2					
Syllabus	1	Glycerine: Processes for treatment of sweet water and spent soap lye, Manufacture of glycerine from natural sources. Synthetic glycerin, grades of glycerin, properties and utilization of glycerine	4	2		6
	2	Products obtained by interesterification, hydrogenation, oxidation and pyrolysis. Metallic soaps.	4	2		6
	3	Technology of drying oils and resins	4	2		6
	4	Alkyd resins: Fatty acid route, mono glyceride route, solvent process, fusion process, classification of alkyd resins according to oil length (short/ medium/ long oil), choice of polybasic acid, etc.	4	2		6
	5	Miscellaneous fat-based produced: Manufacture and utilization of nitrogen, phosphorous and sulfate containing products	4	2		6
	6	Applications of oleochemicals in food, pharmaceutical, textile, plastic, leather and other industries	4	2		6
Suggested books/ reference	1	Glycerin, Key cosmetic ingredient by Eric Jugermann, Marcel Dekker Inc., (1991)	24	12	0	36
	2	Treatise on fats, fatty acids and oleochemicals by O. P. Narula, Industrial Consultants (India), Vo. I & II (1994)				

l	a	Depart advances in chamistry and technology of fats				
	3	Recent advances in chemistry and technology of fats and oils by R. J. Hamilton, Elsevier Applied Science				
		(1987)				
	4	Natural fatty acids and their sources by E. H. Pryde				
	5	Fatty Acids by Markley K. S. Vol. I to IV, Robert E.		1		
		Krieger publishing Co. (1973)				
	6	Fatty acids in industry by R. W. Johnson, Marcel				
	Ŭ	Dekker Inc. (1989)				
	7	Fats, Oleochemicals and surfactants challenges in				
		21st Century by V. V. S. Mani and A. D. Shitole, Oxford				
		and IBH Publishing Co. Pvt. Ltd. (1997)				
	8	Manufacture of soaps, other detergents and glycerin				
		by E. Woollatt, John Wiley and Sons (1985)				
Outcomes						
	CO1	Able to understand the basic process of				
		manufacture of different oleochemicals (K2)				
	CO2	Select appropriate process for the manufacture of				
		oleochemicals (K4)				
	CO3	Summarise about advance method of analysis of				
		oleochemicals. (K3)				
	CO4	Select Specific method for the identification of				
		particular oleochemical and understand its				
		properties. (K4)				
	1 1		L	Т	Р	Total
Course		SLP4401				
code						
Course		Lipids Laboratory-I				
title						
Scheme		OL:OT: 4P 2 credits	0	0	4	2
and Credits						
Pre- 						
requisites		This course will be a she should be a she had a she had a she had a she				
Descriptio		This course will introduce the student to analytical				
n of the		techniques used for lipid characterization, common				
Course		lipid transformations, soaps, detergent synthesis, etc.				
Objectives	1	1. Students will understand and interpret the		1		
of the	-	analytical numbers in testing of oils and fatty acids				
course		adulteration of oils				
000100		2. Apply and infer the physical and chemical testing				
		of oils, fatty acids and oleochemicals				
Syllabus	1	Analysis of Oils and Fats: Acid value, Iodine value,			24	24
		Saponification value, Hydroxyl value, Peroxide value,				
		anisideine value, Soap stock analysis/unsap matter,				
		Ash content				
	2	Determination of physical and chemical			12	12
		characteristics of Vanaspati, margarine, ghee and				
		waxes				
	3	To detect castor oil and soyabean oil mixture using			12	12
		TLC, Detection of adulteration oils/ Identification of				
		Oils in mixture				
	4	Acid Oil analysis: FAME-GC analysis				
	5	Analysis of Butter: Salt content, TFM, MP				
			0	0	48	48
Suggested	1	Bailey's Industrial Oil and Fat Products, Sixth Edition				
books/		Vol. 1:Edible Oil and Fat Products:Chemistry,				
reference		Properties, and Health Effects, Ed. Fereidoon Shahidi,				
		John Wiley & Sons, Inc., Wiley Interscien				
	2	Fatty Acids by Robert Johnson				
	3	Fats and Oils Handbook by Bockisch Michael				

l					ĺ	
	4	The Chemistry of Oils and Fats: Sources,				
		Composition, Properties and Uses – Frank D.				
	-	Gunstone, Blackwell Publishing Ltd,				
	5	Manual of methods of analysis of foods (oils & fats) - FSSAI Handbook (2015)				
Outcomes		On completion of the course, the students will be able to				
	CO1	Analyze and evaluate physical characteristics of oils				
		like specific gravity, refractive index, color, viscosity etc. (K4)				
	CO2	Evaluate properties of oils, fatty acids and				
		oleochemicals like acid value, sap value, iodine value,				
		oxidation, crystallization, oxirane value, amine value etc. (K5)				
	CO3	Interpret the analytical numbers in testing of oils and				
		fatty acids, adulteration of oils				
			L	Т	Р	Total
Course code		SLP4402				
Course		Lipids Laboratory II				
title						
Scheme		OL:OT: 4P 2 credits	0	0	4	2
and Credits						
Pre-		Lipid Lab 1, Lipid Processing Technology I, Production				
requisites		and Applications of Soaps, Surfactants and Detergents				
Descriptio						
n of the						
Course	4					
Objectives of the	1					
course						
course	2					
	3					
	4					
Syllabus	1	Solvent Extraction: oil extraction from oil seeds				0
-	2	Aqueous Extraction: oil extraction from oil seeds				
	3	Hydraulic Expelling: oil extraction from oil seeds				
	4	Refining Of Crude Edible Oil: physical/chemical				
		refining of oils				
	5	Double Solvent Extraction: oil extraction from oil seeds				
	6	Wax processing and analysis: Crystallization process,				
		oil content				
	7	Splitting of Purified Wax				
	8	Analysis of Detergents: Foaming, wetting test,				
		surface tension, active matter				
	9	Analysis of Soap: TFM, Glycerol Content				
	10	Splitting of vegetable oils to get MAG, DAG FA and the analysis using HPLC				
			0	0	0	0
Suggested	1	Bailey's Industrial Oil and Fat Products, Sixth Edition				
books/		Vol. 1:Edible Oil and Fat Products:Chemistry,				
reference		Properties, and Health Effects, Ed. Fereidoon Shahidi,				
		John Wiley & Sons, Inc., Wiley Interscien				
	2	Fatty Acids by Robert Johnson				
	3	Fats and Oils Handbook by Bockisch Michael				

	4	The Chemistry of Oils and Fats: Sources, Composition, Properties and Uses – Frank D. Gunstone, Blackwell Publishing Ltd,		
	5	Manual of methods of analysis of foods (oils & fats) - FSSAI Handbook (2015)		
Outcomes				
	CO1			
	CO2			
	CO3			

Foods

SP #	Course Code (IOCB)	Course Code (MARJ)	Туре	List of Subjects
1	SFT3202	SFT4202	Theory	Introduction to Food Technology
2	SFT3301	SFT4301	Theory	Biochemistry/Microbiology
3	SFT3403	SFT4403	Theory	Food Chemistry
4	SFT3404	SFT4404	Theory	Food Processing and Technology I
5	SFT3405	SFT4405	Theory	Food Ingredients and Additives
6	SFT3506	SFT4506	Theory	Food Processing and Technology II
7	SFT3507	SFT4507	Theory	Food Packaging Science and Technology
1	SFP3302	SFP4302	Laboratory	Food Analysis Laboratory
2	SFP3402	SFP4402	Laboratory	Food Processing Laboratory

Course code		SFT4302				
Course title		Introduction to Food Technology				
Scheme and Credits		2L: 1T: 0P 3 credits	2	1	0	3
Pre-requisites		Introduction to Biological Sciences and Bioengineering (BST 4202), Biochemistry & Microbiology (SFT 4201)				
Objectives of the course	1	Understand the significance food science, technology and processing				
	2	Understand reasons for food spoilage and methods of food preservation used for various food systems especially for perishable foods such as dairy, fruit vegetable, poultry etc.				
	3	Understand chemistry of food constituents, additives, functional properties and importance of product attributes in sensory evaluation of foods				
Syllabus	1	Introduction to basic concepts of physical and microbial food spoilage. Principles of food preservation, strategies to preserve food by thermal (blanching, canning, pasteurization, sterilization), chemical preservation, water activity reduction.	6	3		9
	2	Food preservation by irradiation, fermentation, Hurdle technology: principle, methods and equipments used. Examples from perishable foods - fruits vegetables, meat -poultry etc.	4	2		6
	3	Chemistry of food constituents such as carbohydrates, proteins, lipids. Other food additives such as gums, emulsifiers to impart desired texture and functional properties to processed food. Basic information on sensory evaluation of food.	6	3		9
	4	Some important methods of food processing and other unit operations such as size reduction, retorting, extrusion, baking, frying, membrane concentration. Some examples from Indian traditional foods will be illustrated from various commodity eg. Shrikhand, Chapati, pickles, bhujiya and mithai.	8	4		12
-			24	12	0	36
Suggested books/ reference	1	Food Processing Technology by P. Fellows				
	2	Food Science by N. Potter				
	3	Food chemistry by Meyer				

	4	Handbook of Food Engineering by R.P. Singh and Heldman		
Outcomes		On completion of the course, the students will be able to		
	CO1	Gain the ability to perform the root cause analysis of any food spoilage		
	CO2	Ability to develop the strategies to preserve the food products		
	CO3	Understand the constituents of food and their functional role in quality of the food product.		
	CO4	Extrapolate the knowledge gained about unit operations in developing the processing operations for various food products.		

			L	т	Р	Total
Course code		SFT 4201				
Course title		Biochemistry/Microbiology				
Scheme and Credits		2L: 1T: 0P 3 credits	2	1	0	3
Pre-requisites		Introduction to Biological Sciences and Bioengineering (BST 4202)				
Objectives of the course	1	Understand the significance of Biochemistry and Microbiology in Food technology, pharmaceutical sciences and lipids				
	2	Able to connect biological pathways to digestion and drug action.				
	3	Understand and apply the principles of enzymes to human system.				
	4	Know and explain morphology, diversity, cultivation methods, physiology and metabolism of microorganisms				
	5	Apply microscopy and staining techniques to study and differentiate different microorganisms				
Syllabus	1	Prelude: Introduction to basic concepts of biochemistry and microbiology	2	1		3
	2	Human digestion and absorption- metabolic pathways and energy yield for breakdown of carbohydrates; electron transport chain and coupled oxidative phosphorylation; Pathways for breakdown and synthesis of fatty acids and lipids; Metabolism of proteins and amino acids; Inborn errors in metabolism; Metabolism of drugs; Types of hormones and their role	8	4		12
	3	Enzymes- definition, structure, function, nomenclature, classification. mechanism of action, specificity; Enzyme kinetics with focus on human digestive enzymes; Enzymatic spoilage of foods and oils (case studies). Enzyme activity regulation (competitive, non competitive inhibition); regulation of enzyme synthesis (repression, induction); enzyme activity assay	6	3		9
	4	Microorganisms- Major groups of microorganisms; pathogenic/ toxigenic and spoilage organisms, beneficial organisms used in industrial fermentations and food fermentations; The human gut microbiota and Prebiotics, Probotics; Growth curve; Physical and chemical factors affecting growth and destruction of microbes; Cultivation of microbes in lab, types of media, enumeration techniques and identification	8	4		12

		techniques; classical and rapid microbiological				
		analysis methods				
			24	12	0	36
Suggested		Prescott's Microbiology 11th Edition, Joanne				
books/	1	Willey, Kathleen Sandman, Dorothy Wood;				
reference		McGraw-Hill Education (2019)				
	2	Microbiology, Pelczar, McGraw-Hill Education				
		Biochemistry, Jeremy M. Berg , Lubert Stryer , John				
	3	Tymoczko , Gregory Gatto; WH Freeman; 9th ed.				
		2019 edition				
		Principles of Biochemistry, Albert L. Lehninger,				
	4	David L. Nelson, and Michael M. Cox, Wley				
Outcomes		On completion of the course, the students will be				
Outcomes		able to				
		Understand and elucidate structural as well as				
	CO1	metabolic role of different macromolecules in the				
		cell				
	CO2	Evaluate and elucidate impact of different				
	02	catalytic reactions involved in metabolic pathway				
	602	Evaluate and explain influence and interactions of				
	CO3	different metabolic pathway on each other				
		Know the cultivation/control methods for				
	CO4	diversity of microorganisms, their physiology and				
		metabolism				

			L	Т	Р	Total
Course code		SFT 4303				
Course title		Food Chemistry				
Scheme and Credits		2 L: 1T : 0P 3 credit				0
Pre-requisites		Basics of organic and inorganic Chemistry, Physical chemistry, Analytical chemistry				
Objectives of the course	1	To understand basic physico-chemical properties and chemical structures of food components				
	2	To understand the importance and mechanisms of the reactions of food components taking place during food processing				
	3	To understand the significance and mechanisms of the reactions of food components taking place storage and spoilage				
	4	To think critically on the role of water and its various forms in food preservation				
	5	To understand the role of food constituents responsible for nutritional/anti-nutritional, and aesthetic quality of foods (such as texture, flavor, and color)				
	6	To apply course concepts in solving problems related to food constituents				
Syllabus	1	Introduction to the constituents of foods: Water in food systems: Chemistry, properties and food significance	2	1		3
	2	Carbohydrates: Classification, Physicochemical and functional properties of carbohydrates	6	3		9
	3	Proteins: Classification, Physicochemical and functional properties	4	2		6
	4	Lipids: Classification, Physicochemical and functional properties	3	2		
	5	Minerals: Classification, Physicochemical and functional properties	3	1		4

	6	Vitamins: Classification, Physicochemical and functional properties	3	1		4
	7	Contaminants, Toxicants, and anti-nutritional compounds in food systems	3	2		5
			24	12	0	36
Suggested Reference Books	1	Food Chemistry – Belitz H.D, Grosch W, and Schieberle. P.3 rd Edn. Springer Berlin / Heidelberg				
	2	Food Chemistry- Fennema O.R 2 nd Edn., Marcel Dekker, New york. (1985)				
	3	Food Chemistry- Aurand L.W and Woods A.E, Avi Publishing Company, Inc, Westport, CT (1973).				
	4	Sugar Chemistry- Shallenberger, R. S. and Birch, G. G. AVI Publishing Co., Inc.				
	5	Food Chemistry. Meyer. Cbs Publisher. (2004)				
Outcomes						
	CO1	Describe the various constituents present in foods and their roles therein				
	CO2	Describe the mechanisms and significance of physicochemical reactions involved in food processing and subsequent storage				
	CO3	Describe the mechanisms and significance of physicochemical reactions involved in spoilage of foods				
	CO4	Explain the significance of water in food quality, preservation and storage				
	CO5	Describe and demonstrate the role of food constituents on nutritional/anti-nutritional and aesthetic quality of raw and processed foods				
	CO6	Extrapolate the knowledge gained on food composition to practical problems in food quality				

			L	Т	Р	Total
Course code		SFT4405				
Course title		Food Processing and Technology I				
Scheme and Credits		2L: 1T: 0P 3 credits	2	1	0	3
Pre-requisites		Introduction to Food Technology				
Objectives of the course	1	To understand principles of food processing and preservation				
	2	To acquaint post-harvest technology of fruits and vegetables				
	3	To analyse various processing methods involved in plantation crops				
	4	To understand post-slaughter processing of meat and poultry products				
	5	To learn different commercial processing techniques for value addition				
Syllabus	1	Principles of food processing and preservation; unit operations in food processing (mechanical separation processes, food conversion operations, material handling etc.)	4	2		6
	2	Technology of fruits and vegetables processing: Current scenario of production of fruits and vegetables; post-harvest technology; minimal processing; commercial canning of fruits and vegetables; processing and preservation of fruit beverages; processing of fruit preserves; commercial processing technology for value addition.	8	4		12

	3	Technology of plantation crops, herbs and spices processing: Processing of minor and major spices; extraction of spice oil and oleoresins; post-harvest processing of plantation crops; processing of medicinal and tuber crops; by-products of plantation crops and spices.	6	3		9
	4	Technology of meat, fish, poultry and egg processing: Meat processing operations; egg processing and preservation; processing of fish and marine products; by-products of meat, poultry and egg and their waste utilization.	6	3		9
			24	12	0	36
Suggested books/ reference	1	Post-Harvest Technology of Fruits and Vegetables: Handling, Processing, Fermentation and Waste Management by Verma LR and Joshi VK				
	2	Introduction to Spices, Planation Crops, Medicinal and Aromatic Plants by N. Kumar and Abdul Khader				
	3	Meat, Egg and Poultry Science and Technology by Vikas Nanda				
Outcomes		On completion of the course, the students will be able to				
	CO1	Understand the basic knowledge of food processing and value addition				
	CO2	Asses various aspects of post-harvesting operations				
	CO3	Asses various aspects of post-slaughtering operations				
	CO4	Gather knowledge of spice processing equipment's				
	CO5	Understand importance of by-product processing and waste utilization				

	1 1		<u>г</u>	I _	<u> </u>	
			L	Т	Р	Total
Course code		SFT4506				
Course title		Food Processing and Technology II				
Scheme and Credits		2L: 1T: 0P 3 credits	2	1	0	3
Pre-requisites		Food Processing and Technology I				
Objectives of the course	1	To understand the basics of various unit operations in food processing				
	2	To memorize processing and milling of cereals				
	3	To explore newer techniques used for extraction of oleoresins				
	4	To differentiate various dairy products and the equipment's used for its processing				
	5	To learn different commercial processing techniques for value addition				
Syllabus	1	Recent advances in product and process development; important aspects of process and equipment design for food processing; food plant layout; CGMP/HACCP; process control; waste management in food processing	6	3		9
	2	Technology of cereal processing: Grain storage principles; grain storage structures; wheat milling; paddy processing; parboiling and ageing of rice; barley malting; sorghum, ragi and oat processing; processing of cereals and millets for food uses.	6	3		9

	3	Technology of legume and oilseed processing: Types of legumes and pulses; nutritional changes during soaking and sprouting of pulses; methods used for removal of anti-nutritional compounds; oilseed processing; newer techniques in extraction of oleoresins.	6	3		9
	4	Technology of milk and dairy processing: Dairy developments in India; sampling and quality testing of milk; processing technology of dairy products; dairy plant cleaning and sanitization operational details.	6	3	0	9
			24	12	0	36
Suggested books/ reference	1	Fundamentals of Food Process Engineering, Toledo RT, 2000, Chapman and Hall.				
Telefence	2	Chemistry and Technology of Cereals as Food and Feed by Matz				
	3	Postharvest Technology of Cereals, Pulses and Oilseeds by M Chakraverthy				
	4	Outlines of Dairy Technology by Sukumar Dey				
Outcomes		On completion of the course, the students will be able to				
	CO1	Understand the basic knowledge of food processing and value addition				
	CO2	Develop an overall understanding of cereal processing aspect				
	CO3	Asses various aspects of oilseed processing operations				
	CO4	Gather knowledge of dairy processing equipment's				
	CO5	Understand importance of by-product processing and waste utilization				

			L	Т	Р	Total
Course code		SFT4405				
Course title		Food Ingredients and Additives				
Scheme and Credits		L:2 T:1 P:0 3 credits	0	0	4	2
Pre-requisites		Introduction to Food Technology, Food Chemistry				
Description of the Course		Course emphasis on the gaining knowlege on different ingredients and food aditives which are used in processing, preservation and storage of food products for improved quality. Course also give insight on the the mechanism of actions of different food additives, effect of processing conditions on additives as well as about the legal standards and regulations for safe use of food additives.				
Objectives of the course	1	To understand the classification of food additives and ingredient				
	2	To understand the significance of different food additives and ingredients in food quality, preservation and storage				
	3	To understand the safety of use of food additives and ingredients				
	4	To understand the effect of different process conditions on stability of food additives and ingredients				

Syllabus	1	Ingredients used in food production and their technology of production and application	6	3		9
	2	Additives used in food preservation such as preservatives, antioxidants, humectants etc. with respect to chemistry and food uses. Food colors and dyes (Natural and synthetic) their importance in processing, Food flavours and taste enhancers in food processing.	8	4		12
	3	Additives used as aids in food processing such as sequesterants, emulsifier, hydrocolloids, stabilizers, anticaking and firming agents, flour bleaching and maturing agents, sweeteners, acidulants etc, and their functions in food processing and storage.	8	4		12
	4	Safety aspects of Food Additives: Tolerance levels & Toxic levels in Foods, Legal safeguard, Risks of food additives.	2	1		3
			24	12	0	36
Suggested books/ reference	1	Food Additives: Characteristics, Detection and Estimation by S.N. Mahindru in 2008 Aph Publishing Corporation, New Delhi. S.S.				
	2	Handbook of Food Toxicology by S. S. Deshpande in 2002. Marcel and Dekker AG, Basel, Switzerland.				
	3	Food Additives 2nd Edition By A L Brannen, P M Davidson, S Salminen, J H Thorngate III in 2002(eds). Marce IDekker Inc, New York.				
	4	Handbook of Food Additivies, 2ndedn, T E Furia in 1972, (ed) CRC Press, Cleveland, Ohio				
Outcomes		On completion of the course, the students will be able to				
	CO1	Describe the various additives and ingredients used in food industries				
	CO2	Understand the importance and mechanisms of action of different food additives in processing, preservation and storage of food.				
	CO3	Understaning the safety of use of food additives and ingredients				
	CO4	Extrapolate the knowledge gained on food additives and ingredients in food industries				

			L	т	Р	Total
Course code		SFT4507				
Course title		Food Packaging Science and Technology				
Scheme and Credits		2L: 1T: 0P 3 credits	2	1	0	3
Pre-requisites		Introduction to Food Technology				
Objectives of the course	1	To understand the role of food packaging in food preservation				
	2	To understand the nature of different materials used in food packaging				
	3	To understand the various food packaging applications with respect to various food commodities				
	4	To understand different types of package testing methods employed to evaluate quality, performance and safety of food packaging materials				
	5	To understand various food-package interactions and environmental issues related to packaging				

	6	To understand newer food packaging application technologies				
Syllabus	1	Introduction to food packaging; causes of food spoilage; factors affecting food spoilage; packaging as a method for preservation of foods; functions of food packaging	8	4		12
	2	Different materials used in food packaging such as paper, glass, metal containers, plastics, laminates/composites	6	3		9
	3	Testing of various packaging materials and packages for evaluation of qualit	2	1		3
	4	Food and Packaging material interactions including migration, scalping off-flavour; biodegradable packaging	2	1		3
	5	Newer packaging technologies-VP/CAP/MAP; aseptic processing and packaging; active and intelligentpackaging	6	3		
			24	12	0	36
Suggested books/ reference	1	Packaging Media by Paine F.A. Publisher: Blackie and son Ltd., Bishop Briggs (1977)				
	2	Food Packaging and Preservation: theory and practice by Mathlouthi. M. Publisher Elsevier applied science publishers. London(1966)				
Outcomes		On completion of the course, the students will be able to				
	CO1	justify the role of food packaging in food preservation				
	CO2	describe different food packaging materials and their properties				
	CO3	describe packaging of various food commodities				
	CO4	comprehend food and packaging material interactions				
	CO5	describe newer food packaging technologies				

			L	Т	Р	Total
Course code		SFP4301				
Course title		Food Analysis Laboratory				
Scheme and Credits		OL:OT: 4P 2 credits	0	0	4	2
Pre-requisites		Introduction to Food Technology				
Objectives of the course	1	To give students hands on training on chemical analysis of specific food products				
	2	To analyse and quantify chemically the quality attributes of food				
	3	To identify adulterants and quality analysis of food				
	4	To train the students on different biochemical assay for food products				
Syllabus	1	Proximate composition in food			4	4
	2	Analysis of milk and dairy products			4	4
	3	Analysis of wheat flour			4	4
	4	Analysis of tea and coffee			4	4
	5	Estimation of phytochemicals			8	8
	6	Analysis of Food adulteration			4	4
	7	Discriminative and Descriptive Sensory analysis of Foods			8	8
	8	Demo of colorimeter, texture analyzer, DSC, etc.			4	4

	9	Demo of HPLC, GC-MS, etc.		1	4	4
	10	Demo of spray drier, extruder, SCFE, Tray drier etc.				
	11	Microbial assay				
	12	Enzyme assay			4	4
			0	0	48	48
Suggested books/ reference	1	AOAC International. 2003. Official methods of analysis of AOAC International. 17th Ed. Gaithersburg, MD, USA, Association of Analytical Communities				
	2	Leo ML.2004. Handbook of Food Analysis. 2nd Edition. Vol 1,2 and 3, Marcel Dekker				
Outcomes		On completion of the course, the students will be able to				
	CO1	Demonstrate the knowledge of redox chemical reactions to develop a protocol for analysing specific food attributes				
	CO2	Interpret different chemical and biochemical analysis specific to food				
	СОЗ	Compare protocols on different types of chemical and sensory analysis in foods				
	CO4	Apply and infer about the principles of different enzyme and vitamin assays				

			L	т	Р	Total
Course code						
Course title		Food Processing Laboratory				
Scheme and Credits		L:0 T:0 P:4 2 credits	0	0	4	4
Pre-requisites		Introduction to Food Technology, Food Processing I and II				
Description of the Course		Course will help to student to improve their hands on handling different food processing equipments. Also develop understanding about food product and process formulation in food industry.				
Objectives of the course	1	To analyze the integration of processing in food formulations				
	2	To design and develop the process flow chart for any product development				
3 To design the product and proce food industry		To design the product and process formulations in food industry				
	4	To evaluate the processing cost of any developed product				
Syllabus	1	Preparation of tomatoes products (minimum three types)	0	0	8	8
	2	Preparation of fruit preserves from selected fruits (minimum three types)	0	0	8	8
	3	Preparation of selected bakery products (minimum three types)	0	0	8	8
	4	Preparation of fermented food products (minimum three types)	0	0	4	4
	5	Preparation of value added poultry/meat/ egg products (minimum three types)	0	0	8	8
	6	Preparation of fried products (minimum three types)	0	0	4	4
	7	Preparation of milk based food products (minimum three types)	0	0	4	4

	8	Preparation of sugar based sweets/traditional Indian confection products (minimum three types)	0	0	4	4
	9	Preparation of extrudate snack products (minimum three types)	0	0	48	48
	10	Preparation of non-alcoholic beverages (minimu three types)				
	11	Preparation of soy based food products (minimum three types)				
	12	Demostration and preparation of dehydrated food product using spray, cabinet or vaccum dryer				
Suggested books/ reference	1	Handbook of Food Products Manufacturing: Principles, Bakery, Beverages, Cereals, Cheese, Confectionary, Fats, Fruits, and Functional Foods by Y.H. Hui. 2007. John Wiley & Sons, Inc., Hoboken, New Jersey, USA				
	2	Meat and Meat Products Technology Including Poultry Products Technology by B.D. Sharma in 1999. Jaypee Brothers Medical Publishers Pvt. Ltd, New Delhi.				
	3	New Food Product Development: From Concept to Market place by Fuller,G.W. in 2011. 3rd ed, CRCPress,UK				
	4	Preservation of Fruits and Vegetables by GiridhariLal, G.S. Siddappa,G.L.Tandon in 1998, ICAR,NewDelhi.				
Outcomes		Course Outcomes (students will be able to)				
Cuttomes	CO1	Apply the knowledge of material balance specific to different food processing operations (K1)				
	CO2	Explain the major processing steps applied for food preparations (K2)				
	CO3	Use different food processing equipment specific to the product (K3)				
	CO4	Develop protocol for different types of food preparations (K4)				
	CO5	Apply the engineering principles to design novel food product and process(K4).				

Special Subject 1							
Biochemistry and M	licrol	viology					
Course code		SFT3201					
Course title		Biochemistry and Microbiology	Biochemistry and Microbiology				
Scheme and Credits	s	2 L: 1 T: 0 P 3 Credits					
Objectives of the course		This course aims to provide information on basics of biochemistry, structur of DNA and RNA, details about microorganism, cell culture and cell cloning					
Course title		Detailed contents	Total contact h				
Biochemistry and	1	 Water and biomolecules. Introduction to biochemistry. Carbohydrates: Fundamentals of chemistry of carbohydrates. Monosaccharides, oligosaccharides and polysaccharides. Qualitative tests and color reactions. Quantitative analysis. Biosynthesis. Lipids: Fatty acids, waxes, phospholipids, sphingolipids, sterols and terpenoids. Function and comparative distribution of lipids. Biosynthesis. Hydrogenation. Sap value, lodine value, Acid value. Biochemical tests. Lipoproteins and lipopolysaccharides. Amino acids: pK, pl, structure and chemistry Protein: Structure and function. Globular and fibrous proteins. Enzymes and activity assay. Qualitative and quantitative tests for amino acids, proteins. Precipitation of proteins. Solid phase peptide synthesis. Protein sequencing. Protein metabolism. Transmutation, SGOT/SGPT, deamination and decarboxylation. Vitamins and Co-enzymes: Structure and function. Qualitative and quantitative analysis. DNA and RNA: Structure and function. DNA - RNA - Protein. Sequencing. Fluorescence tagging. Recombination and repair. Gene and control of gene expression. Operon. 	10				
Microbiology	2	History of microbiology (focus on microscopy). Types of microscopes. Application of microbiology. Introduction to cell and cell classification as prokaryotes and eukaryotes. Parts of the cell. Tissue and its property.	2				
	3	Microorganisms: types, structure and properties. Habitat, nutrition and cultivation. Motility. Different types of staining techniques (with reference to bacteria): Monochromatic staining, Gram staining, Acid fast staining, Capsule – flagella – spore – cell wall staining, Negative staining. Virus: Types and structure. Reproduction and cultivation. Oncogenic and HIV viruses.	8				
	4	Cell culture: Isolation and identification of pure culture. Culture media and their types. Introduction to biosafety. Sterilization methods. Aseptic technique. Biocontainment. Disinfection and disinfectants.	6				
	5 6	Mutation: Types and mechanisms. Mutagenic agents. Evolution. Cell cloning: PCR and DNA amplification, restriction enzymes, DNA digestion, DNA ligation, transformation. Gibson assembly. Recombinant	2				
		cells and selection markers. Vectors and plasmids. Competent cells. Reverse transcription. cDNA. Transfection. CRISPR technique. Cell preservation.	8				
Suggested text/reference books		Total Microbiology Concepts and Applications: M. J. Pelczar Jr., E. C. S. Chan and N. R. Lehninger: Principles of Biochemistry: David Nelson, Michael Cox Outlines of Biochemistry: Eric Conn and Paul K Stumf	36 Krieg				

4. Harpers Biochemistry: Robert Murray, Daryl Granner

Special Subject 2:

Introduction to Food Technology

Course code		SFT3302			
Course title		Introduction to Food Technology			
Scheme and Credits Objectives of the course		2 L: 1 T: 0 P 3 Credits			
		This course aims to understand the fundamental concepts in food technology. The course will briefly explain the various thermal and non-thermal processes adopted in food industries to preserve the food during storage and packaging.			
Course title		Detailed contents	Total contact h		
	agr fun	Introduction to food processing of various foods including dairy, bakery, agri commodities and newer developments such as fabricated foods, functional foods, designer food, nutraceuticals, probiotics and prebiotics. Concept of personalized nutrition and special food for infants, women etc.	8		
	2	Thermal processing principles; Inactivation Kinetics; Process time calculation; Retort processing; UHT; Advances in food processing techniques both thermal and nonthermal. Extrusion	8		
Introduction to Food Technology	3	Ohmic heating, pulsed electric field, high-intensity light pulses, radio- frequency heating, microwave, thermo-sonication, modified atmosphere, enzymic processing and hurdle technology etc.	6		
	4	High hydrostatic processing of foods. Effect on enzymes, microorganisms in various food systems Equipment for batch and continuous processing. Other applications of HPP including thawing	8		
	5	Recent developments in Food Processing with focus on Indian Industry, Advanced Membrane Technology for water and liquid foods and effluent treatment., dehydration. Freezing, VCRS, freezing time, Freeze drying	6		
		Total	36		
Suggested	1.	Advances in food and nutrition research by Steve L. Taylor, 2009			
text/reference	2.	Handbook of food and bioprocess modeling by Sablani S., Rahman M, 2007			
books	3.	Food processing and technology: Principle and practice by P Fellows, Taylor and	Francis, 2009		

Special Subject 3:

Nutrition and Nutraceuticals

Course code	SFT3403			
Course title	Nutrition and Nutraceuticals			
Scheme and Credits	2 L: 1 T: 0 P 3 Credits			
Objectives of the course	This course aims to provide advance knowledge on various biomolecules showing health benefits and to make aware on various sources and characterization of biomolecules showing health benefits. Also, to gain knowledge about the nutraceutical constituents present in various food products and understand the extraction techniques of plant- based nutraceuticals.			
Course title	Detailed contents Total contact h			
1 Nutrition and Nutraceuticals	Classification of food components based on nutritional value, nutritional assessment of carbohydrates, proteins and fats, recommended dietary intake, acceptable dietary intake, nitrogen balance, protein efficiency ratio, net protein utilization. 6 Basics of energy balance - Basal Metabolic Rate (BMR), Body Mass Index (BMI) and Standard Dynamic Action (SDA) with special reference to nutraceutical industry.			

	2	Defining nutraceuticals. Nature, type and scope of nutraceuticals compounds and their classification based on chemical and biochemical nature with suitable and relevant descriptions.	6		
	3	Disease and Nutrition: Functions of dietary fiber (soluble and insoluble) in control of certain disease conditions like diabetes, cancer, heart diseases etc. Effect of drugs on ingestion, digestive absorption & metabolism of nutrients, Effect of food nutrients & nutritional status in drug dosage & efficacy.	6		
	4	Functional Foods and their applications: Role of Isoprenoids, Isoflavones, Flavonoids, carotenoids, Tocotrienols, polyunsaturated fatty acids, sphingolipids, lecithin, choline. Terpenoids, whey and soy protein. Vegetables, seeds, cereals, sea foods, milk, and dairy products as Functional foods. Probiotics and prebiotics. Role of nutraceuticals with special reference to diabetes mellitus, hypertension, hypercholesterolemia, cancer, glands in the prevention and treatment.	9		
	5	Nutraceutical evaluation and testing: Biological testing and bioassays, preclinical testing, and clinical trials. Quality control and quality assurance of nutraceuticals. Marketing of nutraceuticals.	4		
	6	Nutritional genomics: Plants as bioreactors as a tool for production of Nutraceuticals. 'Tailor-made' carbohydrates and lipids of plant and non- plant origin. Transgenic plants for the large-scale production of proteins for pharmaceutical and industrial uses. Commercial transgenic crops like	5		
		herbicide resistant soybean, maize, vegetables, fruit crops, golden rice. Total	36		
Suggested text/ reference books	VCH. - Cupp Hum - Gibson - Losso J - Robert	igelius-Flohé, J & Joost HG. Nutritional Genomics: Impact on Health and Disease VCH. 2006. Jpp J & Tracy TS. 2003. Dietary Supplements: Toxicology and Clinical Pharmac Humana Press. bson GR &William CM. Functional Foods - Concept to Product. 2000. sso JN. Angi-angiogenic Functional and Medicinal Foods. CRC Press. 2007. Jbert E.C. Wildman Handbook of Nutraceuticals and Functional Foods, CRC, 2006. Rapport and B. Lockwood Nutraceuticals, 2nd Edition, Pharmaceutical Press (2002).			
Special subject 4					
Food Chemistry					
Course code		SFT3404			
Course title		Food Chemistry			
Scheme and Credits		2 L: 1 T: 0 P 3 Credits			
Objectives of the cou	ırse	This course will be helpful to learn fundamentals of food chemistry and un standards of identity based on authentic chemical composition. Also, to un interactions of different constituents within the food systems, the various and toxicants present in the food systems. To apply knowledge to judge the authenticity of the food.	nderstand the contaminants		
Course title		Detailed contents	Total contact h		
	1	Food chemistry and its role in food processing. Water: Importance of water in foods, Structure of water & ice, Concept of bound and free water and their implications.	6		
Food Chemistry	2	Browning reactions: Enzymatic and non-enzymatic browning, advantages and disadvantages, factors affecting their reaction and control.	6		

	1	Material and energy Transfer	y balance in food processing operations, Heat	<u>A</u>
Course title			Detailed contents	Total contact h
Objectives of the cou	urse		seful to acquaint with principles of different technic ervation of foods and to learn various heat transfer pocessing.	
Scheme and Credits		2 L: 1 T: 0 P	3 Credits	
Course title		Food Processing and	Technology	
Food Processing and Course code	Technolo	gy SFT3405		
Special subject 5				
	- Handb - Madha		, pp. 1-9 2 nd edn, TE Furia, 1972, (ed) CRC Press, Cleveland, Ohic unkhe, Food Antioxidants: Technological, Toxicologica	
			Brannen, PM Davidson, S Salminen, JH Thorngate III,	2002 (eds).
	- Harisl	n Kumar Chopra, Parmji	t Singh Panesar, Food Chemistry, Indian	
		r, Food chemistry, India		
reference books			litz, Werner, Food Chemistry, Springer	
Suggested text/	- Ower	Fennema, Food chemis	Total stry, CRC Press	50
		products.	Total	36
			properties and uses of various sweeteners in food	
		agents. Sweeteners: natural	and artificial sweeteners, nutritive and non-	
			ants, pH control agents buffering salts, anticaking	
			avening agents, humectants, and sequestrants,	6
			lavors (natural and synthetic flavors), flavor pilization, flavor encapsulation.	
		stabilization.		
			rces of natural color (plant, microbial, animal and discussion discussion discussion discussion discussion disc	
	6	Coloring agents: colo	r retention agents, applications and levels of use,	
	5		ic and natural, mechanism of oxidation inhibition), es, uses and mode of action.	6
	_	antifoaming agents, s	s & thickeners, polysaccharides, bulking agents, ynergists, antagonists.	
		mode of action and th		6
	4		itions, classification, and functions, need for food vatives, classifications, antimicrobial agents (types,	
		-	tic components of foods.	
		-	n pigments during food processing. If foods: Importance, structure and properties of	6
	3		tance, structure and properties of plant pigments,	

	3 Evaporation Theory: Boiling point elevation, Raoult's law, Duhring's rule, Duhring plot, latent heats of vaporization. Evaporation of heat-sensitive materials, heat transfer in evaporators, vacuum evaporation and evaporation equipment.	5
	4 Drying theory, drying characteristics, selection of dryers, different types of dryers and their working principles, food freezing theory and equipment, chilling.	5
	5 Contact equilibrium process, extraction process, rate of extraction, stage-equilibrium extraction, solvent extraction, supercritical fluid extraction, extraction equipment. Crystallization, crystallization equipment.	5
	6 Size reduction: Grinding, Cutting, Emulsification, homogenization, energy concept in size reduction, Kick's law, Rittinger's law, Bond's law. Grinding and milling equipment.	5
	7 Mechanical separations: Sedimentation and filtration, membrane separations, Sieving / Screening, Sieve analysis.	4
	8 Parboiling, Extrusion, Frying, Baking, Roasting, Puffing, Agitation and mixing, Irradiation and non-thermal processing operations.	3
	Total	36
Suggested text/	- R. L. Earle, Unit Operations in Food Processing, NZIFST (Inc.)	
reference books	 R. T. Toledo, Fundamentals of Food Process Engineering, Springer J. G. Brennan, Food Processing Handbook, WILEY-VCH Verlag GmbH & Co. KgaA A.S. Mujumdar, Handbook of Industrial Drying, Taylor and Francis Zeki Berk, Food Process Engineering and Technology, ELSEVIER 	

Special subject 6

Packaging and Rec Course code	cycle Tech	mology SFT3506				
Course title		Packaging and Recycle Technology				
Scheme and Credits		2 L: 1 T: 0 P 3 Credits				
Objectives of the o	course	This course aims to understand the food packaging development, packaging systems and analyze complex systems of food packaging. Role of packaging in safety and stability of food materials and to understand environmental concerns and life cycle assessment.				
Course title		Detailed contents	Total contact h			
	1	Function of packaging, marketing consideration for a package and types of packaging. Barrier properties of packaging material, Packaging materials for foods. Selection criteria of packaging materials for raw and processed food products.	7			
	2	Machinery for Packaging. Package labelling: functions, nutrition labelling, ingredient characterization handling instruction, and regulations Packaging logistics.	7			
Packaging and Recycle Technology	3	Testing of various packaging materials and packages for evaluation of quality, for identification, for evaluation of performance (barrier and strength properties) for transport worthiness, for biodegradability, for migration etc; Package design; Cushioning materials; shelf-life testing of packaged foods.	8			
	4	Packaging materials for newer techniques like radiation processing, microwave and radiowave processing, high pressure processing, CAP/ MAP and thermal processing as retortable pouches, aseptic packaging; biodegradable packaging; active packaging; intelligent packaging; migration; flavor scalping.	7			

	Application of nanotechnology in food packaging, environmental concerns and life cycle assessment.	
5	Introduction of Plastics Waste, Plastics Waste Management, Recycling of	
	Rubber, Post Recycling Operations, Green plastics for food packaging,	
	Faults and Remedies in Plastics Recycling process, Processing of Thermo	7
	plastic Recyclate, Testing consumer responses to new packaging	
	concepts, Safety and legislative aspects.	
	Total	36
Suggested text/	- Food packaging and preservation by M. Malthlouthi, 1994	
reference books	- Food and Packaging Interactions by Risch. S. H. 1991	
	- Handbook of Food Packaging by F.A. Paine and H.Y. Paine 1983	
	- Food Packaging Technology (Vol.1 & 2) by G. Bureau and J. L. Multon, 1996	
	- Handbook of Package Engineering by Hanlon Kelsey & Forcinio	

Special subject 7

Recent Advances in Regulatory	y Affairs				
Course code	SFT3507				
Course title	Recent Advances in Regulatory Affairs				
Scheme and Credits	2 L: 1 T: 0 P 3 Credits				
Objectives of the course	This course helps to explain the functional role and safety issues of food of and adulteration. To describe the hygiene and sanitation in processing plant storage and handling. Also, to identify and analyze the critical quality control point in different production of food and thereby designing the HACCP system.	t, equipment,			
Course title	Detailed contents	Total contact h			
1 2 Recent Advances	 Indian Standards: AGMARK act and rules- Certification procedure, laboratory approvals and actions on non-compliance, appeals, BIS- scope, definition, power and functions of BIS, Licensing procedure, export and import laws and regulations, Export (Quality and inspection) act 1963; APEDA (Agricultural and Processed Food Products Export Development Authority) & MPEDA (Marine Products Export Development Authority introduction, act and rules, functions and products monitored. (Cover them briefly) FSSAI 2006, Food Safety and Standards (Licensing and Registration of Food Businesses, Food Products Standards and Food Additives, Prohibition and Restriction of Sales, Packaging and Labelling, 	6			
in Regulatory Affairs 3	Contaminants, Toxins and Residues, Laboratory and Sampling Analysis) Regulation, 2011 Food Safety and Standards (Health Supplements, Nutraceuticals, Food for Special Dietary Use, Food for Special Medical Purpose, Functional Food and Novel Food) Regulations, 2016 Food Safety and Standards (Food Recall Procedure, import, Approval for Non-Specific Food and Food Ingredients, Organic Food, Import) Regulation, 2017 Food Safety and Standards (Alcoholic Beverages, Fortification of Food, Food Safety Auditing) Regulation, 2018 Food Safety and Standards (Recovery and Distribution of Surplus food) Regulation, 2019 Food Safety and Standards (Safe food and balanced diets for children in school, Labelling and Display) Regulations, 2020	6			

	(FSSAI), USA (USFDA gu CFR), Canada, Europe, Africa, UAE (GCC). Inter in light of SPS and TBT Introduction to OIE and	Regulatory Affairs in global perspective: India ideline and document, Rules and Regulation- 21 United Kindom, Australia & New Zealand, South national Food Laws: Codex: Implications on trade , Alimentarius: Role of CAC and its committees, d IPPC, Other International Food Standards (e.g. , USFDA etc). WTO: Introduction to WTO BT Agreement.	6
	good manufacturing laboratory practices; Qu SQC; ISO system, Six Sig ISO: ISO 22000, 9001: 2 Certification & Auditir 22000:2005, Introduct Comparison of ISO 9002 HACCP: Principles, im records; Auditing: Surv	nd quality assurance: Total quality management, practices, good agricultural practices, good uality management systems, QSS; Quality circles, ma. 2008, PDCA cycle, Introduction, Salient features, ng. FSMS Food Safety Management System – ion to the family of ISO 22000 standards, L:2008 vs. ISO 22000:2005. plementation; Plan documentation, types of reillance, audit, mock audit, third party quality rs and lead auditors; Certification, certification	6
	Regulatory Compliance Food Industry IPR, Pate Food Licensing & Regist	odies, accrediting bodies, international bodies. GMP-GHP requirements. nts, Copyrights and Trademarks ration, Packaging & Labelling in India. g, Import and Export regulations.	6
		Total	36
Suggested text/	Food safety by Laura K Egend	lorf, 2000	
reference books		od safety by Naomi Rees, David Watson, 2000	
	Codex alimentarius by FAO 8		- 2001
		ety Information Handbook", 2nd edition, Oryx Pres :k, "Food Safety Handbook", 3rd edition, John Wiley	
		International standards for food safety", 1st e	
	publishers, Gaithersburg, Ma	•	
	P. L. Knechtges, "Food safety UK, 2012.	y: Theory and Practice", 1st edition, Jones and Ba	rtiett learning,
	,	s, J. The Food Safety Hazard Guidebook, RSC publis	shing, 2004.
	1	egulations, 2nd Edition Patricia A. Curtis (Editor) ISE	0,

Special Lab 1

- 1 To determine the moisture content of food products using different methods
- 2 To determine the water activity of food products using different methods
- 3 Quality analysis of food products using colorimeter
- 4 To determine protein content of food products
- 5 To determine fat content of food products

Special Lab 2

- 1 To study the quality degradation kinetics of food products using different methods of heating
- 2 To study the color degradation kinetics of food products during different methods blanching
- ³ To study the textural properties of food products treated with different heating methods
- 4 To study the drying characteristics of food products using different methods of drying
- 5 To study the moisture sorption isotherm characteristics of food products

Pharma

SP #	Course Code (IOCB)	Course Code (MARJ)	Туре	List of Subjects
1	SRT3302	SRT4302	Theory	Introduction to Pharmaceutical Technology
2	SFT3201	SFT4201	Theory	Biochemistry and Microbiology
3	SRT3403	SRT4403	Theory	Pharmaceutical Chemistry
4	SRT3507	SRT4507	Theory	Formulation Technology and Drug Delivery
5	SRT3506	SRT4506	Theory	Pharmaceutical Technology and Drug Design
6	SRT3404	SRT4404	Theory	Process Development for Fine Chemicals and API
7	SRT3405	SRT4405	Theory	Natural Product based Pharmaceuticals
1	SRP3401	SRP4401	Laboratory	Pharmaceutical Analysis Laboratory
2	SRP3403	SRP4403	Laboratory	Pharmaceutical Chemistry and Formulation Technology Laboratory

			L	Т	Р	Total
Course code		SRT4301				
Course title		Introduction to Pharmaceutical Technology				
Scheme and Credits		2L: 1T: OP 3 credits	2	1	0	3
Pre-requisites		Biochemistry/Microbiology (SFT 4201)				
Description of course		This course will give an overview of applications of technology and engineering principles in Pharmaceutical Industry				
Objectives of the course	1	Know the different drug categories				
	2	Understand basics of monophasics, biphasics, topical formulation, aerosols, stability testing				
Syllabus	1	General pharmacology (ADME, routes of administration, MOA) with different organ systems; Chemotherapy: Sulphonamides, Diaminopyridines, Quinolones, β-lactam antibiotics, Tetracyclines, Nitrobenzene derivatives, Aminoglycosides, Anti- malarial, Anti-fungal, Anti-tubercular, Anti-cancer agents, etc.	12	6		18
	2	Solubilization techniques; Monophasics (Oral and Topicals) (solution, syrups, elixirs, linctus, glycerites, nasal drops, ear drops, etc.), Biphasic, Ointments, Creams, Gels, Suppositories, Aerosols - Suspensions and Emulsions: Pre-formulation, Principles and Stabilization techniques, Formulation Development, Evaluation, Large scale manufacture and packaging with focus on equipment, Layout design and unit operations; Stability Testing	8	4		12
	3	Overview of Pharmaceutical Industry; Classification of pharmaceutical dosage forms and routes of drug administration; Origin & development of the pharmacopoeia – IP/BP/USP, Introduction to monograph and Biopharmaceutics	4	1		5
			24	11		35

Suggested books/ reference	1	Remington-The Science And Practice Of Pharmacy (Vol.1& 2), David B.Troy, 21st edition,2006, Lippincott Williams & Wilkins		
	2	Pharmacology H. P. Rang, M. M. Dale, J. M. Ritter 5		
	3	J. McMurry, Brooks/Cole, Organic Chemistry		
Outcomes		On completion of the course, the students will be able to		
	CO1	Understand general principles of Pharmacology including pharmacokinetics and Pharmacodynamics.		
	CO2	Know the different drug categories		
	CO3	Conceptualize and develop monophasic, biphasic and other products		
	CO4	Explain stability evaluation and stabilization of products		

			L	т	Р	Total
Course code		SRT4403				
Course title		Pharmaceutical Chemistry				
Scheme and Credits		2L: 1T: OP 3 credits				
Pre-requisites		Introduction to Pharmaceutical Technology,Biochemistry/Microbiology				
Objectives of the course	1	To acquaint students with nomenclature, classification, molecular mechanism of action, synthesis and SAR of (a) Anti-infective agent (b) Anti- histaminic agent (c) Anti-inflammatory agents (d) Drugs acting on the cardiovascular system (e) Drugs acting on the hormonal system (f) Drugs acting on the central nervous system	2	1	0	3
	2	To train the students with the basics of Medicinal Natural Products and Phytochemistry				
Syllabus	1	Classification of Drugs; Molecular targets; Strategies in hit/lead discovery; Lead optimization; SAR, QSAR; Drug design	6	3		9
	2	Overview of Antibacterial agents; Anitparasitic agents; Antifungal agents; Antimycobacterial agents; Anticancer agents; Antiviral agents; Drugs Affecting the Central Nervous System; Cholinergic Drugs; Adrenergic Drugs; Analgesics	8	4		12
	3	Introduction to Anti inflammatory drugs; Cardiovascular Drugs; Drugs acting on hormonal systems; Other miscelleneous Classes of drugs	6	3		9
	4	Molecular targets, Enzymes as drug targets, Receptors as drug targets, Target identification methods	4	2		6
			24	12	0	36
Suggested books/ reference	1	Foye's Principles Of Medicinal Chemistry W. O. Foye, Lippincott Williams & Wilkins, 6th edition, 2008.				

	2	Burger's Medicinal Chemistry & Drug Discovery(Vol. 1- 6) A. Burger And M.E. Wolff; John Wiley & Sons-New Jersey, 6th edition,2003		
	3	Textbook Of Medicinal And Pharmaceutical Chemistry Wilson And Gisvold, Lippincott Williams & Wilkins, Philadelphia, 11		
	4	The Practice of Medicinal Chemistry, C.G. Wermuth, Academic Press, 3 edition, 2008		
	5	Pharmaceutical Substances: Synthesis, Patents, Applications (N-Z) Kleemann Georg ThiemeVerlag- Stuttgart. Thieme, 4th edition, 2001		
	6	Dewick P.M., Medicinal Natural Products- A Biosynthetic Approach,2 edition/2002, John Wiley & Sons Ltd		
	7	Quality Standards of Indian Medicinal Plants, all volumes, ICMR		
Outcomes		On completion of the course, the students will be able to		
	CO1	Classify drugs based on different methods		
	CO2	Explain SAR and MOA of drugs at the molecular level of understanding		
	CO3	Apply principles of drug discovery from hit to lead to preclinical molecules		
	CO4	Theoretically predict absorption distribution, metabolism and excretion of drugs and related concept of prodrugs		

			L	Т	Р	Total
Course code		SRT4507				
Course title		Formulation Technology and Drug Delivery				
Scheme and Credits		2L: 1T: 0P 3 credits	2	1	0	3
Pre-requisites		Introduction to Pharmaceutical Technology				
Objectives of the course	1	To train the students with respect to basics and application of Technology of Solid dosage forms and introduce novel drug delivery systems				
	2	To train the students with respect to basics of validations and regulatory requirements of pharmaceuticals				
	3	To train the students with respect to basics and application of Technology of sterile pharmaceuticals				
Syllabus	1	Introduction to tablets, Preformulation considerations for tablet dosage form, Granulation techniques, Direct compression; Excipients in tablets; Tablets Formulation: Unit operations, tablet punching: physics of tablet punching, single punch and rotary tablet press, tablet tooling ; Tablet coating	6	3		9

	2	Introduction to capsules; Preformulation considerations for capsule dosage form; Hard and soft gelatin capsules: formulation considerations, capsule manufacture equipments, quality control tests, packaging, Large scale manufacture, layout design; Microencapsulation; Oral sustained release and controlled release formulations	4	2		6
	3	Facility design for parenteral manufacture with focus on air systems HEPA filters, environmental classes for manufacture of parenterals; Methods of sterilization; Water for Injection: Monograph IP, methods of preparation, quality control tests, storage; Containers and Closures for Parenteral Formulations; Small and Large volume parenterals: Formulation (discuss various dosage forms like solutions, suspensions, emulsions, dry powders), Quality control, Large scale manufacture and packaging with focus on equipment, Layout design and Unit operations	6	3		9
	4	Introduction to novel drug delivery systems like Transdermal and Transmucosal(buccal, sublingual, nasal, vaginal, rectal); Introduction to cosmetics	4	2		6
	5	Introduction to Quality by Design, Validation, Documentation and Regulatory bodies for pharmaceuticals.	4	2		6
			24	12	0	36
Suggested books/ reference	1	Remington-The Science And Practice Of Pharmacy (Vol.1& 2), David B.Troy, 21st edition,2006, Lippincott Williams & Wilkins				
	2	Pharmaceutics: The Science Of Dosage FormDesign, Michael E. Aulton, 1998, Churchill-Livingstone Dermatological Formulations, B. W. Barry, 198, New York, Marcel Dekker				
	3	ICH Guidelines				
	4	Coated Pharmaceutical Dosage Forms, K. H. Bauer, CRC Press, Boca Raton. Med Pharm.				
	5	Pharmaceutical Dosage Forms Vol. I & II, Liebermann, New York, Marcel Dekker, 1996.				
	6	Pharmacuetical Production Facilities: Design and Applciations G. C. Co				
	7	Pharmaceutics: The Science of Dosage Form Design. Michael E.Aulton, Churchill-Livingstone, 1998				
	8	Beotra's Law of Drugs Medicins and Cosmetics K. K. Singh, L. R. Bugga for the Law Book Co.Pvt. Ltd. Allahabad				
	9	Indian Pharmacopoiea, British Pharmacopoiea, United States Pharmacopoiea.				
Outcomes		On completion of the course, the students will be able to				
	CO1	Describe preformulation, formulation, unit operation, large scale manufacturing, layout design of tablets				

C	02	Explain the coating polymers, technology and equipments used for coating of tablets and describe microencapsulation techniques		
C	03	Describe formulations for hard and soft gelatin capsules, machinery used for filling hard gelatin capsules, process for soft gelatin capsules		
C	04	Describe preformulation, formulation, evaluation, packaging, large scale manufacturing and facility design of parenteral products		
C	05	Explain basics of novel drug delivery systems		
C	06	Describe product and process validation and documentation required for the pharmaceuticals		

			L	т	Р	Total
Course code		SRT4506				
Course title		Pharmaceutical Technology and Drug Design				
Scheme and Credits		2L: 1T: 0P 3 credits	2	1	0	3
Pre-requisites		Pharmaceutical Chemistry				
Objectives of the course	1	Learn how physicochemical properties / QSAR/ other computational techniques play role to design and optimize the structure of leads				
Syllabus	1	Introduction to Historical and Modern Drug Discovery- Sources of drugs/leads,Serendipity, random screening, natural sources, analogue based design, Rational drug design, Techniques and tools in modern drug discovery, Introduction to QSAR, SBDD and LBDD • Concepts of privileged structures and chemical diversity	4	2		6
	2	Physicochemical and Biopharmaceutical Properties of Drug Substances: Lipinski rule of 5, Concept of toxicophores, Insilico calculation of log P, Modification of leads to incorporate suitable ADMET properties	2	1		3
	3	2-D QSAR: History and development of 2-D QSAR, Parameters – lipophilicity and related parameters, electronic parameters, steric parameters, other parameters, Quantitative models – Hansch approach, Free Wilson analysis, the mixed approach, Statistical methods – regression analysis, partial least square and other multivariate statistical methods Design of test series in QSAR-Some examples of Hansch and other methods	4	2		6
	4	Molecular Mechanics and Energy Minimization: General features of force fields, cross terms, force field parameterization, Energy minimization – non- derivative and derivative methods, applications of energy minimization Techniques of searching the conformational space: systematic search, Monte Carlo, Molecular dynamics and distance geometry	4	2		6
	5	Docking by different techniques	2	1		3

	6	Pharmacophore Modelling: Difficulties in deriving a 3D-pharmacophore Techniques – constrained systematic search, ensemble distance geometry, ensemble molecular dynamics and genetic algorithms Incorporating additional geometric features into a 3D pharmacophore 3D database searches using pharmacophores.	4	2		6
	7	De Novo and fragment based ligand design and 3-D QSAR approaches CoMFA and CoMSIA, brief discussion on other methods like MSA, RSA and HASL methods, Limitations of QSAR	4	2		6
			24	12	0	36
Suggested books/ reference	1	Burger's Medicinal Chemistry, Drug Discovery and Development. 7th Edition Volume 1-9. By Donald J. Abraham, David P. Rotella. August 2010				
	2	Practical Application of Computer-Aided Drug Design, Paul S Charifson, Ed., Marcel Dekker, Inc., 1997				
	3	Textbook of Drug Design and Discovery, PovlKrogsgaard-Larsen, Ulf Madsen, Kristian Stromgaard, 5th Ed., 2016. Taylor and Francis.				
	4	3D QSAR in Drug Design: Theory, Methods and Applications, Kubinyi H Ed., Leiden ESCOM, 1993.				
	5	Drug Development, Hamner C. E., Ed., 2nd Ed., CRC Press, Boca Raton, 1990				
	6	Advanced Drug Design And Development: A Medicinal Chemistry Approach, P N Kourounakis, E. Rekka, 1st ed., Taylor & Francis, Year: 1994				
Outcomes						
	CO1	Understand basics of QSAR, for applications in drug design				
	CO2	Understand basics of physicochemical properties of drugs and their implications				
	CO3	Design new potential therapeutic molecules using structure based drug desig				
	CO4	Design new potential therapeutic molecules using ligand based drug design				

			L	Т	Р	Total
Course code		SRT4404				
Course title		Process Development for Fine Chemicals and API				
Scheme and Credits		2L: 1T: OP 3 credits				
Pre-requisites		Introduction to Pharmaceutical Technology, Pharmaceutical Chemistry				
Objectives of the course	1	To understand the principles of chemical process development for API and fine chemical				
	2	Acquire the knowledge of Green Chemistry, Process Safety and Hazards				

Syllabus	1	Principles of Process Development for API'S:	8	4		12
		Background information, Literature search				
		methodologies for the development of API's and				
		Intermediates, Selection of best route for the				
		synthesis/manufacture of API (Green processes),				
		Process safety, MSDS, Safety laboratory data	_			
	2	Status of pharmaceutical industry: Status of bulk	2	1		3
		drugs, natural products and formulations in India vis-a- vis industrialized nations				
	3	Chemical Technology of Selected APIs: Case studies	4	2		6
	5	with emphasis on rationale for selection of routes, raw	4	2		0
		materials, process control methods, pollution control				
		procedures, polymorphs, safety, etc.				
	4	Chemistry and Technology of Fine Chemicals:	4	2		6
	-	Introduction, Role of Catalysis, Atom Economy,	-	2		0
		Alternative Reagents and Catalysis, Multiproduct and				
		Multipurpose Plants (MMPs), Reactors for fine				
		chemicals, Safety Aspects of Fine				
		Chemicals				
	5	Selected Fine Chemical Technologies with examples:	4	2		6
		Alkylation, Halogenation, Oxidation, Reduction,				
		Esterification, Nitration, and Hydrogenation				
	6	Impurity Considerations: Introduction, Steps to	2	1		3
		optimizing reactions, Minimizing impurity formation by				
		indentifying impurities first, Method development for				
		separation, Synthesis and Isolation of impurities and				
		their characterization				
			24	12	0	36
Suggested books/	1	Levenspiel, O. Chemical Reaction Engineering; 3rd ed.;				
reference		John Wiley & Sons, New York (1999)				
	2	Gadamasetti, K., Process Chemistry in Pharmaceutical				
		Industry; 1st ed.; CRC Press, London (1999)				
	3	Anderson, N. G.; Practical Process Research &				
		Development: A Guide for Organic Chemists; 2nd ed.;				
		Academic Press, London (2012)				
	4	Harrington, P. J.; Pharmaceutical Process Chemistry for				
		Synthesis: Rethinking the Routes to Scale-Up; Wiley,				
	+ - +	London (2011)				
	5	A. Cybulski M.M. Sharma R.A. Sheldon J.A.				
		Moulijn;Fine Chemicals Manufacture: Technology and				
		Engineering, Elsevier Science & Technology Books,				
	$\left - \right $	(2001)				
Outcomes		On completion of the course, the students will be able				
		to				
	CO1	Understand the principles of process design along with				
		selection of different routes.				
	CO2	Get insights of underlying technologies in the				
		manufacturing of various APIs				
	CO3	Differentiate between the bulk drugs and fine				
		chemicals and state their various applications in				

CO4	Explore the process of manufacture of variety of fine		
	chemicals		

			L	т	Р	Total
Course code		SRT4405				
Course title		Natural Product based Pharmaceuticals				
Scheme and Credits		2L: 1T: 0P 3 credits	2	1	0	3
Pre-requisites		Pharmaceutical Chemistry, Process Development for Fine Chemicals and API				
Objectives of the course	1	To make students familiar with natural products, its important and total synthesis strategies				
	2	To make students familiar with ayurvedic product, its formulations and regulatory guidelines as well as government policies for the development				
Syllabus	1	Role of Natural Products in New Drug Discovery: few selected NPs, with different pharmacophore, its source, purification and its drug target interactions, Case studies of taxol, artemisinin, etc	2	1		3
	2	Potential uese of natural products: Plant-derived molecules for perfumery, cosmetic, agrochemicals, dyes and pigments	2	1		3
	3	Overview of total synthesis and biomimetic synthesis of natural products with importance in drug discovery, Selected examples of retrosynthetic pathways of Natural products such as calanolide, colchicine, camptothecin	4	2		6
	4	Introduction to Ayurveda: History of Ayurveda and herbal drugs, Global Ayurvedic Medicine Market: Size, share, trend and forecast including organic herbs & extracts (NOP, USDA etc.)	4	2		6
	5	Ayurvedic/Polyherbal Formulations (PHF): Types of Ayurvedic formulations, single herb vs polyherbal formulations, Advantages and challenges associated with PHF, Preparation and detoxification methods for Ayurvedic formulations, CCRAS Guidelines for Ayurvedic Formulation	6	3		9
	6	Amendments in Drugs and Cosmetic Act for quality control of Ayurvedic medicines	2	1		3
	7	Government policies and initiatives for development of Ayurveda: Introduction to Ministry of AYUSH and its Allied Organizations like Pharmacopoeia Commission for Indian Medicine & Homoeopathy, Central Council for Research in Ayurvedic Sciences (CCRAS), National Medicinal plant board (NMPB). FSSAI Sustainability of Indian medicinal plants- CITES and Indian Govt. initiatives	4	2		6
			24	12	0	36
Suggested books/ reference	1	Lead Generation Approaches in Drug Discovery, Chapter 7: Role of Natural Products in Drug Discovery, Hugo Lachance, Stefan Wetzel, Herbert Waldmann, 2010, Wiley online library				

	2	Phytochemistry of Medicinal Plants, Vol. 29, J.T. Arnason, R. Mata, J. T. Romeo, 1995, Springer Science, Business Media New York		
	3	Total Synthesis of Natural Products, Jie Jack Li and E. J. Corey, 2012, Springer		
	4	Classics in Total Synthesis: Targets, Strategies, Methods, K.C. Nicolaou and E. J. Sorenson, 1996, Wiley-VCH		
	5	Biomimetic Organic Synthesis, Erwan Poupon and Bastien Nay, 2011, Wiley-VCH.		
	6	An introduction to Ayurveda, M.S. Valiathan, 2013, Orient Blackswan Private Limited - New Delhi		
	7	Handbook of Ayurvedic Medicines with Formulation, Eiri Board, 2009, Engineers India Research Institute		
	8	Regulatory and Pharmacological Basis of Ayurvedic Formulations, Kindle edition, Amritpal Singh, 2016, CRC Press		
	9	General guidelines for Drug development of Ayurvedic formulations, Guidelines Series-I, Central Council For Research In Ayurvedic Sciences, Ministry Of Ayush, Government of India, New Delhi, <u>http://ayush.gov.in/</u>		
Outcomes		On completion of the course, the students will be able to		
	C01	Rationalize the contribution of natural products in new drug discovery		
	CO2	Plan various approaches for efficient natural product synthesis including biomimetic synthesis, semi- synthesis and total synthesis		
	CO3	Express the global demand of Ayurvedic medicines		
	CO4	Execute the preparation of polyherbal formulations as per the standard Ayurvedic texts		
	CO5	Appreciate the importance of the regulatory guidelines of Government authorities related to Ayurvedic medicines		

			L	т	Р	Total
Course code		SRP4401				
Course title		Pharmaceutical Analysis Laboratory				
Scheme and Credits		OL:OT: 4P 2 credits	0	0	4	4
Pre-requisites		Chemistry Lab-I				
Objectives of the course	1	On performing the experiments, learner should be able to operate the instruments, understand its instrumentation, prepare solutions with accurate concentrations, measure the readings, calculate and interpret the results obtained				
	2	To familiarize the learner with the important aspects of accelerated stability testing and shelf life calculations				

Syllabus	1	UV spectrophotometric estimation of two components formulation by simultaneous equation method and by absorbance ratio method, Eg Caffeine and Sodium			4	4
		benzoate injection				
	2	UV spectrophotometric estimation of formulation by Difference spectroscopy: Eg: Phenylephrine HCl			4	4
		ophthalmic solution				
	3	Assay of finished products by UV spectroscopy (any two), using A (1%, 1 cm) eg. Paracetamol tablets, Propranolol tablets/Atenolol tablets/Hydrochlorothiazide tablets/Frusemide			4	4
		tablets/Albendazole tablet/Rifampicin capsules (two examples)				
	4	Solubility determination of any drug/formulation by using UV spectroscopy			4	4
	5	Separation and identification of drug/Intermediate by TLC/Column chromatography			8	8
	6	Experiments based on HPLC eg. quantification of impurities in APIs			4	4
	7	Gas Chromatography (GC) handling and analyses of API intermediates			4	4
	8	Detection of residual solvent in the formulation by using Gas Chromatography			4	4
	9	Working of FTIR and Interpretation of IR spectra of any one drug.			4	4
	10	Polarimetry: Different concentrations of sugar, determination of unknown concentration and specific rotation			4	4
	11	Assay of streptomycin injection/Salicylic acid by using Colorimetry ((Construction of calibration curve using linear regression analysis))			4	4
	12	Accelerated stability testing of any suitable drug/ formulation, Problems based on Arrhenius equation for shelf life calculations			4	4
			0	0	48	48
Suggested books/ reference	1	Current editions of IP, BP and USP				
	2	G. D. Christian, Analytical Chemistry, John Wiley & Sons, Singapore, reprint by Wiley India Pvt. Ltd				
		A II Deskett and L D Chanlake Drestical		1		
	3	A. H. Beckett and J. B. Stenlake, Practical Pharmaceutical Chemistry, Part I and II, CBS Publishers and Distributors, India				
	3	Pharmaceutical Chemistry, Part I and II, CBS				
		Pharmaceutical Chemistry, Part I and II, CBS Publishers and Distributors, India J. Mendham, R. C. Denney, J. D. Barnes, M. J. K. Thomas, Vogel's Textbook of Quantitative Chemical				
	4	Pharmaceutical Chemistry, Part I and II, CBSPublishers and Distributors, IndiaJ. Mendham, R. C. Denney, J. D. Barnes, M. J. K.Thomas, Vogel's Textbook of Quantitative ChemicalAnalysis, Pearson Education Ltd.D. G. Watson, Pharmaceutical Analysis –A textbook forpharmacy students and pharmaceutical chemists,				
	4	Pharmaceutical Chemistry, Part I and II, CBS Publishers and Distributors, India J. Mendham, R. C. Denney, J. D. Barnes, M. J. K. Thomas, Vogel's Textbook of Quantitative Chemical Analysis, Pearson Education Ltd. D. G. Watson, Pharmaceutical Analysis –A textbook for pharmacy students and pharmaceutical chemists, Churchill Livingstone Elsevier R. M. Silverstein, F. X. Webster and D. J. Kiemle, Spectrometric identification of organic compounds,				

CC	01	Record the absorbance and calculate concentration of analyte in formulation or as an API by use of A(1%, 1cm) by UV spectrophotometer		
CC	02	Develop and optimize mobile phase composition for qualitative analysis by TLC and interpret qualitative analysis data by TLC		
CC	03	Outline working and application of HPLC		
CC	D4	Outline working and application of GC		
CC	05	Understand the sample preparation technique for FTIR spectroscopy, interpret the IR spectra to identify the functional groups		

			L	Т	Р	Total
Course code		SRP4403				
Course title		Pharmaceutical Chemistry and Formulation Technology Laboratory				
Scheme and Credits		0L:0T: 4P 2 credits	0	0	4	4
Pre-requisites		Pharmaceutical Chemistry, Formulation Technology and Drug Delivery				
Description of the Course		To train the students with respect to practical aspects of Green Chemistry while preparing the commonly used organic compounds as a drugs and also train the students on advanced formulation development technology				
Objectives of the course	1	To train the learner in preparation of typical monophasic liquid and semisolid formulations and carry out their Q.C. tests, and acquaint them with some biological preparations available in market				
	2	To introduce the learner to various hands-on experimental organic synthetic techniques including column chromatography and thin layer chromatography				
Syllabus	1	Evaluation of excipients: Bulking agents for Flow properties, Bulk density, Tapped density, Carr's index, Hausner's ratio and particle size and Disintegrating agents for Swelling index			4	4
	2	Preparation and evaluation of Transdermal/ophthalmic gels			4	4
	3	Preparation of Eye drops/ and Eye ointments			4	4
	4	Preparation of Creams (cold / vanishing cream)			4	4
	5	Preparation of Paracetamol paediatric elixir			4	4
	6	Representative examples of microencapsulation (Preparation and evaluation)			4	4
	7	Solubilisation of drugs by at least two novel techniques			8	8
	8	Evaluation of Glass containers (as per IP)			4	4
	9	Synthesis of two molecules/drug intermediates which may include three or more steps to isolate, purify (chemical methods and through chromatography) and characterize the product from each step			12	12
			0	0	48	48

Suggested books/ reference	1	Pharmaceutical Dosage Forms Vol. I & II, Liebermann, New York, Marcel Dekker (1996)		
	2	Latest Indian Pharmacopoeia, British Pharmacopoeia, United States Pharmacopoeia		
	3	Pharmaceutical Production Facilities: Design and Applications G. C. Cole, New York Ellis Horwood (1990)		
	4	Husa's Pharmaceutical Dispensing Martin E. W. Easton Mack Pub. Co. (1971)		
	5	Transdermal Delivery of Drug A. Kydonieus Florida, CRC Press (1987)		
Outcomes				
	CO1	Prepare transdermal and ophthalmic formulations.		
	CO2	Prepare and evaluate the semisolid dosage form		
	CO3	Prepare and evaluate the monophasic/biphasic liquid dosage form		
	CO4	plan and develop organic synthetic routes for small organic compounds		
	CO5	develop a set of separation and purification and structural characterization skills		

Special Subject 1- Bie Course code	ochem	istry and Microbiology SRT3201	
Course title		Biochemistry and Microbiology	
Prerequisite		Introduction to biological science and bioengineering	
Scheme and Credits		2 L: 1 T: 0 P 3 Credits	
Course title		Detailed contents	Total contact h
	1	Water and biomolecules. Introduction to biochemistry.	
		Carbohydrates: Fundamentals of chemistry of carbohydrates. Monosaccharides, oligosaccharides and polysaccharides. Qualitative tests and color reactions. Quantitative analysis. Biosynthesis.	
		Lipids: Fatty acids, waxes, phospholipids, sphingolipids, sterols and terpenoids. Function and comparative distribution of lipids. Biosynthesis. Hydrogenation. Sap value, Iodine value, Acid value. Biochemical tests. Lipoproteins and lipopolysaccharides.	
		Amino acids: pK, pl, structure and chemistry	
		Protein: Structure and function. Globular and fibrous proteins. Enzymes and	10
		activity assay.	
		Qualitative and quantitative tests for amino acids, proteins. Precipitation of proteins.	
		Solid phase peptide synthesis. Protein sequencing. Protein metabolism. Transmutation, SGOT/SGPT, deamination and decarboxylation.	
		Vitamins and Co-enzymes: Structure and function. Qualitative and quantitative	
		analysis.	
Biochemistry and Microbiology		DNA and RNA: Structure and function. DNA \rightarrow RNA \rightarrow Protein. Sequencing. Fluorescence tagging. Recombination and repair. Gene and control of gene expression. Operon.	
	2	History of microbiology (focus on microscopy). Types of microscopy (dark, fluorescence, atomic force, scanning, confocal etc.). Applications of microbiology.	2
	3	Microorganisms: Major groups of microorganisms- bacteria, yeast, algae etc.,	
		their structure and properties.	
		Cell mobility and motility. Different types of staining techniques (with reference to bacteria): Monochromatic staining, Gram staining, Acid fast staining, Capsule – flagella – spore – cell wall staining, Negative staining.	6
	4	Virus: Types and structure. Reproduction and cultivation. Cell culture: Isolation and identification of pure culture, cell preservation. Culture media, their composition, and their types.	
		Growth studies, microbial cell growth phases Introduction to biosafety. Sterilization methods. Aseptic technique. Biocontainment.	8
	5	Methods of Sterilization, disinfection, sanitation, and asepsis Mutation: Types and mechanisms. Mutagenic agents. Evolution.	2
	6	Cell cloning: PCR and DNA amplification, restriction enzymes, DNA digestion,	-
		DNA ligation, transformation. Gibson assembly. Recombinant cells and selection markers. Vectors and plasmids. Competent cells. Reverse transcription. cDNA. Transfection.	8
		CRISPR technique.	
6		Total	36
Suggested text/reference books		 Microbiology Concepts and Applications: M. J. Pelczar Jr., E. C. S. Chan And N. Microbiology: An Introduction: Gerard J. Tortora, Berdell R. Funke and Christi Lehninger: Principles of Biochemistry: David Nelson, Michael Cox 	-

- 8. Outlines of Biochemistry: Eric Conn and Paul K Stumf
- 9. Harpers Biochemistry: Robert Murray, Daryl Granner

SRT3302				
Introduction to Pharmaceutical Technology				
Introduction to biological science and bioengineering, Biochemistry and Micr	Introduction to biological science and bioengineering, Biochemistry and Microbiology			
2 L: 1 T: 0 P 3 Credits				
Detailed contents	Total contact			
1 General Aspects: Definition of a drug. Various drug categories such as Prescription and OTC drugs				
Drug nomenclature: Chemical name, Generic name, Prototype A brief history of Pharma industry (From Dyes to Small Molecules to Biologicals)	6			
Biopharmaceutics and Pharmacokinetics), Pharmacology, Pharmaceutical, and analytical chemistry, Pharmacognosy				
2 Medicinal Chemistry and Process Chemistry: Discovery of Hits and Leads, Lead optimization, Introduction to Process chemistry industry and its brief	6			
3 Pharmacology: Brief overview of Pharmacokinetic principles A brief overview of the mechanism of action of drugs	4			
4 Drug administration: Brief overview of following routes of administration				
	2			
	2			
5 Dosage forms of the drugs: Various definitions such as Formulation, Dosage				
form, API, Excipient, Vehicles Brief overview of following dosage forms-				
	6			
	2			
	4			
8 Introduction to biological therapeutics: Peptides and proteins as drugs and				
their synthesis in brief	6			
Introduction of rDNA technology	0			
Monoclonal antibodies				
	36			
• An introduction to pharmaceutical sciences: Production, chemistry, techniqu technology, Jiben Roy, Woodhead Publishing Series in Biomedicine	es, and			
 Real World Drug Discovery: A Chemist's Guide to Biotech and Pharmaceuti Robert M. Rydzewski, Elsevier Science (2008) 	cal Researc			
itrition and Nutraceuticals SRT3403				
Nutrition and Nutraceuticals				
Introduction to biological science and bioengineering, Biochemistry and Micr 2 L: 1 T: 0 P 3 Credits	obiology			
Detailed contents	Total contact			
1 Classification of food components based on nutritional value nutritional	contact			
assessment of carbonydrates, proteins, and fats, recommended dietary intake,	c			
acceptable dietary intake, nitrogen balance, protein efficiency ratio, net	6			
5	 Introduction to biological science and biogeneering, Biochemistry and Microscience 21:17:0 3 Credits Detailed contents General Aspects: Definition of a drug. Various drug categories such as Prescription and OTC drugs. Drug nomenclature: Chemical name, Generic name, Prototype A brief history of Pharma industry (From Dyes to Small Molecules to Biologicals). Introduction about core subjects of Pharmacology, Pharmaceutical, and analytical chemistry. Pharmacokinetics), Pharmacology, Pharmaceutical, and analytical chemistry. Pharmacokinetics), Pharmacology, Pharmaceutical, and analytical chemistry. Pharmacokinetics). Pharmacology, Pharmaceutical, and analytical chemistry. Pharmacokinetics). Pharmacology: Brief overview of Pharmacokinetic principles A brief overview of the mechanism of action of drugs. A brief overview of the mechanism of action of drugs. A brief overview of the mechanism of action of drugs. A brief overview of the mechanism of action of drugs. A brief overview of the drugs. Various definitions such as Formulation, Dosage form, API, Excipient, Vehicles Brief overview of following routes of administration with their advantage and disadvantage. Enteral: Oral, Sublingual, and Rectal Pareneral: Injections, Inhalation, Transdermal Topical routes: Ophthalmic, Nasal, Auditory. Dosage forms of the drugs: Various appects of preclinical studies in brief. Clinical trials, and its phases in brief. Morduction to various commonly used analytical techniques and operations in Pharma industry: Spectroscopic techniques, Chromatographic techniques, An overview of pharmaceutical engineering and various unit operations the flarma industry: Spectroscopic techniques, Chromatographic techniques, Extraction, and isolation techniques. Marduction to various commony used analytical techniques and operations in Pharma industry: Spectroscopic techniques, Chromatographic techniques, Distraction, and isolation techniques. Marduction to bologic			

	 Basics of energy balance - Basal Metabolic Rate (BMR), Body Mass Index (BMI) and Standard Dynamic Action (SDA) with special reference to the nutraceutica industry. Defining nutraceuticals. Nature, type, and scope of nutraceuticals compounds 	I
	and their classification based on chemical and biochemical nature with suitable and relevant descriptions.	
	3 Disease and Nutrition: Functions of dietary fiber (soluble and insoluble) in control of certain disease conditions like diabetes, cancer, heart diseases etc. Effect of drugs or ingestion, digestive absorption & metabolism of nutrients, Effect of food nutrients & nutritional status in drug dosage & efficacy.	n 6
	 Functional Foods and their applications: Role of Isoprenoids, Isoflavoness Flavonoids, carotenoids, Tocotrienols, polyunsaturated fatty acids sphingolipids, lecithin, choline. Terpenoids, whey, and soy protein. Vegetables seeds, cereals, seafood, milk, and dairy products as functional foods. Probiotic and prebiotics. Role of nutraceuticals with special reference to diabetes mellitus hypertension, hypercholesterolemia, cancer, glands in the prevention and treatment. 	, 5 9
	 Nutraceutical evaluation and testing: Biological testing and bioassays preclinical testing, and clinical trials. Quality control and quality assurance of nutraceuticals. Marketing of nutraceuticals. 	, 4
	6 Nutritional genomics: Plants as bioreactors as a tool for the production o Nutraceuticals. 'Tailor-made' carbohydrates and lipids of plant and non-plan origin. Transgenic plants for the large-scale production of proteins fo pharmaceutical and industrial uses. Commercial transgenic crops like herbicide-resistant soybean, maize, vegetables, fruit crops, golden rice.	t r ₅
	Total	36
Suggested text/reference	 Brigelius-Flohé, J & amp; Joost HG. Nutritional Genomics: Impact on Health Wiley VCH. 2006. 	and Disease.
books	 Cupp J & amp; Tracy TS. 2003. Dietary Supplements: Toxicology and Clinica Pharmacology. Humana Press. Gibson GR & William CM. Functional Foods - Concept to Product. 2000. Losso JN. Angi-angiogenic Functional and Medicinal Foods. CRC Press. 2007. Robert E.C. Wildman Handbook of Nutraceuticals and Functional Foods, CF L. Rapport and B. Lockwood Nutraceuticals, 2nd Edition, Pharmaceutical Press. 	7. RC, 2006.

Special Subject 4- Pharmaceutics and Pharmacology Course code SRT3404

Course title Prerequisite		Pharmaceutics and Introduction to biol Technology	Pharmacology ogical science and bioengineering, Introduction to Pharma	ceutical
Scheme and Credit	ts	2 L: 1 T: 0 P	3 Credits	
Course title			Detailed contents	Total contact h
	1	History of Pharmacy	,	
Pharmaceutics and Pharmacology	2	Introduction to the Introduction to pre- Quality control and	ent of the pharmacopoeia – IP/BP/USP monograph, parts of the monograph formulation and formulation studies Quality assurance, Introduction to GMP and cGMP, quality	3
		by design (QbD), and	d quality by test (QbT)	

	3	Introduction to unit operations involved in pharmaceutics: Size reduction, size separation, mixing and homogenization, filtration, extraction, sterilization, and solubilization	4
	4	Formulation and scale-up considerations in the development of the following	
		dosage forms:	
		Solutions, syrups, elixirs, and tinctures Suspensions and emulsions	
		Ointments, creams, lotions, and gels	8
		Tablets, capsules (soft and hard gelatin)	-
		Medical gases and aerosols	
		Injectables and eye drops	
	F	Pessaries and suppositories	
	5	Stability Studies: Introduction to ICH climate zones and ICH guidelines for stability testing [Q1A, Q1B, and Q1C], Stabilization of dosage forms	3
	6	Introduction to the human body, organization of the human body	
		Different systems of the human body	
		Blood and lymphatic system, structure and function of the kidney, respiratory	4
		system, digestive system, endocrine system, nervous system	•
		(Neurotransmission, adrenergic and cholinergic system, CNS, ANS, and PNS), and cardiovascular system	
	7	General pharmacology (ADME, routes of administration, and MOA)	2
	8	Hematinic, thrombolytics, coagulants/anticoagulants	_
		Antidiabetic drugs	
		Drugs acting on the nervous system	6
		Drugs used in hypertension, vasodilator	
		Analgesics and narcotics Anesthetics	
	9	Anticancer drugs	
		Antimicrobials and anti-infectives	2
	10	Gene therapy	1
		Total	36
Suggested text/reference		 Pharmaceutical Dosage Form And Drug Delivery Systems, Howard C. Ansel, Ni Popovich, Lord V. Alien, 6th edition, 1995, B.I.Waverly Pvt. Ltd., New Delhi 	cholas G.
books		17. Remington-The Science And Practice Of Pharmacy (Vol.1& 2), David B.Troy, 21	lst
		edition,2006, Lippincott Williams & Wilkins	
		18. Tutorial Pharmacy J.W. Cooper, Colin Gunn, 4th edition, 1950, Sir Isaac Pitman	& Sons
		Ltd., London Pharmaceutics: The Science Of Dosage Form Design, Michael E. A	
		1998, Churchill-Livingstone Dermatological Formulations, B. W. Barry, 198, Ne	ew York,
		Marcel Dekker 19. ICH Guidelines	
		20. Tortora's Principles of Anatomy and Physiology, Gerard J. Tortora	
		21. Arthur C. Guyton and John E. Hall, Textbook of Medical Physiology, 13theditio	n, W. B.
		Saunders Company, 2016	
		22. Essentials of Medical Pharmacology, K. D. Tripathi	
Special Subject 5- Ph	arm	aceutical Analysis	
Course code		SRT3405	
Course title		Pharmaceutical Analysis	
Prerequisite		Introduction to Pharmaceutical Technology, Pharmaceutics and Pharmacology	
Scheme and Credits		2 L: 1 T: 0 P 3 Credits	Total
Course title		Detailed contents	contact h
	1	Introduction: Difference between qualitative and quantitative analysis.	
		Pharmacopoeial monograph, literature collection, data handling, and	3
Pharmaceutical	~	expression of analytical results – documentation and record-keeping	
Analysis	2	The theoretical basis of quantitative analysis	э
		Equivalent weight, Standard volumetric solutions. Normality, molarity, molality, formality, characteristics of a primary standard; Secondary standard,	3
	3	Analytical method validation (as per USP and ICH guidelines):	3

Scheme and Credits	2 L: 1 T: 0 P 3 Credits	
Prerequisite	Introduction to Pharmaceutical Technology, Pharmaceutics and Pharmacology, Pharmaceutical Analysis	
Course title Prerequisite	Pharmaceutical Additives and Excipients	
Course code	SRT3506	
	aceutical Additives and Excipients	
	32. United States pharmacopoeia	
	31. Indian Pharmacopoeia	
	 Analytical chemistry, 6th edn Christian, Gary Organic Spectroscopy by William Kemp 	
	28. Pharmaceutical Analysis by Skoog and West	
	27. Introduction to Spectroscopy – Pavia	
	26. Vogel's qualitative inorganic analysis – Svehla G	
books	25. Vogel's textbook of quantitative chemical analysis, 6th edn - Mendham, J	
text/reference	24. Pharmaceutical analysis-Lee, David&Webb, Michael	
Suggested	23. Practical pharmaceutical chemistry, 4thEdn. (Part II)-Beckett, A.H & Stenlake, J.B.	
	Total	36
6	High throughput screening, flow cytometry	2
	ELISA, southern blotting, and northern blotting techniques	
	Enzyme assay	3
12	Analysis of Biologics: DNA sequencing, Protein sequencing	
	Their principle and application	2
11	Thermal Analysis: TGA, DSC	2
	MS analysis of biologics: MALDI	2
10	spectrophotometer, application	3
10	Mass spectrometry (MS): principle, methods of ionization, types of Mass	
5	and brief instrumentation	2
9	Nuclear magnetic resonance spectroscopy: principle, ¹ H NMR, chemical shift,	
	Gas chromatography and HPLC	
	Instrumentation: pumps, injector, detector	
	Types of chromatographic techniques: Adsorption, ion-exchange, affinity, size exclusion	Э
	theoretical plate, HETP, resolution Types of chromatographic techniques: Adsorption ion-exchange, affinity, size	5
8	phase, reverse phase, isocratic elution, gradient elution, retention time,	
8	Instrumentation Chromatography: Terminologies-mobile phase, stationary phase, normal	
	Instrumentation	
	Practical fluorescence analysis: Application of fluorescence analysis to drug:	2
	fluorescence and phosphorescence. Molecular structure and fluorescence; Quantitative fluorescence analysis;	2
7	Fluorescence spectroscopy: Theory of fluorescence phenomenon-origin of fluorescence and phosphorescence	
-	sampling techniques; Difference between FTIR and Dispersive IR	
	Near IR spectroscopy – Different applications in the pharmaceutical industry,	
	control detectors, samples, preparation,	3
	Instrumentation-discussions of light sources, frequency selector, Intensity	2
6	Infrared spectroscopy: Molecular structure and infrared spectra, vibrational transition frequency-structure correlations.	
C	spectrophotometer, and double beam spectrophotometer	
	Instrumentation of UV visible spectrophotometer, single beam UV visible	
	single component analysis and multi-component systems	
	Beer and Lambert's law, limitation of Beer's law, application of Beer's law to single component applycic and multi-component systems.	
	Hyperchromism and hypochromism, Effect of solvent on absorption spectra	4
	Definition - auxochromes, bathochromic shift, hypsochromic shift;	
	chromophore	
	electromagnetic radiation and matter, absorption of radiation by molecules, a	
5	UV Visible Spectroscopy: Introduction to the interaction between	
4	Refractometry and Polarimetry: theory, instrumentation, and application	1
	Range, Robustness, Ruggedness, causes of errors	
	Accuracy, Precision, Limit of detection, Limit of quantification, Linearity,	

Course title	Detailed contents	Total contact h
	1 Pharmaceutical additives/excipients, their purposes, properties of additives, different classes of excipients	4
	 Pharmaceutical processing aid Functions, features, scale-up considerations, and examples of the following: Fillers, Binders, Disintegrants, Coating agents, Sorbents, Glidants, Lubricants, 	
Pharmaceutical Additives and	Preservatives, Sweeteners, Flavoring agents, Coloring agents, Chelating agents, Coloring agents, Chelating agents, Cosolvents, Buffering agents, Humectant, Surfactants, Propellent	12
Excipients	3 Drug-excipient compatibility	4
	4 Package-excipient interactions	4
	5 Functional excipients affecting drug release profile with examples	4
	 Excipient stability Regulatory requirements: FDA, IPEC, and pharmacopoeial Total 	4 4 36
Suggested text/reference	 Remington-The Science And Practice Of Pharmacy (Vol.1& 2), David B.Troy, 2 edition,2006, Lippincott Williams & Wilkins 	
books	 Tutorial Pharmacy J.W. Cooper, Colin Gunn, 4th edition, 1950, Sir Isaac Pitma Ltd., London Pharmaceutics: The Science Of Dosage Form Design, Michael E. 	
	1998, Churchill-Livingstone Dermatological Formulations, B. W. Barry, 198, N Marcel Dekker	ew York,
	35. IPEC Guidelines	
	36. Indian Pharmacopoeia37. United States pharmacopoeia	
Special Subject 7- M Course code	edicinal Chemistry and Natural Products SRT3507	
Course title	Medicinal Chemistry and Natural Products	
Prerequisite	Introduction to biological science and bioengineering and Pharma minor cours	ses
Scheme and Credits	2 L: 1 T: 0 P 3 Credits	
		Total
Course title	Detailed contents	Total contact h
	Detailed contents I Introduction to Medicinal Chemistry: Definitions and explanation of terms used in Medicinal Chemistry (hits, lead, lead development, molecular libraries, toxicity studies, high throughput screening, ADME etc.), the nomenclature of	
	Detailed contents 1 Introduction to Medicinal Chemistry: Definitions and explanation of terms used in Medicinal Chemistry (hits, lead, lead development, molecular libraries, toxicity studies, high throughput screening, ADME etc.), the nomenclature of drugs 2 Introduction to modern drug discovery- rational design, molecular modeling,	contact h
	Detailed contents Introduction to Medicinal Chemistry: Definitions and explanation of terms used in Medicinal Chemistry (hits, lead, lead development, molecular libraries, toxicity studies, high throughput screening, ADME etc.), the nomenclature of drugs	contact h
	Detailed contents 1 Introduction to Medicinal Chemistry: Definitions and explanation of terms used in Medicinal Chemistry (hits, lead, lead development, molecular libraries, toxicity studies, high throughput screening, ADME etc.), the nomenclature of drugs 2 Introduction to modern drug discovery- rational design, molecular modeling, genetics, and DNA technology 3 Drug targets: concepts of drug binding, affinity, selectivity. Discuss the following with examples. Enzymes as drug targets: concept of enzyme, apoenzyme, holoenzyme, coenzyme, cofactor	contact h
Course title Medicinal	Detailed contents 1 Introduction to Medicinal Chemistry: Definitions and explanation of terms used in Medicinal Chemistry (hits, lead, lead development, molecular libraries, toxicity studies, high throughput screening, ADME etc.), the nomenclature of drugs 2 Introduction to modern drug discovery- rational design, molecular modeling, genetics, and DNA technology 3 Drug targets: concepts of drug binding, affinity, selectivity. Discuss the following with examples. Enzymes as drug targets: concept of enzyme, apoenzyme, holoenzyme, coenzyme, cofactor Targeting human enzymes, targeting enzymes selective to pathogens	contact h
Course title	Detailed contents 1 Introduction to Medicinal Chemistry: Definitions and explanation of terms used in Medicinal Chemistry (hits, lead, lead development, molecular libraries, toxicity studies, high throughput screening, ADME etc.), the nomenclature of drugs 2 Introduction to modern drug discovery- rational design, molecular modeling, genetics, and DNA technology 3 Drug targets: concepts of drug binding, affinity, selectivity. Discuss the following with examples. Enzymes as drug targets: concept of enzyme, apoenzyme, holoenzyme, coenzyme, cofactor Targeting human enzymes, targeting enzymes selective to pathogens Receptors as drug targets: types and properties of receptors	contact h
Course title Medicinal Chemistry and	Detailed contents 1 Introduction to Medicinal Chemistry: Definitions and explanation of terms used in Medicinal Chemistry (hits, lead, lead development, molecular libraries, toxicity studies, high throughput screening, ADME etc.), the nomenclature of drugs 2 Introduction to modern drug discovery- rational design, molecular modeling, genetics, and DNA technology 3 Drug targets: concepts of drug binding, affinity, selectivity. Discuss the following with examples. Enzymes as drug targets: concept of enzyme, apoenzyme, holoenzyme, coenzyme, cofactor Targeting human enzymes, targeting enzymes selective to pathogens	contact h
Course title Medicinal Chemistry and	Detailed contents 1 Introduction to Medicinal Chemistry: Definitions and explanation of terms used in Medicinal Chemistry (hits, lead, lead development, molecular libraries, toxicity studies, high throughput screening, ADME etc.), the nomenclature of drugs 2 Introduction to modern drug discovery- rational design, molecular modeling, genetics, and DNA technology 3 Drug targets: concepts of drug binding, affinity, selectivity. Discuss the following with examples. Enzymes as drug targets: concept of enzyme, apoenzyme, holoenzyme, coenzyme, cofactor Targeting human enzymes, targeting enzymes selective to pathogens Receptors as drug targets: types and properties of receptors Ligand-receptor interaction, types of bonds in the interactions, role of	contact h
Course title Medicinal Chemistry and	Detailed contents1Introduction to Medicinal Chemistry: Definitions and explanation of terms used in Medicinal Chemistry (hits, lead, lead development, molecular libraries, toxicity studies, high throughput screening, ADME etc.), the nomenclature of drugs2Introduction to modern drug discovery- rational design, molecular modeling, genetics, and DNA technology3Drug targets: concepts of drug binding, affinity, selectivity. Discuss the following with examples.2Enzymes as drug targets: concept of enzyme, apoenzyme, holoenzyme, coenzyme, cofactor Targeting human enzymes, targeting enzymes selective to pathogens3Receptors as drug targets: types and properties of receptors Ligand-receptor interaction, types of bonds in the interactions, role of structure and conformation4Target identification methods: Brief overview of target identification,	contact h
Course title Medicinal Chemistry and	Detailed contents1Introduction to Medicinal Chemistry: Definitions and explanation of terms used in Medicinal Chemistry (hits, lead, lead development, molecular libraries, toxicity studies, high throughput screening, ADME etc.), the nomenclature of drugs2Introduction to modern drug discovery- rational design, molecular modeling, genetics, and DNA technology3Drug targets: concepts of drug binding, affinity, selectivity. Discuss the following with examples.2Enzymes as drug targets: concept of enzyme, apoenzyme, holoenzyme, coenzyme, cofactor Targeting human enzymes, targeting enzymes selective to pathogens3Receptors as drug targets: types and properties of receptors Ligand-receptor interaction, types of bonds in the interactions, role of structure and conformation4Target identification methods: Brief overview of target identification, biopharmaceutical therapy, identification of druggable targets by proteome	contact h
Course title Medicinal Chemistry and	Detailed contents1Introduction to Medicinal Chemistry: Definitions and explanation of terms used in Medicinal Chemistry (hits, lead, lead development, molecular libraries, toxicity studies, high throughput screening, ADME etc.), the nomenclature of drugs2Introduction to modern drug discovery- rational design, molecular modeling, genetics, and DNA technology3Drug targets: concepts of drug binding, affinity, selectivity. Discuss the following with examples.2Enzymes as drug targets: concept of enzyme, apoenzyme, holoenzyme, coenzyme, cofactor Targeting human enzymes, targeting enzymes selective to pathogens3Receptors as drug targets: types and properties of receptors Ligand-receptor interaction, types of bonds in the interactions, role of structure and conformation4Target identification methods: Brief overview of target identification,	contact h
Course title Medicinal Chemistry and	Detailed contents1Introduction to Medicinal Chemistry: Definitions and explanation of terms used in Medicinal Chemistry (hits, lead, lead development, molecular libraries, toxicity studies, high throughput screening, ADME etc.), the nomenclature of drugs2Introduction to modern drug discovery- rational design, molecular modeling, genetics, and DNA technology3Drug targets: concepts of drug binding, affinity, selectivity. Discuss the following with examples.2Enzymes as drug targets: concept of enzyme, apoenzyme, holoenzyme, coenzyme, cofactor 	contact h
Course title Medicinal Chemistry and	Detailed contents 1 Introduction to Medicinal Chemistry: Definitions and explanation of terms used in Medicinal Chemistry (hits, lead, lead development, molecular libraries, toxicity studies, high throughput screening, ADME etc.), the nomenclature of drugs 2 Introduction to modern drug discovery- rational design, molecular modeling, genetics, and DNA technology 3 Drug targets: concepts of drug binding, affinity, selectivity. Discuss the following with examples. Enzymes as drug targets: concept of enzyme, apoenzyme, holoenzyme, coenzyme, cofactor Targeting human enzymes, targeting enzymes selective to pathogens Receptors as drug targets: types and properties of receptors Ligand-receptor interaction, types of bonds in the interactions, role of structure and conformation Types of inhibitions (competitive, non-competitive, uncompetitive Allosteric interaction 4 Target identification methods: Brief overview of target identification, biopharmaceutical therapy, identification of druggable targets by proteome investigation, cellular screening, intracellular receptors and enzymes, a brief overview of drug metabolism and toxicity	contact h

		c) in silico screening	
		d) fragment-based drug design	
	6	Lead optimization: lead likeness and drug-likeness, determination of compound, biological, biochemical properties, metabolic information using the internet, homologs,	3
	7	SAR, QSAR: the concept of SAR, effects of substituents and functional groups, methodology of QSAR, practical applications like compound library design, profiling, acquisition, screening. Drug design: Ligand-based (pharmacophore modeling) and receptor-based drug design (protein crystallography, molecular docking)	4
	8	Medicinal natural products: Scope of the subject, Source of the drug of natural origin, Organized and unorganized drugs	1
	9	Preparation of drugs for commerce and quality control	
		Extraction and isolation of plant drugs: conventional and modern techniques used in extraction and separation of phytoconstituents.	3
	10	Phytochemistry: Chemical constituents in the production of plants (carbohydrates, protein enzymes, lipids, alkaloids, glycosides, steroids, tannins, terpenoids, flavonoids, plant pigments, etc.). Discuss at least 1 example from each of the above classes	6
	11	Biosynthesis approach: Building blocks and metabolic pathways for the formation of secondary metabolites.	2
	12	Extraction and isolation of plant drugs: conventional and modern techniques used in extraction and separation of phytoconstituents.	2
	13	Recent advances in phytopharmaceuticals (a topic of current interest)	1
		Total	36
Suggested text/reference		38. Foye's Principles Of Medicinal Chemistry W. O. Foye, Lippincott Williams & Wilk edition, 2008.	ins, 6th
books		39. Textbook of Medicinal And Pharmaceutical Chemistry Wilson And Gisvold, Lippi Williams & Wilkins, Philadelphia,11	ncott
		40. The Organic Chemistry of Drug Design and Drug Action. R. B. Silverman Elsevier Publication	
		 Dewick P.M., Medicinal Natural Products- A Biosynthetic Approach, 2 edition/20 Wiley & Sons Ltd 	02, John

- 42. Trease & Evans, Textbook of Pharmacognosy, 15
- 43. The Merck Index, Merck Research Laboratories, 13
- 44. Quality Standards of Indian Medicinal Plants, all volumes, ICMR
- 45. Indian Medicinal Plants, Kiritikar and Basu

Special Lab 1

- 1. API Synthesis
- 2. API purification and FT-IR, melting point analysis
- 3. Co-crystallization of API, analysis using XRD
- 4. Analysis of API and cosolvent (used in co-crystallization) by UV-VIS spectroscopy
- 5. Study of effect of co-crystallization on solubility
- 6. Natural product extraction using Soxhlet assembly
- 7. Enzymatic process for API intermediate synthesis and kinetic study using HPLC
- 8. Aseptic operation and sterilization

Special Lab 2

- 1. Antibiotic susceptibility testing using disc diffusion assay
- 2. Fermentative protein synthesis and protein purification using affinity chromatography
- 3. Granulation using granulator and hot melt extruder
- 4. Solid dosage form preparations
- 5. Semisolid and powder preparations
- 6. Quality control testing of various dosage forms

Energy

SP #	Course Code (IOCB)	Course Code (MARJ)	Туре	List of Subjects
1	SET3302	SET4302	Theory	Conventional Energy and Utilization
2	SET3303	SET4303	Theory	Renewable Energy Systems
3	SET3403	SET4403	Theory	Combustion and Chemistry of Fuels
4	SET3404	SET4404	Theory	Energy Conversion and Storage
5	SET3405	SET4405	Theory	Advanced Thermodynamics of Energy Systems
6	SET3506	SET4506	Theory	Materials for Energy Applications
7	SET3507	SET4507	Theory	Energy Management
1	SEP3301	SEP4301	Laboratory	Energy Lab-I
2	SEP3402	SEP4402	Laboratory	Energy Lab-II

-

			L	Т	Р	Total
Course code		SET4302				
Course title		Conventional Energy and Utilization				
Scheme and Credits		2L: 1T: OP 3 credits	2	1	0	3
Pre-requisites		Material and Energy Balance Calculations, Chemical Engineering Thermodynamics II, Physics II and Chemistry II				
Objectives of the course	1	To present an overview of energy generation, distribution and control systems				
	2	To impart understanding of sources of energy and its significance				
Syllabus	1	Basics of energy: Different forms of energy, energy conversion process, indirect and direct energy conversion; Different energy sources; Conventional energy systems: engines, power plants, various methods of power generation;	2	1		3
	2	Energy Distribution: Power systems: Load and load duration curves, selection of generating units, Introduction to power generation, transmission and distribution, power systems losses and compensation, High voltage AC (HVAC) and High voltage DC (HVDC) transmission; Interconnected grid system	4	2		6
	3	Basics of fuels: Modern concepts of fuel, Solid, liquid and gaseous fuels, composition, basic understanding of various properties of solid fuels - heating value, ultimate analysis, proximate analysis, ash deformation points; liquid fuels - heating value, density, specific gravity, viscosity, flash point, ignition point (self, forced), pour point, ash composition and gaseous fuels	4	2		6
	4	Coal as a source of energy: Coal reserves – World and India, Coal liquefaction process, various types of coal and their properties, Origin of coal, composition of coal, analysis and properties of coal	4	2		6
	5	Petroleum as a source of energy and chemicals: Origin, composition, classification of petroleum, grading of petroleum; Processing of petroleum: Distillation of crude petroleum, petroleum products, purification of petroleum products – thermal processes, catalytic processes, specifications and characteristics of petroleum products. Natural Gas	6	3		9
	6	Nuclear Energy	4	2		6
			24	12	0	36

Suggested books/ reference	1	Nag P. K. (2014); Basic and Applied Thermodynamics, McGraw Hill.				
	2	Theraja B. L. and Theraja A. K. (1998); A Text Book in Electrical Technology, S. Chand and Co.				
	3	Sarkar S. (2010); Fuels and Combustion, Third Edition, CRC Press				
	4	Jaccard M. (2006); Sustainable Fossil Fuels, Cambridge University Press				
Outcomes		On completion of the course, the students will be able to				
	CO1	List forms of energy, conversion processes				
	CO2	Categorize renewable and non renewable energy sources				
	CO3	Estimate calorific value from fuel analyses				
	CO4	Explain energy generation and distribution systems				
			L	Т	Р	Total
Course code		SET4303				
Course title		Renewable Energy Systems				
Scheme and		2L: 1T: OP 3 credits	2	1	0	3

Course title		Renewable Energy Systems				
Scheme and Credits		2L: 1T: OP 3 credits	2	1	0	3
Pre-requisites		Material and Energy Balance Calculations, Chemical Engineering Thermodynamics II, Physics II and Chemistry II				
Description of the Course		This course aims to develop understanding of renewable energy sources				
Objectives of the course	1	To examine the principles of sustainability and renewable energy				
	2	To create an understanding of solar energy conversion including photovoltaic (PV) and solar thermal conversion systems.				
	3	To examine the tradeoffs with use of biomass based energy				
Syllabus	1	Bioenergy: World and India's bioenergy scenario, production of biomass, photosynthesis, assessment of biomass resources, Biomass composition and energy content; Biofuels, types of biofuels and production technologies; Advanced bio-systems and biofuel production	2	1		3
	2	Biochemical conversion: Bio-methanation: biogas production mechanism and technology, Design of biogas plants, biogas slurry utilization and management, biogas applications; Cost benefit analysis of biogas for cooking, lighting, power generation applications, Case studies	4	2		6
	3	Thermochemical conversion: Pyrolysis, Carbonization, Charcoal production, Biomass gasification, Liquefaction; Torrefaction and pyrolytic oil, typical composition Biomass Gasifiers: types of gasifiers and mechanisms of operation, gasifier product gas analysis, gasifier stoves, heat and mass balance of gasification system; Gasification based power generation, IGCC, cost benefit analysis, case studies	4	2		6
	4	Solar Radiation, Solar angles, Sun path diagram; Shadow determination, Solar spectrum, Effect of earth atmosphere on solar radiation, Measurement and estimation of solar radiation on horizontal and tilted surfaces, Solar radiation measurement devices, Solar radiation data analysis	4	2		6
	5	Photovoltaic: Principle of photovoltaic conversion; Solar cell basics and materials; Different solar cell technologies:	4	2		6

	-	of coal; Processing of coal: Coal preparations, briquetting,	-	_		Ŭ
	2	aerospace, in relation to use; preparation of fuels; by-products; fuel analysis.Coal: Action of heat on coal, caking and coking properties	4	2		6
Syllabus	1	Nature and properties of fossil and other fuels, including	4	2		6
		thermodynamic, kinetic and transport perspectives				
	2	Fundamental understanding of combustion from				
Objectives of the course	1	Provide fundamental knowledge of the chemistry, composition and upgrading of fuels				
Description of the Course						
Pre-requisites		Momentum Transfer, Mass Transfer, Chemical Engineering Thermodynamics II				
Credits						
Scheme and		2L: 1T: OP 3 credits	2	1	0	3
Course title		Combustion and Chemistry of Fuels				
Course code		SET4403	L	T	Р	Total
		factors for analysis of renewable energy systems		-		Tetel
	CO3	Integrate the considerations of economic, environmental, sustainability, health and safety, social, and political				
		hydrokinetic energy				
	CO2	to the analysis of solar, wind and biomass power Design systems for harnessing biomass, solar, wind and				
	CO1	Apply principles of mathematics, science and engineering				
Outcomes		On completion of the course, the students will be able to				
		Press), 2013 by J. R. S. Brownson				
	5	Solar Energy Conversion Systems (Elsevier, Academic				
	4	<i>Wind Energy Explained, Theory Design and Application,</i> Second Edition, by James Manwell. 2009.				
		2011				
	3	Fuels from Biomass, Wiley India Wind Energy Handbook, Second Edition, by Tony Burton.				
reference	2	Mukunda H. S. (2011); Understanding Clean Energy and				
Suggested books/	1	Sorensen B. (2010); Renewable Energy, Fourth Edition, Academic press				
Suggested	1	Sprancan P. (2010): Panaurable Energy Fourth Edition				
			24	12	0	36
		design limitations and optimization, and environmental impact of wind energy conversion devices.				
		aerodynamic analysis, development of the Betz limit,				
	7	Wind energy conversion, tidal energy conversion Resource assessment, power, and energy calculations,	4	2		6
		Solar thermal power generation and economics;		2		
		collector: optical design of concentrators, solar water heaters, solar dryers;				
		Solar cooling and refrigeration; Concentrating solar				
		Design and components and flat plat collector; Development of solar thermal collectors;				
		system;				
		cooker, Solar pond, Solar passive heating and cooling				
		Introduction to different solar thermal energy systems: Solar flat plate collector, Concentrating collector, Solar				
	6	Solar thermal conversion: Theory and Basics.	2	1		3
		configurations; off grid and grid connected PV systems, PV system design and economics				
		solar cell; Photovoltaic system: Component and				
		Crystalline silicon solar cell, Thin Film solar cell, Tandem				

	1 1	and a starting and the transfertion of and Cool	1		1	
		carbonization, gasification and liquefaction of coal, Coal derived chemicals.				
	3	Combustion thermodynamics	4	2		6
		Combustion mechanism, elementary steps, chain	-	_		-
		reaction				
		Adiabatic Flame Temperature, Equilibrium constant and				
		free energy				
	4	Combustion Kinetics	4	2		6
		Elementary, consecutive and parallel reactions				
		Transition state theory, collision theory of reaction rates				
		Steady state approximation, concept and applications				
		Rate determining step, concept and applications				
	5	Contribution of Transport Phenomena to Combustion	4	2		6
		Combustion chamber modelling, laminar premixed				
		flames, laminar diffusion in flames, turbulent flames				
		basics, coupled heat and mass transfer, ignition and				
		heterogeneous combustion				
	6	Emissions	4	2		6
		Thermodynamic, kinetic analysis of emissions and control				
		of CO, NOx, SOx, biochar emissions, coal pyrolysis				
			24	12	0	36
Suggested	1	"An Introduction to Combustion: Concepts and				
books/		Applications," Third Edition, by Stephen R. Turns,				
reference		McGraw-Hill (2012)				
	2	Principles of Combustion, Kenneth Kuan-yun Kuo				
• •						
Outcomes	601	On completion of the course, the students will be able to				
	CO1	Apply knowledge to estimate heating value, and other				
		characteristics of coal based fuels		-		
	CO2	Develop or validate model for combustion based on				
	602	available data				
	CO3	Optimize process to minimize emissions		-		
Course code		SET4404	L	Т	Р	Total
Course title		Energy Conversion and Storage				
Scheme and		2L: 1T: 0P 3 credits	2	1	0	3
Credits						
Pre-requisites		Chemical Engineering Thermodynamics II, Conventional				
		Energy Technology				
Description of						
the Course						
Objectives of	1	To expose students to energy storage chemistry				
the course		particularly for storage of electricty.				
	2	Provide fundamental knowledge of the energy storage				
		devices and systems				
	3	To review conversion of energy in form of fuels				
Syllabus	1	Different types of energy storage; Mechanical, Chemical,	3	1		4
		Electrical, Electrochemical, Biological, Magnetic,				
		Electromagnetic, Thermal; Comparison of energy storage				
		technologies.				
	2	Thermal energy storage: principles and applications,	2	1		3
		Sensible and Latent heat, Phase change materials; solar				
		energy and thermal energy storage, case studies.				
	3	Flywheel and compressed air storage; Pumped hydro	2			2
	+	storage; Hydrogen energy storage				
	4	Capacitor and super capacitor, Electrochemical Double	3	1		4
	1 1	Layer Capacitor: Principles, performance and				
		applications.				

	5	Electrochemical energy storage: Battery – fundamentals and technologies, characteristics and performance comparison: Lead-acid, Nickel-Metal hydride, Lithium Ion;	6	3		9
	6	Battery system model, emerging trends in batteries. Hydrogen as energy carrier and storage; Hydrogen resources and production; Basic principle of direct energy conversion using fuel cells	4	2		6
	7	Fuel cell types: AFC, PEMFC, MCFC, SOFC, Microbial Fuel cell; Fuel cell performance, characterization and modeling; Fuel cell system design and technology, applications for power and transportation.	4	2		6
	8	Application of Energy Storage: Food preservation, Waste heat recovery, Solar energy storage	2	0		2
			26	10	0	36
Suggested	1					
books/ reference		Dincer I., and Rosen M. A. (2011); Thermal Energy				
reference	2	Storage: Systems and Applications, Wiley Huggins R. A. (2015); Energy Storage: Fundamentals, Materials and Applications. Springer				
Outcomes	C01	On completion of the course, the students will be able to Describe criteria used to determine performance, advantages, and disadvantages				
	CO2	Perform efficiency analysis of energy storage systems				
	CO3	Recommend optimal (appropriateness, cost and sustainability) solutions to any potential energy storage application				
			L	Т	Р	Total
Course code		SET4405				
Course title		Advanced Thermodynamics of Energy Systems				_
Scheme and Credits		2L: 1T: 0P 3 credits	2	1	0	3
Pre-requisites		Chemical Engineering Thermodynamics II, Energy conversion and storage				
Description of the Course						
Objectives of	1	To impart understanding of fundamentals of energy				
the course	2	conversion, reversibility and irreversibility To study energy conversion and storage from molecular perspective				
Syllabus	1	Macroscopic and microscopic analysis of direct and indirect energy conversion in thermochemical, electrochemical, thermomechanical and other processes	6	3		9
	2	Kinetic theory and transport phenomena in energy systems	6	3		9
	3	Exergy analysis for energy conversion systems	6	3		9
	4	Case studies: fossil fuels, electrochemical cells, fuel cells, photovoltaics, supercritical and combined power generation cycles	6	3		9
			24	12	0	36
Suggested books/ reference	1	Renaud Gicquel, Energy Systems: A New Approach to Engineering Thermodynamics, 2012, CRC Press, ISBN 9780415685009				
		Chandler, David (1987). Introduction to Modern Statistical Mechanics. Oxford University Press. ISBN 0-19-				

	2	Ibrahim Dincer and Marc A. Rosen, Exergy, 2013, 2nd edition, Elsevier, ISBN: 978-0-08-097089-9				
Outcomes		On completion of the course, the students will be able to				
outcomes	CO1	Evaluate feasibility of a particular energy conversion process or strorage				
	CO2	Assess a process for energy efficiency using exergy analysis and recommend improvements				
	CO3	Design efficient energy systems for recovery of waste heat, electrochemical storage, etc.				
			L	Т	Р	Total
Course code		SET4506				
Course title		Materials for Energy Applications	2	-	•	2
Scheme and Credits		2L: 1T: 0P 3 credits	2	1	0	3
Pre-requisites		Renewable Energy Systems, Combustion and Chemistry of Fuels				
Description of the Course						
Objectives of	1	To understanding the concepts of energy materials and				
the course	2	their characterizations and applications in energy devices				
		To analyze the material design and relate to photovoltaic device, fuel cell systems and energy storage devices				
	3	To develop an attitude of innovation/creativity towards material design for various energy harvesting devices				
Syllabus	1	Device fabrication technologies: diffusion, oxidation, photolithography, sputtering, physical vapor deposition, chemical vapor deposition (CVD), plasma enhanced CVD	6	2		8
		(PECVD), hot wire CVD (HWCVD)				
	2	High efficiency solar cells, PERL Si solar cell, III-V high efficiency solar cells, GaAs solar cells, tandem and multi- junction solar cells, solar PV concentrator cells and systems, III-V, II-VI thin-film solar cells; Amorphous silicon thin-film (and/or flexible) technologies, multijunction (tandem) solar cells, organic/flexible solar cells, polymer composites for solar cells, Spectral response of solar cells, quantum efficiency analysis, dark conductivity, I-V characterization	12	4		16
	3	Introduction to material characterization: Scanning electron microscopy (SEM), Transmission electron microscopy (TEM), X-ray diffraction (XRD), Raman spectroscopy, Atomic force microscopy (AFM); device fabrication and characterization;	4	2		6
	4	Materials and devices for energy storage; Batteries, Carbon Nano-Tubes (CNT), fabrication of CNTs, CNTs for hydrogen storage, CNT-polymer composites, ultra- capacitor; Polymer membranes for fuel cells, PEM fuel cell, Acid/alkaline fuel cells	4	2		6
			26	10	0	36
Suggested		Duncan W/ R. Dormot O. and Pichard J. W. (2011)				
Suggested books/ reference	1	Duncan W. B., Dermot O., and Richard I. W. (2011). Energy Materials, 1st Edition, Wiley				
	2	Fahrenbruch A. L. and Bube R. H. (1983); Fundamentals of Solar Cells: PV Solar Energy Conversion, Academic Press				
	3	Christoph B. Ullrich S. and Vladimir D. (2014). Organic Photovoltaics: Materials, Device Physics, and Manufacturing Technologies, 2nd Edition, Wiley-VCH				
	4	San P. J. and Pei K. S. (2013). Nanostructured and Advanced Materials for Fuel Cells, 1st Edition, CRC Press				

Outcomes		On completion of the course, the students will be able to				
	CO1	Students will be able to understand and apply principles				
		in solid state chemistry/physics, material science and				
		engineering, adsorption, surface science, and catalysis in				
		analyzing materials for energy applications.				
	CO2	Introductory information will be followed by case studies,				
		state of the art review of current materials, and research				
		needs for development.				
			L	т	Р	Tota
Course code		SET4507		•		1014
Course title		Energy Management				
Scheme and		2L: 1T: 0P 3 credits	2	1	0	3
Credits			2	-	U	5
		Chaminal Engineering Thermodynamics II. Engran				
Pre-requisites		Chemical Engineering Thermodynamics II, Energy				
		conversion and storage				
Description of						
the Course	_					
Objectives of	1	To understand the energy management, conservation				
the course		processes, principles of energy auditing, energy flow				
		diagram, economics of energy conservation				
		opportunities.				
	2	To understand the energy management information				
		systems, various key features of Energy Conservation Act				
		and ECBC				
	3	To impart knowledge on fundamentals of economic				
	J	principles and their applications in the broad field of				
		supply and demand of energy				
	4	To arouse interest in the students about the problems of				
		energy economics and arousing their interest on practical				
		problem solving skills.				
Syllabus	1	Concept of energy management programme, basic	2	1		3
		components of an energy audit, types of energy audit,				
		energy audit flow chart; Understanding energy use				
		patterns and costs, Fuel and energy substitution;				
		concepts of energy conservation and energy efficiency				
	2	Energy audit tools; financial analysis techniques and	4	2		6
	-	options, Energy service companies, Project planning	-	-		Ŭ
		techniques; case studies; Energy conservation act and its				
		features, Duties and responsibilities of energy managers				
	+	and auditors		-		
	3	Energy management systems, energy conservation policy	4	2		6
		and performance assessment, baseline and				
		benchmarking, Action planning, monitoring and				
		targeting, Energy management information systems,				
		CUSUM techniques				
	4	Case studies Energy conservation in buildings, building	2	1		3
		heating and cooling load management, Buildings code,				
		solar passive and green building concepts				
	5	Energy accounting framework; Economic theory of	4	2		6
		demand, production and cost market structure; National				
		energy map of India, Energy subsidy – National and				
		international perspectives				
			2	1		2
	6	Concepts of economic attributes involving renewable	2	1		3
		energy, Calculation of unit cost of power generation from				
		different sources with examples, different models and				
		methods				
	7	Application of econometrics; input and output	2	1		3
		optimization; energy planning and forecasting - different				
					1	
		methods				
	8	methods Concepts of economic attributes involving renewable	2	1		3

9Evaluation of National and Regional energy import, energy conservation, rural energy integrated energy planningSuggested books/ reference1Bhattacharyya S. C. (2011); Energy Econor books/ Introduction, First Edition, Kluwer2Ferdinand E. B. (2000); Energy Economics: Introduction, First Edition, Kluwer3Doty S. and Turner W. C. (2012); Energy M Handbook, Eighth Edition, Fairmont Press4Kreith F. and West R. E. (1996); Handbook Efficiency, First Edition, CRC PressOutcomesOn completion of the course, the students energy efficiency in process, pro- Establish benchline performance and desig energy systems for minimum energy expe minimizing life cycle costs through a comb disparate energy sources, storage and com systems.Course codeSEP4301 Curse titleCourse titleEnergy Laboratory-1 Scheme and O L: 0 T: 4 P9Curdition	economics, 24 24 mics, Springer A Modern Anagement s of Energy s will be able to oject, etc. gn policy for inditure, pination of		0	3 36
Suggested books/ reference 1 Bhattacharyya S. C. (2011); Energy Econor 2 Ferdinand E. B. (2000); Energy Economics: Introduction, First Edition, Kluwer 3 Doty S. and Turner W. C. (2012); Energy M Handbook, Eighth Edition, Fairmont Press 4 Kreith F. and West R. E. (1996); Handbook Efficiency, First Edition, CRC Press Outcomes On completion of the course, the students C01 Perform energy audit of given process, pro- C02 Establish benchline performance and designenergy efficiency in process C03 Design systems for minimum energy experiminizing life cycle costs through a comb disparate energy sources, storage and con- systems. Course code SEP4301 Course title Energy Laboratory-1 Scheme and 0 L: 0 T: 4 P 2 Credits	mics, Springer		0	36
books/ reference 2 Ferdinand E. B. (2000); Energy Economics: Introduction, First Edition, Kluwer 3 Doty S. and Turner W. C. (2012); Energy M Handbook, Eighth Edition, Fairmont Press 4 Kreith F. and West R. E. (1996); Handbook Efficiency, First Edition, CRC Press 0utcomes On completion of the course, the students CO1 Perform energy audit of given process, pro- Establish benchline performance and designed energy efficiency in process CO2 Establish benchline performance and designed energy efficiency in process CO3 Design systems for minimum energy exper- minimizing life cycle costs through a comb disparate energy sources, storage and com systems. Course code SEP4301 Course title Energy Laboratory-1 Scheme and 0 L: 0 T: 4 P 2 Credits	mics, Springer			
books/ reference 2 Ferdinand E. B. (2000); Energy Economics: Introduction, First Edition, Kluwer 3 Doty S. and Turner W. C. (2012); Energy M. Handbook, Eighth Edition, Fairmont Press 4 Kreith F. and West R. E. (1996); Handbook Efficiency, First Edition, CRC Press 0utcomes On completion of the course, the students CO1 Perform energy audit of given process, pro- Establish benchline performance and designering energy efficiency in process CO2 Establish benchline performance and designering use energy sources, storage and con- systems. Course code SEP4301 Course title Energy Laboratory-1 Scheme and 0 L: 0 T: 4 P 2 Credits	A Modern Aanagement of Energy s will be able to oject, etc. gn policy for inditure, pination of			
2Ferdinand E. B. (2000); Energy Economics: Introduction, First Edition, Kluwer3Doty S. and Turner W. C. (2012); Energy M Handbook, Eighth Edition, Fairmont Press4Kreith F. and West R. E. (1996); Handbook Efficiency, First Edition, CRC PressOutcomesOn completion of the course, the students Perform energy audit of given process, pro Establish benchline performance and desig energy efficiency in processC01Perform energy audit of given process, pro Establish benchline performance and desig energy efficiency in processC03Design systems for minimum energy expe minimizing life cycle costs through a comb disparate energy sources, storage and con systems.Course codeSEP4301 Energy Laboratory-1Course titleEnergy Laboratory-1 0 L: 0 T: 4 P2 CreditsO L: 0 T: 4 P	Management Anagement a of Energy a of Energy a swill be able to oject, etc. gn policy for anditure, pination of			
3 Doty S. and Turner W. C. (2012); Energy M. 4 Handbook, Eighth Edition, Fairmont Press 4 Kreith F. and West R. E. (1996); Handbook Outcomes On completion of the course, the students C01 Perform energy audit of given process, pro C02 Establish benchline performance and designenergy efficiency in process C03 Design systems for minimum energy experiminimizing life cycle costs through a comb disparate energy sources, storage and con systems. Course code SEP4301 Course title Energy Laboratory-1 Scheme and 0 L: 0 T: 4 P 2 Credits	s will be able to oject, etc. gn policy for onditure, pination of			
Image: Constraint of the course is the students Outcomes On completion of the course, the students CO1 Perform energy audit of given process, process, process CO2 Establish benchline performance and designering efficiency in process CO3 Design systems for minimum energy experiminimizing life cycle costs through a combinities of the storage and consistency. Course code SEP4301 Course title Energy Laboratory-1 Scheme and 0 L: 0 T: 4 P 2 Credits	s will be able to oject, etc. gn policy for inditure, pination of			
CO1 Perform energy audit of given process, process, process CO2 Establish benchline performance and designed energy efficiency in process CO3 Design systems for minimum energy experminimizing life cycle costs through a comb disparate energy sources, storage and consystems. Course code SEP4301 Course title Energy Laboratory-1 Scheme and 0 L: 0 T: 4 P 2 Credits	oject, etc gn policy for inditure, pination of			
CO1 Perform energy audit of given process, process, process CO2 Establish benchline performance and designed energy efficiency in process CO3 Design systems for minimum energy experminimizing life cycle costs through a comb disparate energy sources, storage and comsystems. Course code SEP4301 Course title Energy Laboratory-1 Scheme and 0 L: 0 T: 4 P 2 Credits	oject, etc gn policy for inditure, pination of			
CO2 Establish benchline performance and designergy efficiency in process CO3 Design systems for minimum energy experminimizing life cycle costs through a combinity disparate energy sources, storage and consystems. Course code SEP4301 Course title Energy Laboratory-1 Scheme and 0 L: 0 T: 4 P 2 Credits	gn policy for nditure, pination of			ļ
Course code SEP4301 Course title Energy Laboratory-1 Scheme and 0 L: 0 T: 4 P 2 Credits	pination of			
Course title Energy Laboratory-1 Scheme and 0 L: 0 T: 4 P 2 Credits				
Course title Energy Laboratory-1 Scheme and 0 L: 0 T: 4 P 2 Credits		_		
Scheme and 0 L: 0 T: 4 P 2 Credits	L	Т	Р	Total
Credits				
Pre-requisites Conventional Energy and Utilization, Sepa	ration Process			
Objectives of 1 To learn to characterization techniques of	conventional			
the course energy sources				
2 To learn to collect, collate and interpret an				
3 To Learn quality and quantitative determin sample	nation of			
Date lied		-		
Detailed contents	0	0	48	
1 Determination of vaporization characteris	tics of given			
petroleum product by ASTM distillation. 2 Determination of flash point and fire point	+			
3 Determination of diesel index of given pet				
4 Determination of carbon residue of given fraction.				
5 Determination of drop point of given sam	ple.			
6 Determination of viscosity of given petrole				
7 Determination of cloud point and pour po	pint.			
8 Determination of the smoke point.				
9 Determination of calorific value of fuel by calorimeter.	Bomb			
Total	0	0	48	48
Outcomes Students will be able to				
Students will be able to	otroloum			
CO1 Describe the basic principles of different p characterization techniques.	Jeuoleum			
CO2 Suggest possible characterization technique petroleum sample. Suggest possible characterization technique	ues for given			
CO3 Strengthen the theoretical knowledge of p products.				

	CO4	Able to clearly communicate the results of experimental work in oral and written formats.				
	CO3	Simulate and optimize processes for energy management				
Course code		SEP4402	L	Т	Р	Total
Course title		Energy Laboratory-2				
Scheme and Credits		0 L: 0 T: 4 P 2 Credits				
Pre-requisites		Renewable Energy Technology				
Objectives of the course	1	To learn to characterization techniques of renewable energy sources				
	2	To learn to collect, collate and interpret analytical results				
	3	To Learn quality and quantitative determination of sample				
Detailed contents			0	0	48	
	1	Solar cell effectiveness				
	2	Solar Thermal Heater				
	3	Performance analysis of Solar PV Electricity Generator				
	4	Biogas production from wate (biomass/wastewater)				
	5	Biohydrogen from waste (biomass/wastewater)				
	6	Production of biofuel				
	7	Characterization of biofuel				
		Total	0	0	48	48
Outcomes						
		Students will be able to				
	CO1	Describe the basic principles of different renewable energy sources characterization techniques.				
	CO2	Suggest possible characterization techniques for given renewable energy source.				
	CO3	Strengthen the theoretical knowledge of renewable energy source.				
	CO4	Able to clearly communicate the results of experimental work in oral and written formats.				

Course code		SET3201					
Course title		Conventional Energy and Utilization					
Scheme and Credits2 L: 1 T: 0 P3 Credits							
Pre-requisites		Thermodynamics, Heat transfer, Mass and Energy balance					
Objectives of the c	ourse	This part of the course deals with the production of energy from different energy sources through conventional routes. It is intended to help the young their knowledge upgraded with the current thoughts and newer technology opt their advances in the field of the utilization of different types of conventional en- for cleaner energy production.	minds to keep ions along with				
Course title	Deta	iled contents	Total contact h				
	1	Introduction to the Topic; Classification of various energy sources; Key differences between them; Energy scenario in India; Global usage statistics	2				
	2	Natural gas – Formation, Unconventional sources, composition and combustion properties, Natural gas production, transport and storage, applications.	4				
	3	LNG production, transport and storage	2				
	4	Coal – Origin, structure and classification; Coal mining	4				
Renewable and	5	Usage of coal in electricity generation, iron and cement industry	4				
Non-Renewable Energy	4	Petroleum – Consumption of oil, sources and production of oil, crude oil characterization	4				
	5	Refining of crude oil	4				
	6	Nuclear Energy – Fission and Fusion cycle, Resources, fuel cycles, Electricity generation,	4				
	7	Nuclear reactors – Types, Generations; Nuclear waste management	4				
	8	Cleaner routes of energy production from conventional sources	2				
	9	Hubbert Peak theory, Peak production forecast for conventional energy sources	2				
	Tota	1	36				
Suggested		1. Tushar K. Ghosh, Mark A. Prelas (eds.) - Energy Resources and	1				
text/reference books		 Systems_ Volume 1_ Fundamentals and Non-Renewable Resources (2009, Springer Netherlands) Kyle Forinash - Physics and the Environment – IOP Science, 2017 					
		3. Vikram Janardhan, Bob Fesmire - Energy Explained, Volume 1_ Conventional Energy (2010, Rowman & Littlefield Publishers)					

Course code		SET3302		
Course title		Special Subject 2: Renewable Energy and Utilization		
Scheme and Cred	its	2 L: 1 T: 0 P 3 Credits		
Pre-requisites		Thermodynamics, Heat transfer, Conventional energy		
Objectives of the	course	This part of the course deals with the production of energy from different rene sources through different routes. It is intended to help the young minds knowledge upgraded with the current thoughts and newer technology options al advances in the field of the utilization of different types of unconventional energy for cleaner energy production.	to keep their ong with their	
Course title	urse title Detailed contents		Total	
			contact h	
	1	Classification of various renewable energy sources; Principles of renewable energy, Renewable Energy scenario in India; Global usage statistics	1	
Renewable and Non-Renewable Energy	2	Solar Energy: • Energy Transfer to the Earth • Use of Solar Energy • Concentrating Solar Power (CSP) • Photovoltaics	6	
	3	 Wind Energy Harvesting Energy from Wind Energy and Power from Wind Turbine Types 	6	

		Industrial Wind Turbines	
		Low Frequency Noise form Wind Turbines	
	4	Hydro-power	
		Hydropower systems	<i>r</i>
		• Hydro-turbines	6
		Hydropower System Efficiency	
	5	Ocean Energy	
		Ocean Energy Potential against Wind and Solar	
		• Wave Characteristics and Statistics	
		Wave Energy Devices	
		• Tide characteristics and Statistics	6
		Tide Energy Technologies	
		Ocean Thermal Energy	
		Osmotic Power	
	4	Geothermal Energy	
	-	Geothermal Resources	4
		Geothermal Technologies	-
	5	Bioenergy	
	5	Energy Source of Biomass	
		 Composition of Biomass 	
		 Biomass Resources, Land Requirement, and Production 	4
		 Biomass Resources, Land Requirement, and Floduction Biomethane and biofuel 	
	(Biofeedstock for Industrial Chemicals	
	6	Ethanol	
		Ethanol Production from Corn	1
		• Sugar Crop Fermentation	
	-	Production of Ethanol from Cellulosic Biomass	
	7	Hydrogen energy	
		Hydrogen Internal Combustion Engine	2
		Hydrogen Production Methods	
		Hydrogen Storage	
		TOTAL	36
Suggested	4.	Tushar K. Ghosh, Mark A. Prelas (eds.) - Energy Resources and Systems_	
text/reference		Volume 2_ Renewable Resources (2009, Springer Netherlands)	
books	5.	John Twidell, Tony Weir - Renewable Energy Resources-Taylor & Francis	
		(2005)	
	6.	Aldo V. da Rosa - Fundamentals of Renewable Energy Processes-Elsevier	
		Academic Press (2005)	
		readenie 1 (655 (2005)	
Outcomes	Studen	ts will be able to	
Cuttomes	•	Understand the various renewable resources for energy utilization	
	•	Analyse the mechanism for producing energy from renewable resources	
	•	Develop the correlations and methodologies to calculate the power ratings of	
		renewable energy devices	
		Tenewaste energy devices	

Course code		SET3403	
Course title		Energy and Sustainability	
Scheme and Credits	5	2 L: 1 T: 0 P 3 Credits	
Pre-requisites Thermodynamics, Heat transfer, Mass and Energy balance			
Objectives of the co	urse	This course deals with Sustainable developments in energy sector and the rele advancements in this domain. The course also includes different strategies sustainable Goals.	
Course title	Deta	iled contents	Total contact h
	1	Introduction to the Topic; Sustainable Energy Systems, Sustainability Challenges and Opportunities	3

Energy and Sustainability	2	Energy Demand; Industrial and Commercial Sectors, Residential Sector, Transportation Sector	3			
Sustainability	3	Conventional and Unconventional Fossil Fuel Sources; Green House Gas Emissions	3			
	4	Climate Mitigation Policies	3			
	5	Energy Poverty and Cooking; Clean Cooking	3			
	6	Renewable Energy Technologies; Solar, Wind, Hydro, Geothermal, Tide/Wave; Nuclear Power	4			
	7 Sustainable Biofuel; First Generation, Second Generation, Third Generation, Fourth Generation; Bioenergy with Carbon Capture and Storage					
	8	Carbon Sequestration Technologies	4			
	9	Energy Analysis and Carbon Accounting; Life Cycle Analysis	3			
	10 Energy Efficiency Technologies; Green Building, Industrial Energy 3					
	11	Energy Security and Sustainable Development	3			
	Tota	1	36			

Course code		SET3404				
Course title		Coal Engineering and Coal to Chemicals				
Scheme and Credit	s	2 L: 1 T: 0 P 3 Credits				
Pre-requisites		Thermodynamics, Heat transfer, Mass and Energy balance				
Objectives of the course This course deals with all the processes and technologies associated with coare extraction to power generation and production of other chemicals. The course a the pollution from coal combustion, control strategies and clean coal technology						
Course title	Deta	niled contents	Total			
			contact h			
	1	Introduction to the Topic; Role of coal in Energy Growth and CO ₂ Emissions; Worldwide distribution of coal, Global coal consumption, Coal usage in power generation, Iron and Cement industry	3			
	2	Origin of coal; Coalification; Classification; Chemical and Physical Characteristics of Coal	3			
	3	Coal Mining; Underground Mining, Surface Mining, Impact of mining on environment	2			
	4	Introduction to coal utilization technologies; Coal combustion, Carbonization, Gasification, Liquefaction	4			
	5	Coal Gasification; Types of gasifiers, Commercial gasifiers; Coal to liquid fuels, Direct and Indirect coal liquefaction	4			
Coal Engineering	6	Coal Fired Power Plant; Coal Transport, Handling, Storage, Size reduction; Steam Turbines & Electricity Generation; Ash and by-product handling	4			
	7	Coal based electricity generation; pulverized coal combustion (PC), PC combustion using subcritical, supercritical, or ultra-supercritical steam cycles, circulating fluidized bed combustion	4			
	8	Coal Gasification; Basics of gasification, Products of gasification	3			
	9	Direct Coal Liquefaction; Single-Stage direct liquefaction, Two-Stage direct liquefaction	3			
	10	Coal to Olefins; Coal to Methanol, Methanol to Olefin, Coal to Gasoline and LPG and jet fuels	4			
	11	Clean Coal Technology in India	2			
	Tota	1	36			

Course code	SET3405
Course title	Electrochemical Technology
Scheme and Credits	2 L: 1 T: 0 P 3 Credits

Pre-requisites	Thermodynamics, Momentum transfer, Electrochemistry	This part of the course deals with the production of energy from electrochemical sources. It is intended to help the young minds to understand the basic chemistry of electrochemical cells. At the same time this topic is going to give an insight on different electrochemical technology application			
Objectives of the cou	intended to help the young minds to understand the basic chemistry of electrochemi				
Course title	Detailed contents	Total contact h			
	1 Introduction to the Topic; Overview of application of electrochemical technology, Atomic structures	2			
	2 Properties of solutions, electrolytic dissociation, activity and activity coefficient, acid and bases, pH, ionic product of water, Hydrolysis of salts,	4			
	3 Electrochemical double layer – supercapacitors, Determination of power and power density, energy density	4			
	4 Fine structure of double layer - Helmholtz' approach, Gouy and Chapman model, model by Otto Stern, Bockris–Müller–Devanathan Model	6			
Electrochemical Technology	5 Electrochemical analytical techniques - Kirchhoff's Law, redox processes, metal and semiconductor conductivity, Electrogravimetry, conductivity,	6			
	6 Electrochemical analytical techniques- Potentiometry	4			
	7 Electrochemical analytical techniques- voltammetry and polarography, ion selective electrodes,	4			
	8 Karl fischer titration, Electrochemical Sensors	2			
	9 Electrochemical cells - Faraday's law, Clark cell, Weston cell, Electrolyzer cells, Water electrolysis	4			
	Total	36			
Suggested 1. Electrochemical Energy Systems: Foundations, Energy Storage and Conversion by Artur Braun text/reference books 2. Electrochemical technologies for energy storage and conversion by Ru-Shi Liu, et al					

Course code	SET3506					
Course title	Energy Storage Devices	nergy Storage Devices				
Scheme and Credits	2 L: 1 T: 0 P 3 Credits					
Pre-requisites	Thermodynamics, Electrochemical technology					
Objectives of the course	This part of the course deals with the storage of energy primarily from electrochemical sources. It is needed to make the students aware of different types of energy storage devices available presently. At the ame time the future prospects of the energy cells will be focused.					
Course title	Detailed contents	Total				
	1 Definition of Primary and secondary battery	2				
	2 Thermodynamics of electrochemical energy storage – reaction free energy and equilibrium cell voltage, terminal velocity, current-voltage diagram, Overcharge Reactions, Coulometric Efficiency and Energy Efficiency, Cycle Life and Shelf Life	8				
Energy Storage Devices	3 Aqueous Electrolyte Batteries- Materials and electrochemistry - Manganese Oxides, Nickel Hydroxides, Lead Oxides, Bromine-Storage Materials, Metal Hydride Electrodes	6				
	4 Alkali Metal Batteries- Lithium Intercalation Cathode Materials for Lithium-Ion Batteries, Rechargeable Lithium Anodes, Lithium Alloy Anodes, The Anode/Electrolyte Interface, Liquid Nonaqueous Electrolytes. Materials for High- Temperature Batteries	8				

	5 Fuel cells- Comparison of efficiency of the combustion engine and fuel cell, development of battery vehicles, Hydrogen fuel cell	4				
	6 Variety of fuel cells, The proton exchange membrane fuel cell, Solid oxide fuel cell (SOFC), Electronic structure and conductivity of SOFC cathode materials					
	7 Photoelectrochemical cells	4				
	Total	36				
Suggested	1. Electrochemical Energy Systems: Foundations, Energy Storage and					
text/reference books	Conversion by Artur Braun					
	 Electrochemical technologies for energy storage and conversion by Ru-Shi Liu, et al 					

Course code	SET3507					
Course title	Advances in Solar and wind energy					
Scheme and Credits	2 L: 1 T: 0 P 3 Credits					
Pre-requisites	Thermodynamics, Renewable energy, Heat transfer	Thermodynamics, Renewable energy, Heat transfer				
Objectives of the course	is part of the course deals with two most important renewable energy sources- solar and wind energy. is course focuses mainly on the progressive development of solar as well as wind energy. The future aspects of these two as sustainable energy forms will also be discussed.					
Course title	Detailed contents	Total contact h				
	1 Solar radiation – Geometry of collector and the solar beam, measurement of solar radiation	2				
	2 Solar water heating- heat balance, different types of solar water heater, Social and environmental aspects, Concentrating Solar Power	4				
	3 Photovoltaic generation- band theory, silicon p–n junction, current voltage characteristics, fabrication of silicon, thin film deposition	6				
Energy Storage Devices	4 Dye sensitized solar cells, quantum dot solar cells, organic solar cells, Perovskite solar cells,	6				
	5 Wind energy: Turbine types, terms and theories	6				
	6 Characteristics and power generation from wind energy	6				
	7 Wind farm, small wind systems, Low frequency noise from wind turbines	6				
	Total	36				
Suggested text/reference books	 Tushar K. Ghosh, Mark A. Prelas (eds.) - Energy Resources and Systems, Volume 2 John Twidell, Tony Weir - Renewable Energy Resources-Taylor & Francis 					

Course code		ST	
Course title		Special Lab – I- Energy Engineering	
Scheme and Credit	S	0 L: 0 T: 4 P 2 Credits	
Pre-requisites		Special subject - Energy Engineering - Renewable and non-renewable ener	gy basics
Objectives of the			
course			
Course title		Detailed contents	Total
			contact h
	1	Determination of flash point and fire point of petroleum cuts	4
Special Lab -I	2	Determination of viscosity of petroleum cuts	4
	3	Determination of calorific value of a solid and liquid fuel	4

	4	ASTM distillation of diesel fuel	4
	5	Copper strip corrosion of liquid fuel	4
	6	Working principle of Solar, wind and hydraulic power generation – analysis of circuits	4
		Total	24
Suggested text/reference books			
Outcomes			

Course code		ST				
Course title		Special Lab – 2- Energy Engineering				
Scheme and Credits		0 L: 0 T: 4 P 2 Credits				
Pre-requisites		pecial subject – Energy Engineering – Renewable and non renewable energy basics				
Objectives of the course						
Course title		Detailed contents	Total contact h			
	1	Performance analysis of Solar PV Electricity Generator	4			
	2	Study of Solar Thermal Heater using the solar concentrator	4			
	3	Performance analysis of Wind turbine electricity generator	4			
Special Lab -II	4	Estimation of calorific value of biomass versus petroleum	4			
	5	Estimation of energy requirement for biomass fractionation	4			
	6	To study the power storage of electrochemical cells	4			
		Total	24			
Suggested text/reference books						
Outcomes						

Petroleum and Petrochemicals

SP #	Course Code (IOCB)	Course Code (MARJ)	Туре	List of Subjects
1	SPT3302	SPT4302	Theory	Introduction to petroleum technology
2	SPT3403	SPT4403	Theory	Petroleum refining processes
3	SPT3404	SPT4404	Theory	Refinery engineering
4	SPT3506	SPT4506	Theory	Reservoir Technology
5	SPT3405	SPT4405	Theory	Petrochemicals technology
6	SPT3507	SPT4507	Theory	Industrial Catalysis
7	SPT3508	SPT4508	Theory	Petroleum economics and management
1	SPP3402	SPP4402	Laboratory	Petroleum Chracterization Laboratory-I
2	SPP3403	SPP4403	Laboratory	Petroleum Laboratory-II

			L	Т	Р	Total
Course code		SPT4302				
Course title		Introduction to Petroleum Technology.				
Scheme and		2L: 1T: OP 3 Credits				
Credits						
Pre-requisites		Chemistry I & II, Physics I & II, Material and				
		energy balance calculations, Mass transfer				
		operations.				
Objectives of the						
course						
		To give students an overview of: Petroleum				
		industry, its history, important petroleum				
		product, there characterization and general				
		refinery setup.				
Detailed contents						
	1	Introduction to petroleum and petrochemical	2	1		3
		industry, history of petroleum, Current Indian and				
		global scenario, oil pricing, future trends and				
	-	developments.	_	-		
	2	Origin of petroleum, organic and inorganic	4	2		6
		theories of origin of petroleum, Kerogen				
		composition, composition of crude oil,				
		hydrocarbons and non-hydrocarbons present				
		(type, functional groups, name, structure, role				
	_	etc.), classification of crude oil.				
	3	Introduction to refinery, Types of refineries:	2	1		3
		simple, intermediate and complex refineries,				
		history and current status of Indian refineries,				
		general refinery setup				
	4	Major petroleum products (LPG, gasoline,	2	1		3
		kerosene, diesel, aviation turbine fuel, lube oil				
		etc.,), their specification (Indian context),				
		additives used to meet requirements and testing				
		methods for petroleum products.		2		-
	5	Major petrochemical products, Feed stock for	4	2		6
	6	petrochemicals.		2		6
	6	Exploration: Geological, geophysical and	4	2		6
		geochemical methods of exploration, basin and				
		exploration strategies, application of remote				
		sensing in petroleum resource development,				
		instruments used – principles and working;				
		magnetometers, seismogram, radiation counters				
		and gravimeters.				

1	ı –	I					
	7		Drilling: Drilling methods (vertical, deviated and	2	1		3
			horizontal), cable tool, rotary and turbo drilling,				
			drilling equipment: Drilling rigs and drilling string,				
	8		drilling fluid- composition and functions. Oil recovery: Well logging and well completion,	4	2		6
	ð		well testing and control, free flow and gas lifting,	4	2		0
			mechanical pumping, primary oil recovery,				
			secondary oil recovery and enhanced oil recovery				
			methods, gravity drainage, water flooding. Total	24	12		36
Currente d'hie elue				24	12		30
Suggested books.		4	Detectory official Technology and Free environment				
		1	Petroleum refining, Technology and Economics by				
		2	J H Gary and G E Handwork.				
		2	The Chemistry and Technology of Petroleum by				
		2	James G Speight,				
		3	Composition and properties of Petroleum by H J				
			Neumann, B P Lahme and B Severin				
		4	Modern Petroleum Technology : G D Hobson and W Pohl				
		5	Modern petroleum refining processes by B K				
			Bhaskara Rao				
Outcomes							
	CO1		Student will know the history and origin of				
			petroleum.				
	CO2		Student will understand the importance of				
			petroleum technology.				
	CO3		Student will know the specifications of various				
			petroleum products.				
	CO4		Student will be able the list out different				
			processes involved in petroleum refinery.				
				L	т	Р	Total
Course code			SPT4303	-	<u> </u>	-	Total
Course title			Petroleum refining processes				
Scheme and			2L: 1T: 0P 3 Credits				
Credits							
Pre-requisites			Chemistry I & II, Material & Energy Balance				
			Calculations, Physical Chemistry, Introduction to				
			petroleum technology.				
Objectives of the			Students will learn the thermodynamics, kinetics,				
course			mechanism and process flow diagram of various				
			refining processes used to improve the quality of				
			different petroleum fraction.				
Detailed contents							
	1		Separation of oil and gas, pre-treatment	2	1		3
	_		methods, removal of moisture and salts,				_
			transportation and storage.				
	2		Thermal cracking, thermal processing like	4	2		6
	<u> </u>		visbreaking, delayed coking, fluid coking,				-
			flexicoking.				
	3		Catalytic cracking: Cracking reactions, cracking	4	2		6
			catalysts, cracking units, fluidized bed catalytic	-	-		Ŭ
			cracking (FCC), new designs for FCC units.				
	4		Hydrocracking and hydro-processing:	4	2		6
	-		Hydrocracking reactions, hydrocracking catalysts,	-	2		Ū
			hydrocracking reactions, hydrocracking catalysis,				
			production and purification.				
	5		Catalytic reforming: Reforming reactions, feed	4	2		6
	5		preparations, reforming catalyst, reactor design,	4	2		0
			catalytic reformer.				

	6	ĺ	Light end processes: Isomerization, alkylation	6	3		9
			and polymerisation.				
			Total	24	12	0	36
Suggested books.							
		1	Petroleum Refining Engineering by W L Nelson.				
		2	Petroleum Processing, Principles and Applications				
			by R J Hengstebeck.				
		3	Modern Petroleum Technology by G.D. Hobson				
Outcomes			Students will learn				
	CO1		to identify the process/technique to improve				
			quality of given petroleum fraction.				
	CO2		Draw process flow diagrams/process block				
			diagrams for any given refinery operation.				
				L	Т	Р	Total
Course code			SPT4404				
Course title			Reservoir Technology				
Scheme and			2L: 1T: 0P 3 Credits				
Credits							
Pre-requisites			Introduction to petroleum technology,				
			momentum transfer, mass transfer operations,				
			Materials physics.				
Objectives of the			To impart knowledge in the basic concepts like				
course			PVT analysis for oil, Material balance				
			applied to oil reservoir, Darcy's law and				
			applications, well inflow estimation for				
			stabilized flow conditions.				
Detailed contents							
	1		Petroleum geology, types of rocks, sedimentary	4	2		6
			rocks, Oil and gas traps, migration and				
			accumulation of oil and gas,				
	2		Petroleum reservoir, properties of petroleum and	4	2		6
			gas in rocks, fundamentals of oil and gas flow in				
			porous media. Natural gas and gas hydrates.				
	3		Reservoir Fluids: Phase behaviour of hydrocarbon	6	3		9
			system, ideal & non ideal system, equilibrium				
			ratios, reservoir fluid sampling, PVT properties				
			determination, different correlations and				
			laboratory measurements, data reduction,				
			evaluation and application.		2		6
	4		Reserve estimation: resource & reserve concept,	4	2		6
			Different reserve estimation techniques Volumetric, MBE, decline curve analysis, latest	6	2		0
	5		SPE/ WPC/ IS classification, predicting reservoir	6	3		9
			performance, introduction to reservoir				
			simulation.				
			Total	24	12		36
Suggested books.				24	12		30
Suggesten DOURS.		1	Advanced Reservoir Engineering by T. Ahmed and				
			P. McKinney.				
		2	Principles of Petroleum Reservoir Engineering by				
		<u> </u>	G.L. Chierici.				
		3	Applied Petroleum Reservoir Engineering by R.E,				
			Terry, M. Hawkins and B.C. Craft.				
	ł	4	Fundamentals of Reservoir Engineering by L.P.				
		-	Dake.				
Outcomes	1		Students will				
Jucomes	CO1		Do calculations on basic PVT analysis of the				
			specific reservoir of various sands				
	CO2		Estimate the reserves of various sands of the				
	02		reservoir from well data.				
	I	1	reservoir nom well uata.		1		

	CO3		Understand the key concepts of petroleum geology.				
	1	1		L	т	Р	Total
Course code			SPT4403	L	-	Р	Total
Course title			Refinery engineering				
Scheme and			2L: 1T: 0P 3 Credits				
Credits							
Pre-requisites			Mass transfer operations, Separation processes,				
			Heat transfer, Chemical reaction engineering,				
			Petroleum refining processes				
Objectives of the			In this student will learn to apply their knowledge				
course			of mass transfer, heat transfer, equipment design and chemical reaction engineering to complex				
			processes of petroleum refineries.				
			processes of perforcum remeties.				
Detailed contents							
	1		Design aspects of pipe still heaters, radiant and	3	2		5
			convection sections, calculation of heat flux,				
			radius and number of pipes. Furnace design: Heat				
			load calculations for furnace heaters, typical heat				
			flux values, basic constructional features,				
			different furnace types, factors to be considered in the design of fired heaters.				
	2		Distillation curves: ASTM, TBP, EFV distillation	6	3		9
			curves; experimental details, their comparison	-	-		-
			and inter relations by Nelson and Edmister				
			correlations. Multicomponent vapour liquid				
			equilibrium, flash distillation, key components,				
			dew point and bubble point calculations.				
			Multicomponent distillation, calculation of				
			number of stages in distillation, calculation of				
			minimum reflux and number of plates, feed plate location.				
	3		Atmospheric distillation tower: Types of refluxes,	6	3		9
	_		concept of overflash, overall material balance,	-	-		-
			estimation of top, bottom, side draw tray				
			temperatures, energy balance for atmospheric				
			distillation tower. Vacuum distillation tower:				
			Type of operations, vacuum distillation column				
			internals, flash zone and tower base calculations, flash zone pressure, steam requirements, heat				
			and material balance calculations.				
	4		Multicomponent liquid - liquid equilibrium	3	1		4
			relations, estimation of number of stages by				
			triangular and rectangular diagrams for complex				
			petroleum oils.				
	5		Multicomponent absorption and stripping in	3	2		5
			refinery operations, absorption and stripping factors and their significance. Mathematical				
			analysis of multi- component absorbers and				
			strippers, Kremser-Brown absorption factor				
			methods.				
	6		Adsorption, breakthrough phenomena, concept	3	1		4
			of adsorption zone height, unsteady state fixed				
			bed operation, LUB concept, design of absorbers.				
			Sorbex technologies and its concepts.				
			Total	24	12		36
	1						
Suggested books.		4	Detroloum Defining Engineering hould I Noter				
Suggested books.		1	Petroleum Refining Engineering by W L Nelson. Petroleum Refinery Distillation by R.N.Watkins,				

		4	Chemical Reactor Design and Process Plants, Vol I				
			and II, H.F.Rase.				
		5	Heterogeneous Reactions, Analysis, Examples and				
			Reactor Design, L. K. Doraiswamy and M. M.				
			Sharma.				
Outcomes			Students will				
	CO1		Analyse multicomponent VLE data.				
	CO2		Perform multicomponent distillation calculation.				
	CO3		Carry out multicomponent liquid-liquid				
			extraction.				
	CO4		Identify best reactor configuration for given				
			process and design it.				
				L	Т	Р	Total
Course code			SPT4405				
Course title			Petrochemicals Technology				
Scheme and			2L: 1T: 0P 3 Credits				
Credits							
Pre-requisites			Chemistry I & II, Material & Energy Balance				
			Calculations, Physical Chemistry, Introduction to				
			petroleum technology.				
Objectives of the			This course focusses on manufacturing processes				
course			of all important petrochemical products.				
Detailed contents		-					
	1		Chemicals derived from C1-C2. Chemicals from	4	2		6
			natural gas, naphtha etc. Principal reactions of	-	_		-
			Methane, ethane, ethylene and acetylene.				
			Naphtha and gas cracking to produce C2-C4				
			olefins, dienes and aromatics.				
	2		Chemicals from C3 and C4. Production of	4	2		6
			isopropanol, acrylonitrile, acrylic acid, propylene				
			oxide, propylene glycol, polymers and copolymers				
			of propylene, dehydrogenation of butane,				
			production of MTBE, acetic acid from butene,				
			butadiene from butane, maleic anhydride.				
	3		Chemicals from high molecular weight n-paraffin:	4	2		6
			Oxidation of n-paraffin to fatty acids and fatty				
			alcohols, chlorination and sulfonation of n-				
			paraffin.				
	4		Petroleum aromatics. Chemicals based on	4	2		6
			benzene, toluene and xylene (BTX), synthesis of				
			ethylbenzene, phenol, aniline, nitrobenzene,				
			chlorobenzene, styrene, cumine, benzoic acid, o-				
			cresols, benzaldehyde, phthalic anhydride.				
	5		Polymerization fundamentals, Ziegler Natta	2	1		3
			catalysts, polymerization of simple olefins such as				
			ethylene and propylene. Synthetic rubbers,				
			manufacture, general characteristics, raw				
			materials for synthesis, range of synthetic				
			rubbers, PBR, SBR, NBR, butyl rubber.				
	6		Waxes - Introduction, History of waxes and their	2	1		3
	-		applications, definitions, classification- natural,				
			partially synthetic and fully synthetic wax.				
			Petroleum wax: Macro-crystalline wax (paraffin				
			wax), microcrystalline wax, division into product				
			classes of paraffin wax.				
	7		Lubricating oils, specifications, characteristics,	2	1		3
				_	-		l l
	,		production of lube specialities, additives, refining				
			production of lube specialities, additives, refining of lubricating oil: solvent chemicals &				
			production of lube specialities, additives, refining of lubricating oil: solvent chemicals & hydrogenation method, dewaxing, deasphalting				

			specialty oils viz. insulating oil, transformer oil,				
			white oil, etc.				
			Total	22	11		33
Suggested books.							
		1	Fundamentals of Petroleum Chemicals				
			Technology by P.Belov				
		2	Encyclopedia of Chemical Technology, Kirk-				
			Othmer.				
		3	Ulmann's Encyclopedia of Industrial Chemistry				
		4	Dryden's Outlines of Chemical Technology				
_		5	A Text Book on Petrochemicals, B.K.Bhaskara Rao.				
Outcomes			Students will				
	CO1		Draw process flow diagrams/process block				
			diagrams for the manufacture of various				
			petrochemicals from process description.				
	CO2		List out various alternatives for carrying out a				
			particular process and provide recommendations				
	I		for the best choice.				
C aura 1				L	Т	Р	Total
Course code	<u> </u>		SPT4506				
Course title	<u> </u>		Industrial Catalysis				
Scheme and			2L: 1T: 0P 3 Credits				
Credits							-
Pre-requisites			Chemistry I, II & III, Chemical reaction engineering				
			I, Petroleum refining processes, Petrochemical technology.				
Objectives of the			Objective of this course is to give students an				
course			overview of different types catalyst, their				
course			characterization, synthesis and application in				
			petroleum refining and petrochemical synthesis				
Detailed contents							
	1		Catalyst - activation energy concept, types of	2	1		3
	_		catalysis, comparison of homogeneous &	-	-		
			heterogeneous catalysis, enzyme catalysis, green				
			catalysis, nano catalysis, phase transfer catalysis.				
	2		Fundamentals of heterogeneous catalysts, steps	2	1		3
			in heterogeneous catalyzed reactions, different				
			kinetic models, steric effects, electronic factors.				
	3		Catalyst charecterization, SEM, TEM, XRD.	2	1		
	4		Redox catalysts, Acid/Base catalysts, Supported	4	2		6
			catalysts, Metal catalysts, bimetallic catalysts,				
			promoters, inhibitors.				
	5		Methods for synthesis of catalysts: precipitation,	6	3		9
			fusion and alloy leaching, sol -gel synthesis,				
			hydrothermal synthesis, impregnation,				
	· ·		coprecipitation, adsorption/ion exchange.		-		6
	6		Zeolite catalysts, composition and structure of	4	2		6
			zeolites, reactant selectivity, product selectivity,				
			acidity of zeolites, Applications of zeolites in petroleum refinery and petrochemical synthesis.				
	7		Catalyst deactivation, poisoning of metalic	4	2		6
	,		catalyst, oxides and solid acids, thermal processes	-	2		0
			and sintering, regeneration and recycling of				
			heterogeneous catalysts.				
			Total	24	12		33
Suggested books.							
		1	Handbook of Heterogeneous Catalysis by Gerhard				

		2	Concepts of Modern Catalysis and Kinetics,	ן			l
		2	Second Edition. I. Chorkendorff, J. W.				
			Niemantsverdriet				
		3	Elements of Chemical Reaction Engineering by H.				
			Scott Fogler				
		4	Industrial catalysis: A practical approach by Jens				
0			Hagen				
Outcomes	CO1		Students will				
	CO1		understand importance of heterogeneous catalysis.				
	CO2		know different catalyst characterization				
	001		techniques				
	CO3		Understand mass and heat transport phenomena				
			occurring during catalytic reactions				
	CO4		learn different methods of catalyst synthesis				
	1			L	Т	Р	Total
Course code			SPT4507				
Course title			Petroleum economics and management				
Scheme and			2L: 1T: 0P 3 Credits				
Credits							
Pre-requisites			Introduction to petroleum technology, Petroleum				
			refining processes, Petrochemical technology.				
Objectives of the			To provide students with an understanding of				
course			global petroleum market, tools of economic				
			analysis of petroleum project and key management concepts related to oil and gas				
			industry.				
Detailed contents	1						
	1		Introduction to oil and gas industry: World oil and	2	1		3
			gas supply and demand, structure of oil and gas	_	_		-
			business, oil and gas reserves, crude oil pricing				
			and volatility, Oil and gas industry value chain.				
			International & National Institutions of Oil & Gas:				
			API,OPEC, OECD, OIDB, DGH, PNGRB, CHT, PII,				
			PPAC, PCRA.				
	2		Indian oil and gas industry, oil resreves, Strategic	2	1		3
			Reserves concepts, crude oil import statistics,				
			government policies and laws related to petroleum and petrochemical industry,				
			petroleum contracts, Indian petrochemical				
			market, major products, imort and export				
			statistics for India, factors affecting pricing.				
			Overview of major Indian oil & gas and				
			petrochemical companies.				
	3		Upstream economics: main challenges, Finding	4	2		6
			oil, access and development rights, leasing and				
			exploration, key figures in upstream, players: IOC,				
			NOC, Independents, contractors etc., reservoir				
			management, upstream profitability, Midstream:				
	4		Trading and crude transportation. Downstream economics : Refining and marketing,	3	1		4
	-		Refining economics: Current refining context,	5	-		4
			refining costs, refining margins and profitability.				
			Sales and marketing of petroleum products,				
			costing of major petroleum products: motor fuel,				
			aviation fuel, lubricants, fuel oils, asphalts.				
	5		Petrochemicals economics: Petrochemical	4	2		6
			products- base, intermediate and consumable				
			products, petrochemical Industry structure,				
			capital investement, Economic analysis of key				
			processes: eg. olefine production, ethane				

			cracking, LPG cracking. Marketing and				
	6		distribution. Oil and gas project management: Developemnt of project, joint developments, contractor	3	1		4
			relationships, cost management, partenership management, political risks, innovations and				
			technology, fiscal regimes, financing and financial				
	_		performance.				
	7		Project Risk Analysis: Definition of risk, sources of project uncertainty, impact of government	3	1		4
			regulations, methods of risk analysis, managing				
			attitudes towards risk, expected utility theory,				
			assessing the utility function, risk premium and risk aversion.				
	8		Recent advances, Future of the Global Oil and Gas	2	1		3
			Industry, analysis of petroleum alternatives for				
	9		energy and speciality chemicals. Case studies.	2	1		3
	_		Total	25	11		36
Suggested books.							
		1	Fundamentals of Oil and Gas Accounting - Charlotte Wright				
		2	Petrochemical Economics: Technology Selection				
		2	in a Carbon Constrained World by D. Seddon				
		3	The Global Oil & Gas Industry: Management, Strategy and Finance by Andrew Inkpen, Michael				
			H. Moffett				
		4	Petroleum economics and engineering by Hussein K. Abdel-Aal, Mohammed A. Alsahlawi.				
		5	Project management for the oil and gas industry :				
			a world system approach by Adedeji Badiru,				
Outcomos			Samuel Osisanya Students will				
Outcomes	C01		get knowledge of the role of oil and gas industry				
			in global economy.				
	CO2		understand the key business issues related to				
			energy markets, pricing, project finance, energy policy and geopolitical issues impacting the Oil				
			and Gas industry.				
	CO3		be able to perform economics analysis for the				
	CO4		petrochemical business able to explain the fundamental concepts of oil				
	004		and gas industrial Management				
				L	Т	Р	Total
Course code			SPP4301				
Course title Scheme and			Petroleum Characterization Laboratory-I				
Credits			OL: OT: 4P 2 Credits				
Pre-requisites			Chemistry I, Introduction to petroleum technology.				
Objectives of the			To apply various testing methods for assessing				
course			various properties of petroleum products.				
Detailed contents							
		1	Determination of vaporization characteristics of given petroleum product by ASTM distillation.				
		2	Determination of flash point and fire point.				
		3	Determination of diesel index of given petroleum				
		3	sample.				
		4	Determination of carbon residue of given petroleum fraction.				

I	I	5	Determination of drop point of given sample.				
			Determination of viscosity of given petroleum				
		6	sample.				
		7	Determination of cloud point and pour point.				
		8	Determination of the smoke point.				
		0	Determination of calorific value of fuel by Bomb				
		9	calorimeter.				
			Total				48
Suggested books.							
		1	Handbook of Petroleum Analysis by G.G Speight.				
		2	Modern petroleum refining processes by B.K.				
		2	Bhaskara Rao.				
		3	ASTM Standard Manual				
Outcomes			Student will be able to				
	CO1		Describe the basic principles of different				
			petroleum characterization techniques.				
	CO2		Suggest possible characterization techniques for				
			given petroleum sample.				
	соз		Strengthen the theoretical knowledge of				
L		<u> </u>	petroleum products.				
				L	Т	Р	Total
Course code			SPP4403				
Course title			Petroleum laboratory-II				
Scheme and			0L: 0T: 4P 2 Credits				
Credits							
Pre-requisites			Refinery engineering, Petroleum refining				
			processes, Simulation Lab I and II				
			In this course students will enhance their				
Objectives of the			knowledge of design and optimization of various				
course			refinery operations with the help of professional				
			software				
Datallad anotanta							-
Detailed contents							
		1	Determination of bromine number by color				
			indicator method.				
		2	Determination of the penetration index of petroleum sample. Determination of Electrical				
		2	strength of transformer oil.				
			Determination of water content by Dean and				
		3	stark method.				
<u> </u>	<u> </u>		Detection of copper strip corrosion of petroleum				
		4	product.				
		5	Designing of debutanizer column using ASPEN				
		6	Designing of atmospheric distillation unit (ADU)				
		7	Designing of vacuum distillation unit (VDU)				
	1	8	Designing of naptha reformer				
		9	Designing of FCC unit				
			Total				48
Suggested books.	1						-
	1		Distillation design and control using Aspen				
		1	simulation by WL Luben				
		2	Process simulation and control using ASPENTM				
	1	3	ASPEN Manual				
		4	Handbook of Petroleum Analysis by G.G Speight.				
Outcomes			Student will be able to				
			Strengthen the theoretical knowledge of refinery				
	CO1		operations design.				
	1	1	Be able to suggest possible characterization	1	1		
	CO2		be able to suggest possible characterization				

Course code		SPT3201					
Course title		Special Subject I – Reservoir Technology					
Scheme and Credit	s	2 L: 1 T: 0 P 3 Credits					
Pre-requisites		Chemistry and Physics learnt at +2 level					
Objectives of the co	ourse	This is an introductory course in Petroleum Technology, which covers the che	mistry of				
		hydrocarbons, its formation and upstream processing.					
Course title		Detailed contents					
			contact h				
	1	Introduction to oil and gas sector, Origin and occurrence of petroleum,					
		History of petroleum in India and scope, Theories of formation, Geology of					
		petroleum rock, Classification of rocks, Reservoir rock properties (porosity,	6				
		permeability, wettability), Sedimentary rocks, Structure of traps for oil and					
		gas					
	2	Exploration techniques – surface and sub-surface methods (geological,					
		geophysical, geochemical, etc.) Types of surveys, Remote sensing	4				
Special Subject I		technology					
	3	Drilling of oil well, Types of drilling, Drilling bits, Drilling fluid and its					
		application, Cementing, fracturing of oil well, Completion and testing of oil	8				
		wells, logging and primary recovery					
	4	Well testing and production of crude oil, Free flow, Mechanical pump flow,	6				
		Material Balance of reservoir	6				
	5	Enhanced oil recovery, Water flooding, Chemical and Polymer Flooding,	6				
		Microbial enhanced oil recovery, Secondary and Tertiary oil recovery	6				
	6	Separation of oil and condensates, stabilization, desalting and dehydration,					
		Transporting of crude oil, Classification of crude oil – physical properties	6				
		(API, Sulfur content, UOP Characterization, etc.)					
		Total	36				
Suggested		4. Fundamental Aspects of Petroleum geochemistry : Negi and Colombo					
text/reference		5. Modern Petroleum Technology : G D Hobson and W Pohl					
books		6. An introduction to Physics and Chemistry of Petroleum : R R F Kinghorn					
		7. Reservoir Engineering Handbook: Tarek Ahmad					
Outcomes	Stud	Students will be able to					
		Understand the formation of crude oil inside the earth crust					
		Analyse the various sensing techniques to detect oil and gas reservoirs					
		Have the fundamental knowledge of drilling fluids and drilling techniques					
		Understand the various steps in production of crude oil from reservoir.					

Course code		SPT3302				
Course title		Special Subject II – Fundamentals of Refineries				
Scheme and Credits		2 L: 1 T: 0 P 3 Credits				
Pre-requisites		Chemistry and Physics learnt at +2 level, Basic knowledge of petroleum forma	ation and			
production						
Objectives of the co	urse	This course will cover the various processes and products involved in refinery operation.				
		Refinery operations includes physical separation, thermal operations (Cracking, coking,				
		etc.) and catalytic upgradation of crude oil (Catalytic cracking, reforming, isomerization,				
		polymerization, etc.).				
Course title		Detailed contents	Total			
			contact h			
	1	Brief review of Petroleum, Its composition, Non-hydrocarbon impurities,				
Special Subject I		Characterization and classification of crude oil, Pretreatment methods,	6			
		General refinery set-up and various processes				

	2	Refinery product pattern, Fractionation concept, Atmospheric Distillation			
		Unit, Vacuum Distillation Unit, Indian Specifications of important petroleum	8		
		products and its testing methods			
	3	Thermal processes to upgrade crude residues – Visbreaking, Thermal	8		
		Cracking and Coking process. Their types and reactor configuration			
	4	Catalytic processes to upgrade petroleum products – Catalytic cracking,	10		
		Reforming, Isomerization, Polymerization, Hydrotreatments, etc.	10		
	5	Finishing processes in modern refinery – blending, dewaxing, solvent			
		extraction, etc. Application of advanced analysis techniques (UV, MS, IR,	4		
		NMR, GLC, etc.) in petroleum and product analysis			
		Total	36		
Suggested		8. Petroleum Refining Engineering : W L Nelson			
text/reference		9. Modern Petroleum Technology : G D Hobson and W Pohl			
books		10. The Chemistry and Technology of Petroleum : James G Speight			
		11. Petroleum refining, Technology and Economics : J H Gary and G E Handwor	·k		
Outcomes	Stud	ents will be able to			
		Understand the product pattern in the refinery based on supply and demain	nd		
		 Understand the various thermal and catalytic operations in refinery 			
		 Evaluate and analyse the petroleum product specifications 			
		Analyse the need of Indian petroleum industry.			

Course code		SPT3403				
Course title		Special Subject III – Fluidization Engineering				
Scheme and Credit	s	2 L: 1 T: 0 P 3 Credits				
Pre-requisites		Mass transfer operation, Heat transfer, Momentum transfer, Chemical reaction				
engineering						
Objectives of the c	ourse	This course will cover the fundamentals of fluidization and its application in va	arious			
		chemical/petroleum processes.				
Course title		Detailed contents	Total contact h			
	1	The phenomenon of fluidization; Advantages and disadvantages of fluidized	contact ii			
		beds over packed bed and moving bed; Industrial applications of fluidized beds	4			
	2	Characteristics of solids: Classification of solids; Flow characteristics and its outline in the different types of fluidization	4			
	3	Flow pattern of fluidization system: Flow patter, flow pattern transition ,flow pattern map, Frictional pressure drop and its model to analyze, Solid movement, mixing, segregation and staging	8			
Special Subject I	4	Gas distribution: Type of gas distributors in small and large scale industries, Design of distributor.	4			
	5	Bubbling fluidized beds: Gas dispersion and gas interchange in bubbling beds, mixing characteristics	2			
	6	Mass transfer phenomena: Particle togas mass transfer phenomena and its analysis by model in two and three phase system and modeling	4			
	7	Heat Transfer phenomena: Heat transfer between fluidized beds and surfaces and modeling	4			
	8	Design of fluidized bed reactors: Design for physical operation, catalytic and non-catalytic systems	6			
		Total	36			
Suggested text/reference books		 Fluidization Engineering: D. Kunii and O. Levenspiel Particle Technology and Engineering : Jonathan P.K. Seville Chuan-Yu Wu Handbook of Fluidization and Fluid-Particle Systems: Wen-Ching Yang 				
Outcomes	Stud	 ents will be able to Understand concept of fluidized bed 				

•	Evaluate the types of fluidization based on particle properties as well as feed velocity
•	Analyse the need of fluidization in chemical as well as petrochemical industry.
•	Understand the working of various geometries of fluidizing bed

Course code Course title		SPT3404		
		Special Subject IV – Introduction to Petrochemicals		
Scheme and Credits		2 L: 1 T: 0 P 3 Credits		
Pre-requisites Objectives of the course		Basic knowledge of Chemistry at +2 level This course covers the fundamentals as well as state of art development in petrochemical industry.		
	1	History and importance of Petrochemical industry, growth in India, Classification of Petrochemicals, Feedstock of the Petrochemicals, Preparation of feedstrock from ethane/ propane and naphtha/gas oil cracking, syngas.	6	
Special Subject I	2	Petrochemicals from C1, C2, C3, C4 and Syngas Ethylene to ethylene oxide, ethylene glycol, ethanol amine; Propylene to acrylic acid, methyl ethyl ketone, acrylonitrile and Butenes to iso and n butanols, MIBK, MTBE	12	
	3	Petrochemicals from BTX aromatics, naphathalene etc. Aromatics to maleic and phathalic anhydride, DMT, phenols and acetones	8	
	4	Polymerization - polyethylene, polypropylene, synthetic rubbers etc.	4	
	5	Hydration: Technologies for production of alcohols such as ethanol, isobutyl alcohol and higher alcohols. Esterification: Process for production of few esters such as acrylates, terephthalates, ester for flavoring industries etc.	6	
		Total	36	
Suggested		15. Chemicals from Petroleum: A. L. Waddams,		
text/reference		16. Petrochemical Processes 1 & 2: Chauvel and B. Lefebvre		
books		17. Introduction to Petrochemicals: S. K. Maiti		
Outcomes	Stud	 ents will be able to Understand petrochemical Industries, its requirement and usefulness Understand and analyse the manufacturing of petrochemical feedstock 		
		Understand the complexity in technology for different petrochemicals		

Course code		SPT3405		
Course title Special Subject V– CNG and LNG Technology				
Scheme and Credit	s	2 L: 1 T: 0 P 3 Credits		
Pre-requisites		Primary knowledge of Petroleum refining technology, Chemical Engineering		
		Thermodynamics		
Objectives of the co	ourse	This course covers the essential treatments in utilizing natural gas as fuel		
Course title		Detailed contents		
			contact h	
	1	Overview of natural gas industry, sources of natural gas, composition,	6	
		properties and its classification	D	
	2	Pretreatment processes for natural gas – hydrotreatment, dehydration,	8	
Special Subject I		metal recovery, liquefaction, etc.	0	
	3	CNG – Fundamentals, compression strategy, Thermodynamics, types of		
		compressor, capacity, power calculations, storage, transportation and	12	
		safety		

	4	LNG – Pretreatments, liquefaction cycles, cost, storage, transportation and	10
		safety	
		Total	36
Suggested	1	18. Natural Gas Processing: A. Bahadori	
text/reference	1	19. Natural Gas Production Engineering: C. U. Ikoku	
books	2	20. Fundamentals of Natural Gas Processing: L. L. Faulkner	
Outcomes	Stude	ents will be able to	
	•	 Understand the scope of natural gas industry 	
	•	Analyse the various pretreatment processes in natural gas industry	
	Understand the various thermodynamic cycles and processes for CNG and LNG		

Course code		SPT3506		
Course title		Special Subject VI– Hydrotreatment Technology		
Scheme and Credit	s	2 L: 1 T: 0 P 3 Credits		
Pre-requisites		Primary knowledge of Petroleum refining technology, Chemical Reaction Engineering, Mass transfer operation.		
Objectives of the c	ourse	This course covers the role of hydrotreatments commonly used in petroleum	refining	
Course title		Detailed contents	Total contact h	
	1	Hydrotretments and types, pretreatment, quality improvement, product finishing treatment	4	
	2	Source of hydrogen in refinery, process chemistry, purification and storage	4	
Special Subject I	3	Hydrodesulfurization, process configuration, reactor types, catalysts, process parameters, feedstock preparation.	10	
	4	Hydrocracking, commercial processes, catalyst, feed preparation, process parameters	10	
	5	Hydrovisbreaking, Asphaltenic Bottom Cracking process	4	
	6	Hydrotreatment for products, heteroatom removal such as sulfur and nitrogen	4	
		Total	36	
Suggested		21. Modern Petroleum Technology : G D Hobson and W Pohl	•	
text/reference		22. The Chemistry and Technology of Petroleum : J. G Speight		
books		23. Petroleum Refining Processs: J. G. Speight and B. Ozum		
Outcomes	Stud	lents will be able to		
		Understand the importance of hydro-processes petroleum industry		
		Analyse and understand the various processes in petroleum refining		
		Understand the complexity of refinery operations.		

Course code		SPT3507	
Course title		Special Subject VII– Catalysis in Petroleum Industry	
Scheme and Credits		2 L: 1 T: 0 P 3 Credits	
Pre-requisites		Chemical Reaction Engineering, Chemical Technology.	
Objectives of the course		This course covers the scope of catalyst in petroleum refining and petrochemical sector	
Course title		Detailed contents	Total
			contact h
	1	Introduction to catalytic processes in petroleum industry, types of catalyst,	
		reaction mechanism of catalyst, catalyst testing, performance and	4
		regeneration, Catalysts promoters, Inhibitors, catalyst deactivations	
Special Subject I	2	Zeolite synthesis reactions, unit cell structure, classification, acidity, and	
		basicity in Zeolites, cation exchange dealumination and isomorphus	0
		substitution principles, Applications of Zeolites in catalysis and in separation	8
		processes- a few case studies	

	3	Reforming Catalyst, Nobel metal catalyst, types, promoters, Inhibitors,	6
		catalyst deactivations	-
	4	Alkylation and isomerization catalyst, advancement in design from	4
		homogeneous to heterogeneous	4
	5	Catalysis for hydrotreatments, manufacturer, selectivity, promoters	4
	6	Vanadium based catalyst, polymerization catalyst, Ziegler Natta catalyst for petrochemicals	6
	7	New development in solid catalysis, monolith catalysts, Nano catalysts, Insitu characterization. simulation techniques	4
		Total	36
Suggested		24. Modern Petroleum Technology : G D Hobson and W Pohl	
text/reference		25. The Chemistry and Technology of Petroleum : J. G Speight	
books		26. Petroleum Refining Processs: J. G. Speight and B. Ozum	
Outcomes	Stud	lents will be able to	
		Understand the importance of catalysis petroleum industry	
		• Analyse and understand the design of catalysis and its role in various proces	ses
		Understand the complexity of efficient catalyst development.	

Petroleum Product Testing Lab-1

- 1. Determination of flash point of petroleum sample (Able's and Pensky Martin Apparatus)
- 2. Determination of flash and fire point of petroleum sample (Cleveland Open cup apparatus)
- 3. Determination of API Gravity of petroleum fractions
- 4. Determination of Aniline point of a given sample
- 5. Determination of Cloud and Pour point of a given sample
- 6. Determination of Raid Vapor pressure of petroleum sample
- 7. Determination of ASTM distillation curve for the given petroleum sample

Petroleum Product Testing Lab-2

- 8. Determination of viscosity and viscosity index of a given petroleum sample using Redwood viscometer
- 9. Determination of carbon residue of a petroleum fraction using Codradson carbon residue apparatus
- 10. Determination of copper strip corrosion of a given sample
- 11. Determination of calorific value of a liquid fuel sample using bomb calorimeter
- 12. Determination of smoke point of a petroleum sample
- 13. Determination of water contamination in lube oil using Dean and Stark Apparatus
- 14. Determination of moisture content in a petroleum sample using Karl-Fisher apparatus

Materials and Polymers

SP #	Course Code (IOCB)	Course Code (MARJ)	Туре	List of Subjects
1	SMT3201	SMT4201	Theory	Introduction to Material Technology
2	SMT3302	SMT4302	Theory	Polymer science and Technology-I
3	SMT3403	SMT4403	Theory	Structure-Property Relationships
4	SMT3404	SMT4404	Theory	Polymer science and technology -II
5	SMT3405	SMT4405	Theory	Materials processing
6	SMT3506	SMT4506	Theory	Nanomaterials
7	SMT3507	SMT4507	Theory	Functional materials
1	SMP3303	SMP4303	Laboratory	Materials Characterization Laboratory
2	SMP3402	SMP4402	Laboratory	Materials processing and characterization laboratory

				C	Contac	t Ho	urs
				L	Т	Р	Tot
Course code			SMT4201				
Course title			Introduction to Materials Technology				
Scheme and			2L: 1T: OP 3 Credits				
Credits							
Pre-			Physics I & II, Chemistry I & II.				
requisites							
Objectives		1	Understand the basic principles of material science and				
of the			engineering.				
course							
		2	Apply various testing methods assessing mechanical, thermal				
			and rheological properties of polymers.				
		3	Analyze the properties and applications of the materials.				
		4	Create basic platform for students to develop newer materials				
			used in industry applications				
Detailed							
contents							
	1		Introduction to Materials: Thermoplastics, Thermosets,	2	1		3
			Elastomers, cellulose Polymer and Metal Composites., Smart and				
			advanced materials				
	2		Mechanical and Electrical Properties of Materials: stress-strain	4	2		6
			behavior, Tensile, Flexural and Impact properties, true stress and				
			true strain, brittle and ductile materials, stress-strain curve of				
			single crystal, hardness, creep, fatigue, mechanism to improve				
			the mechanical properties and fracture properties. Electrical				
			properties, conductivity, dielectric properties, Impedance				
			technique				
	3		Thermal Properties of Materials: Glass transition temperature	4	2		6
			(Tg), Melting temperature (Tm), Crystallization temperature (Tc),				
			Heat distortion temperature (HDT) etc. Sample preparation,				
			standardization, conditioning of sample, processability test,				
			dynamic mechanical analysis, melt flow rate, Vicat softening				
			temperature. Study of a dilatometer. Study of thermo-chemical				
			analysis and differential scanning calorimeter.				
	4		Surface Properties of Materials: Importance of surfaces and	4	2		6
			wear surface properties in engineering applications, X-ray				
			diffraction spectrometry, scanning electron microscopy,				
			travelling electron microscope, contact angle, surface energy,				
			adhesion properties.				
	5		Optical Properties of Materials: fundamentals of atomic theory	4	2		6
			of optical materials, quantum theory of optical materials,				

I.	1						
			excitons and colour centers, classifications of optical materials,				
			scattering, refraction, theory of refraction and absorption,				
			reflection and transmission, introduction to Refractive Index,				
	6	<u> </u>	optical Density,. Composite and Nanomaterial: Introduction, classification of the	6	3		9
	0		composite and Nationalenal. Introduction, classification of the composite materials, particle reinforced composites, fiber	o	3		9
			reinforced composites, processing techniques for composite				
			materials and applications. Synthesis of nanostructured				
			materials, top-down approach-nanomaterials-synthesis,				
			bottom-up process-synthesis of nanoparticles, vapor phase				
			deposition, epitaxial techniques-synthesis of nanomaterials,				
			chemical methods-nanomaterial synthesis, hybrid methods-				
			synthesis of nanomaterials, nanotechnology and environment,				
			properties and possible applications and storage.				
			Total	24	12		36
Suggested							
books.							
		1	Plastics Materials by J.A. Brydson,				
		2	Handbook of Industrial Chemistry: Organic Chemicals by				
			Mohammad Farhat Ali,				
		3	Materials Science by V Rajendran,				
		4	Introduction to Material Science for Engineers by J F				
	<u> </u>	-	Shackelford.				
		5	Materials Science and Engineering: An Introduction by William D Callister.				
		6	SPI Plastics Engineering Handbook of the Society of the Plastics				
			Industry, Inc. by Berins, Michael L.				
		7	Handbook of Plastics Analysis, H. Lobo and J. V. Bonilla, Marcel				
			Dekker.				
		8	Handbook of polymer Testing Roger Brown, Marcel Dekker Inc.				
		9	Instrumental Methods by Dyer.				
		10	Developments in Polymer Characterization by J. V Dawkins.				
		11	Engineering Material by R K Rajput				
		12	Materials Science by R.S. Khurmi, R.S. Sedha,				
		13	Materials Science by M S Vijaya and G Rangarajan				
Outcomes			Student will				
	CO1		Understand the various engineering materials knowledge.				
	CO2		Learn Various characterization techniques principle, mechanism.				
	CO3		Understand the significance of material science in domestic and				
		-	engineering applications.				
					Contac	-	
Course code			SMT4302	L	Т	Р	Tot
Course title			Polymer science and Technology-I		-		
Scheme and			2L: 1T: OP 3 Credits				
Credits							
Pre-		İ	Chemistry I, II & III, Physics I & II, Material physics.				
requisites							
Objectives			To enable the students to understand the basic concept of				
of the			polymer, its classification, mechanism of formation and various				
course			techniques of polymerization.				
Dotailad							
Detailed contents							
Jontenta	1		Historical developments in polymeric materials, Basic concepts	2	1		3
	_		& definitions : monomer & functionality, oligomer, polymer,				
			repeating units, degree of polymerization, molecular weight &				
			molecular weight distribution.				
	2		Natural polymers, Chemical & Physical structure, properties,	4	2		6
	1		source, important chemical modifications, applications of				

I	1	1	nolymore such as collulated lignin, starch, rasin, shallon, latavas				
			polymers such as cellulose, lignin, starch, rosin, shellac, latexes, vegetable oils and gums, proteins etc.				
	3		Classification of polymers thermoplastic/ thermoset, addition/	4	2		6
			condensation, natural /synthetic, crystalline/amorphous, step	-	-		Ũ
			growth /chain growth, ,commodity/specialty, homochain/				
			heterochain, confirmation: homo & copolymers, configuration				
			cis/trans; tacticity, branched/ crosslinked, Classification of				
			polymers based on end use etc.				
	4		Techniques of polymerization: bulk, solution, suspension,	6	3		9
	-		emulsion, plasma etc. Different initiating systems such as free	•	•		•
			radicle polymerization, redox, cationic & anionic polymerization				
			(different terms such as living polymers, inifers, telechelics).				
			Their kinetics & control over structure of polymer.				
	5		Condensation polymerization, different catalysts used, case	4	2		6
	-		studies of condensation polymerization, carothers equation,		_		-
			Comparison of these systems with advantages & disadvantages.				
			Copolymerization, reactivity ratios & kinitics of copolymerization				
			(copolymer composition				
			equation).				
	6	1	Evaluation and testing of polymers: molecular weight	4	2		6
			determination, thermal properties, viscosity of polymers and				
			polymer solutions, electrical properties, mechanical properties,				
			optical properties.				
			Total	24	12		36
Suggested		1					
books.							
		1	Polymer Science by Gowarikar, Johan wiley and Sons 1986.				
		2	Encyclopedia of Polymer Science and Technology, John Wiley				
		-	and Sons, Inc 1965.				
		3	Polymer Chemistry by Malcolm P. Stevens, Oxford University				
		0	Press, Inc, 1990.				
		4	Introduction to Polymer Science and Technology, H. S. Kaufman				
			and J. J. Falcetta, Wiley – Interscience Publication, 1977				
		5	Handbook of polymer Testing Roger Brown, Marcel Dekker Inc,				
			1999.				
Outcomes			Students will				
	CO1		develop the knowledge of concept of polymers, their				
			classifications and nomenclature.				
	CO2		be able to asses the kinetics and mechanism of free radical				
			cationic and anionic polymerization.				
	CO3		be able to evaluate the mechanism and kinetics of copolymer				
			free radical synthesis technique.				
	CO4		understand the techniques used for determination of various				
			polymer properties like molecular weight, viscosity.				
				C	Contac	t Ho	urs
		1		L	Т	Р	Tot
Course code	1	1	SMT4403				
Course title	t		Structure-Property Relationships				
Scheme and			2L: 1T: OP 3 Credits				
Credits							
Pre-	1	1	Physics I & II, Material physics, Polymer science and technology				
requisites							
	1	1					
Objectives		1	To give students the comprehensive exposure of crystal				
of the			structure, defects and their effect on material properties for				
course			engineering materials.				
Detailed	1						
contents							
	1		Basic crystallography and crystal structures, Bonding in materials	2	1		3
	-		and atomic packing in metals, co-ordination number concepts,				
	i						

			Covalent bonding, glasses and polymers, Crystal defects and				
	2		their significance Phase diagrams, Solid solutions, Hume Rothery rules, Intermediate phases and compounds, Various phase reactions, Introduction to different phase diagrams, Lever rule, Cooling	4	2		6
	3		curve and its use for drawing phase diagrams. Thermal Properties: Lattice vibrations, Heat capacity, Thermal expansion, Thermal conductivity thermal stress in materials. Optical Behavior: Interaction of radiation with matter (metals and non-metals), Phosphorescence, luminescence and optical active materials, Structure property relationship in anisotropic media.	6	3		9
	4		General structural features of polymers: Effects of atoms types of bonds, bond dissociation energy and functional groups on properties of polymers	2	1		3
	5		Configuration & conformation and structure properties of polymers, Molecular mass heterogeneity and structure properties. Polymer solutions, thermodynamics of dissolution, Florry-Huggins theory.	4	2		6
	6		Polymer chain flexibility: concept of flexibility, various factors deciding flexibility of polymers, properties affected by flexibility. Intermolecular orders: Amorphous, crystalline and oriented forms of polymers, crystallinity of polymers.	4	2		6
	7		Thermal properties of polymers, Degradation and stabilization of polymers.	2	1	•	3
Suggested books.			Total	24	12	0	36
		1	Crystals and Crystal structures, R.J.D. Tilley, John Wiley and Sons, 2006.				
		2	Callister, W.D., Materials Science & Engineering: An Introduction, Wiley & Sons, (2001)				
		3	Fundamentals of Materials Science-the microstructure-property relationship using metals as model systems, E.J. Mittemeijer, Springer, 2010				
		4	Polymer Structure, Properties and application, R.D. Deanin, American Chemical Society, 1974				
		5	Relating Materials Properties to structure, D. J. David, Technical Publishing Company Inc, 1999.				
		6	Polymer Solutions; Introduction to Physical Properties, Teraoka, Iwao, John Wiley and Sons. Inc, 2002.				
Outcomes	CO1		Students will understand the importance of structure-property correlation				
	CO2		study of materials and its suitable applications. achieve ability to differentiate between different type of materials, and their structures.				
	CO3		able to explain the structural dependence of properties of materials.				
				L	Contac T	t Ho P	urs Tot
Course code			SMT4404	-		P	101
Course title			Polymer Science and technology -II				
Scheme and Credits			2L: 1T: 0P 3 Credits				
Pre-			Chemistry I, II & III, Physics I & II, Material physics, Polymer				
requisites			science and technology -I				
Objectives of the course			To enable students to learn about the general methods of preparation of individual class of plastics materials, their general properties, processing behavior and applications.				
Detailed contents							

	1		Engineering Polymers Polyesters such as PET, PBT, PTT, Polycarbonates, Polyacetal etc. Polyethylenes; modified polyethylenes, Polypropylene and copolymer of PP, modified Polyolefins.	2	1	3
	2		Thermoplastics: Styrenic polymers - Polystyrene, HIPS, SAN, ABS, Polymamides- Nylon 6, Nylon 6,6, Nylon 11, Acrylic polymers & copolymers, Polyvinyl chloride & its copolymers, Poly vinyl acetate, Modified cellulosics.	6	3	9
	3		Thermoset resins: Polyster resins, phenolic, Amino resins, Epoxy resins, Polyeurethanes, Alkyd resins, Thermosetting acrylics, Silicones thermoplastics and thermosets.	8	4	12
	4		Elastomers: Definition of elastomers, classifications of elatomers, Vulcanization, Synthesis of various rubbers natural rubber/ synthetic polyisoprene, Synthesis of various rubbers.	4	2	6
	5		Additives for polymers: Pigments, Plasticizers, Lubricants, Processing aids & various rheology modifiers, UV stabilizers, Impact modifiers, Flame retardants, nucleating agents, blowing agents, Cross linking agents and miscellaneous additives	4	2	6
			Total	24	12	36
Suggested books.						
		1	Polymer Science by Gowarikar, Johan wiley and Sons 1986.			
		2	Encyclopedia of Polymer Science and Technology, John Wiley and Sons, Inc 1965.			
		3	Polymer Chemistry by Malcolm P. Stevens, Oxford University Press, Inc, 1990.			
		4	Introduction to Polymer Science and Technology, H. S. Kaufman and J. J. Falcetta, Wiley – Interscience Publication, 1977			
		5	Plastics Additive Handbook, Gachter and Mullar, Hanser Publishers, 1987.			
Outcomes			Students will			
	CO1		acquire skills in selecting additives for plastic materials for specific applications			
	CO2		have knowledge of manufacturing, properties and applications of resins, elastomers and theroplastics.			
	CO3		have knowledge of manufacturing, properties and applications of special purpose plastics			

				_		
			(Contac	t Ho	urs
			L	Т	Ρ	Tot
Course code		SMT4405				
Course title		Material Processing				
Scheme and		2L: 1T: OP 3 Credits				
Credits						
Pre-		Material physics, Polymer science and technology I, Structural				
requisites		property relationship, Material science and engineering.				
Objectives		To acquaint students with fundamental knowledge of material				
of the		and polymer processing techniques which will be helpful in				
course		practical implementation of processing.				
Detailed						
contents						
	1	Introduction to material processing, macro, micro and	2	1		3
		nanostructures, Micro-structural evolution, Introduction to				
		solidification, Stefan condition, Solidification in a thick mold.				
	2	Interface resistance-limited solidification, Single crystal	4	2		6
		production, Introduction to binary solidification, Zone refining,				
		Solidification with finite diffusion in liquid, Plane front single				
		phase solidification, Plane front poly phase alloy solidification,				
		nucleation and growth kinetics, Engineering binary alloy				
		microstructures.				

	3	ĺ	Sand casting, lost foam & cooled molds, Molding sand- types,	2	1		3
	5		properties and testing, Molding – types, equipment's, tools and	-	-		5
			machines.				
	4	<u> </u>	Metal Forming Processes, Material behavior in metal forming,	2	1		3
			strain rate sensitivity, friction and lubrication in metal forming,				
			Rolling, Forging, extrusion.				
	5		Joining processes, Welding, Arc welding, Stud welding.	4	2		6
			Resistance welding, Gas welding, Soldering, brazing and braze				
			welding, Joint through Adhesive. Sheet metal working.				
			Introduction to powder processing, Sintering, slurry processing,				
		ļ	colloid processing.				
	6		Polymer processing: Extruders, single screw and twin screw	4	2		6
			extruders, Film blowing, coextrusion of multilayred films, Fiber				
			spinning, Pipe extrusion, Extrusion of profiles, coextrusion of				
			pipes, Extrusion of cable material, extrusion of sheet,				
	-	<u> </u>	Calendaring, Thermoforming.		2		
	7		Polymer Molding, Injection molding Blow molding, Compression	4	2		6
			molding, Injection stretch blow molding, Resin transfer molding,				
			Gas and water assisted injection molding and other three dimensional molding.				
	8	<u> </u>	Fillers and reinforcement, Polymer composites such as DMC,	2	1		3
	0		SMC, FRP etc. using fillers reinforcement and other	2	-		5
			polymeric fillers.				
		<u> </u>	Total	24	12		36
Suggested							
books.							
		1	J. T. Black – Degormos Materials and process in manufacturing				
			– John Willey and sons, 2019				
		2	Materials Science and Engineering, Raghavan V.				
		3	Chester T. Sims, Williams C. Hagel: The Super Alloys, John Wiley				
			& Sons, 1992.				
		4	Fundamentals of Polymer Processing, S. Middleman, Houghton				
		5	Mifflin Compony, 1997. Encyclopedia of Polymer Science and Engineering, Johan Wiley				
		5	and Sons, Inc 1988.				
		6	Polymer Processing Fundamentals, Osswald, A. Tim, Hanser				
			Publishers, 1998.				
Outcomes			Student will				
	CO1		understand the different materials processing techniques.				
	CO2		understand the basics of Microstructural aspects with the				
			different processing of materials.				
	CO3		able to design and develop the functionally gradient materials				
			for desired application				
					Contac	t Ho	urs
		\vdash		L	Т	Ρ	Tot
Course code		<u> </u>	SMT4506				
Course title		 	Nanomaterials				
Scheme and			2L: 1T: 0P 3 Credits				
Credits		┣───					
Pre-			Physics I & II, Material physics, Material science and engineering,				
requisites		───	Structure property relationship.				
Objectives of the			To give students the comprehensive exposure of nanomaterials,				
of the			their properties, synthesis methods, charecterization techniques and applications				
course		├					
Detailed		<u> </u>					
contents							
	l	───		4	2		6
	1		I Introduction to hanomaterials, forces at hanoscale scaling laws	4	L .		
	1		Introduction to nanomaterials, forces at nanoscale, scaling laws, surface effects and physical properties of nanomaterials,	4	2		U

	2		Overview of nanstructures and nanomaterials, Atomic bonding, Multiscale hierarchy, self assembly, Isotropic and anisotropic nanoparticles, one, two and three-dimensional nanomaterials, quantum dots, nano rods, nanowires, core shell nanoparticles etc.	4	2		6
	3		Synthesis techniques of nanomaterials: Top-down synthesis method (ball milling, nanolithography), Bottom-up synthesis method (sol-gel, soft chemistry, self assembly, inkjet printing, scanning probe techniques), Nucleation, growth and agglomeration of nanoparticles.	4	2		6
	4		Carbon based materials, Silicon nanomaterials, Metal nanomaterials, Metal oxide nanomaterials, Nanocomposites, Biological nanomaterials, Nanomachines and Nanodevices (FETs, MOSFETs, Logic Devices, nanosensors, imaging and display devices), Nanomaterials in energy, Safety issues in nanomaterials	4	2		6
	5		Applications of nanomaterials: Ferroelectric materials coating, molecular electronics, nanoelectronics, biological and environmental, membrane based, nano optics, biomedical applications, drug delivery system, photovoltaic, fuel cell, batteries, nano sensors and devices.	4	2		6
	6		Charecterization of nanomaterials: Scanning electron microscope (SEM), atomic force microscopy (AFM), FESEM, TEM, STM, SPM, diffraction and scattering techniques, vibrational spectroscopy, x-ray diffraction (powder diffraction method), Three Dimensional atom probe (3DAP), particle size measurement techniques like DLS, DCS etc.	4	2		6
			Total	24	12		36
Suggested							
books.							
		1	Chemistry of Nanomaterials: synthesis, properties and applications- CNR Rao, Achim Müller, A. K. Cheetham, Wiley VCH 2004				
		2	Nanotechnology, By Lynn E. Foster, Pearson 2011				
		3	The physics and chemistry of nanomaterials- Frank J. Owens and Charles P. Poole Jr. Wiley interscience 2008.				
		4	Introductory Nanoscience, by Masuro Kuno, Garland Science 2011				
		5	Fundamentals and Applications of Nanomaterials, by Z. Guo and Li Tan				
		6	Hand Book of Nanoscience and Engineering and Technology- W.				
			Gaddand D. Brenner, S. Lyshers Ki and G. J. Infrate-, CRC press 2002.				
Outcomes			Students will				
2	CO1		Understand the basics of nanomaterials and nanotechnology.				
	CO2		able to suggest charecterization technique for the nanomaterials				
	CO3		identify the applications of nanomaterials and nanotechnology in various fields.				
				(Contac	t Ho	urs
				L	Т	Р	Tot
Course code			SMT4507				
Course title			Functional materials				
Scheme and Credits			2L: 1T: OP 3 Credits				
Pre-		[Physics I & II, Material physics, Material science and engineering,				
requisites			Structure property relationship, Nanomaterials.				
Objectives			To give students the exposure to newer functional materials				
of the course			used in domestic and industry applications.				
Detailed							

	1		Introduction to functional materials: Definition of functional materials, Types of functional material.	2	1		3
	2		Biomaterials: Introduction to biomaterials for biomedical applications, chemical structure and property of biomaterials, Degradation of biomaterials, Polymeric biomaterials: Introduction, preparation, hydrogel biomaterials, Bio conjugation techniques, Biocompatibility, Biomaterials implantation, Evaluation of biomaterials, Nano-biomaterials, Biomaterials for imaging and diagnosis, Cell-Biomaterials interaction, Biomaterial and tissue engineering.	4	2		6
	3		Soft & Hard magnetic materials and their applications, DC, low frequency, RF, microwave and recording applications of magnetic oxides and alloys; CMR Materials, Magneto caloric materials and spin glasses, Super paramagnetism, Ferrofluid Magneto electronics. Recent developments in the applications of Magnetic Materials, Functionalised magnetic nanoparticles.	4	2		6
	4		Conducting Polymer Sensors, Actuators and Field-Effect Transistors: Introduction, Synthesis of Conducting Polymers, Conducting Polymer Gas Sensors, Electrochemical Actuators, Conducting Polymer FETs.	4	2		6
	5		Ferroelectric crystals and applications, Relaxor Materials, Spintronic: Spin polarization and application, Piezoelectrics for energy harvesting applications, Materials for optoelectronic devices: solar cells & OLED's	4	2		6
	6		Energy materials: Polymer electrolytes, Solar energy materials, hydrogen storage materials, electroceramics for batteries, fuel cells and sensors.	4	2		6
	7		Nuclear Materials: Materials for nuclear reactors such as fuels, moderators, control rods, coolants, reflectors and structural materials. Fabrication of fuel and cladding materials	2	1		3
Suggested books.			Total	24	12		36
		1	Functional Materials by S. Banerjee, A.K. Tyagi, 1st edition, imprint by elseiver				
		2	Smart materials and structures. By M. V. Gandhi and B. S. Thompson, Chapman and Hall, London 1992.				
		3	Energy Materials by Duncan W. Bruce, Dermot O'Hare, Richard I. Walton, John Wiley & sons, 2011.				
		4	Handbook of Advanced Materials: Enabling New Designs by James K. Wessel, John Wiley & sons, 2004.				
Outcomes	CO1		Students will acquire detailed knowledge of different advanced functional materials.				
	CO2		identify the functional materials suitable for given applications.				
		-		0	Contac	t Ho	urs
				L	Т	Ρ	Tot
Course code			SMP4301				
Course title			Material Physics laboratory				
Scheme and Credits			OL: OT: 4P 2 Credits				
Pre- requisites			Physics, Physics II and Material Physics.				
Objectives of the course			To apply various testing methods for assessing the mechanical, thermal, electrical and optical properties of materials.				
Detailed contents							
		1	To find the Young's modulus of given material.				

			To estimate the Dielectric constant and curie temperature of				
		2	given sample.				
		3	Characterization of photoresistors (LDR characterization).				
		4	Evaluation of moisture content.				
		_	Measurement of contact angle and surface energy using				
		5	surface Goniometer.				
		6	Hardness measurement using Durometer.				
		7	Solar cell characterization.				
		-	Determination of Refractive index of given liquid using				
		8	travelling microscope.				
		9	Four probe method for Band gap measurement.				
		10	B-H Characterization of given sample.				
			Total				48
Suggested books.							
		1	Handbook of Plastics Analysis, H. Lobo and J. V. Bonilla, Marcel Dekker.				
		2	Instrumental Methods by Dyer.				
		3	Handbook of polymer Testing Roger Brown, Marcel Dekker Inc.				
Outcomes		5	Student will				
Catcomes			Able to carry out appropriate characterization of given material				
	CO1		sample. Identify the application of engineering materials and physical				
	CO2		properties.				
	CO3		Strengthen the theoretical knowledge of material physics.				
				L	Т	Р	Tot
Course code			SMP4402				
Course title			Materials processing and characterization laboratory.				
Scheme and							
Credits			OL: OT: 4P 2 Credits				
Pre-			Polymer science and technology I, Structural				
requisites			property relationship, Material science and engineering.				
Objectives							
•			To acquaint students practical knowledge of polymeric material				
of the							
of the			processing techniques and charaterization.				
of the course							
course							
course Detailed							
course		1	processing techniques and charaterization.				
course Detailed		1	processing techniques and charaterization. Compounding of Polymeric material using two roll mill				
course Detailed		2	processing techniques and charaterization. Compounding of Polymeric material using two roll mill Compounding of Polymeric material using compressing molding				
course Detailed			processing techniques and charaterization. Compounding of Polymeric material using two roll mill Compounding of Polymeric material using compressing molding Injection Molding				
course Detailed		2 3	processing techniques and charaterization. Compounding of Polymeric material using two roll mill Compounding of Polymeric material using compressing molding Injection Molding Melt compounding and processing of Polymeric materials using				
course Detailed		2	processing techniques and charaterization. Compounding of Polymeric material using two roll mill Compounding of Polymeric material using compressing molding Injection Molding Melt compounding and processing of Polymeric materials using twin screw extruder				
course Detailed		2 3	processing techniques and charaterization. Compounding of Polymeric material using two roll mill Compounding of Polymeric material using compressing molding Injection Molding Melt compounding and processing of Polymeric materials using				
course Detailed		2 3 4	processing techniques and charaterization. Compounding of Polymeric material using two roll mill Compounding of Polymeric material using compressing molding Injection Molding Melt compounding and processing of Polymeric materials using twin screw extruder				
course Detailed		2 3 4 5	processing techniques and charaterization. Compounding of Polymeric material using two roll mill Compounding of Polymeric material using compressing molding Injection Molding Melt compounding and processing of Polymeric materials using twin screw extruder Electrospinning				
course Detailed		2 3 4 5 6 7	processing techniques and charaterization. Compounding of Polymeric material using two roll mill Compounding of Polymeric material using compressing molding Injection Molding Melt compounding and processing of Polymeric materials using twin screw extruder Electrospinning Physical Vapor Deposition (PVD)				
course Detailed		2 3 4 5 6	processing techniques and charaterization. Compounding of Polymeric material using two roll mill Compounding of Polymeric material using compressing molding Injection Molding Melt compounding and processing of Polymeric materials using twin screw extruder Electrospinning Physical Vapor Deposition (PVD) Sintering				
course Detailed		2 3 4 5 6 7 8	processing techniques and charaterization. Compounding of Polymeric material using two roll mill Compounding of Polymeric material using compressing molding Injection Molding Melt compounding and processing of Polymeric materials using twin screw extruder Electrospinning Physical Vapor Deposition (PVD) Sintering Chemical methods of Polymeric materials by Fourier Transform Infrared Spectrophotometer (FTIR)				
course Detailed		2 3 4 5 6 7	processing techniques and charaterization. Compounding of Polymeric material using two roll mill Compounding of Polymeric material using compressing molding Injection Molding Melt compounding and processing of Polymeric materials using twin screw extruder Electrospinning Physical Vapor Deposition (PVD) Sintering Chemical methods of Polymeric materials by Fourier Transform				
course Detailed		2 3 4 5 6 7 8	processing techniques and charaterization. Compounding of Polymeric material using two roll mill Compounding of Polymeric material using compressing molding Injection Molding Melt compounding and processing of Polymeric materials using twin screw extruder Electrospinning Physical Vapor Deposition (PVD) Sintering Chemical methods of Polymeric materials by Fourier Transform Infrared Spectrophotometer (FTIR) Structure analysis of Polymeric materials by X-Ray Diffraction (XRD)				48
course Detailed contents		2 3 4 5 6 7 8	processing techniques and charaterization. Compounding of Polymeric material using two roll mill Compounding of Polymeric material using compressing molding Injection Molding Melt compounding and processing of Polymeric materials using twin screw extruder Electrospinning Physical Vapor Deposition (PVD) Sintering Chemical methods of Polymeric materials by Fourier Transform Infrared Spectrophotometer (FTIR) Structure analysis of Polymeric materials by X-Ray Diffraction				48
course Detailed contents		2 3 4 5 6 7 8	processing techniques and charaterization. Compounding of Polymeric material using two roll mill Compounding of Polymeric material using compressing molding Injection Molding Melt compounding and processing of Polymeric materials using twin screw extruder Electrospinning Physical Vapor Deposition (PVD) Sintering Chemical methods of Polymeric materials by Fourier Transform Infrared Spectrophotometer (FTIR) Structure analysis of Polymeric materials by X-Ray Diffraction (XRD)				48
course Detailed contents		2 3 4 5 6 7 8	processing techniques and charaterization. Compounding of Polymeric material using two roll mill Compounding of Polymeric material using compressing molding Injection Molding Melt compounding and processing of Polymeric materials using twin screw extruder Electrospinning Physical Vapor Deposition (PVD) Sintering Chemical methods of Polymeric materials by Fourier Transform Infrared Spectrophotometer (FTIR) Structure analysis of Polymeric materials by X-Ray Diffraction (XRD) Total				48
course Detailed contents		2 3 4 5 6 7 8	processing techniques and charaterization. Compounding of Polymeric material using two roll mill Compounding of Polymeric material using compressing molding Injection Molding Melt compounding and processing of Polymeric materials using twin screw extruder Electrospinning Physical Vapor Deposition (PVD) Sintering Chemical methods of Polymeric materials by Fourier Transform Infrared Spectrophotometer (FTIR) Structure analysis of Polymeric materials by X-Ray Diffraction (XRD) Total Polymer Processing Fundamentals, Osswald, A. Tim, Hanser				48
course Detailed contents		2 3 4 5 6 7 8 9	processing techniques and charaterization. Compounding of Polymeric material using two roll mill Compounding of Polymeric material using compressing molding Injection Molding Melt compounding and processing of Polymeric materials using twin screw extruder Electrospinning Physical Vapor Deposition (PVD) Sintering Chemical methods of Polymeric materials by Fourier Transform Infrared Spectrophotometer (FTIR) Structure analysis of Polymeric materials by X-Ray Diffraction (XRD) Total				48

		3	Polymer Extrusion by Chris Rauwendaal, Carl Hanser Verlag GmbH & Co, 3rd Revised edition, 1994		
Outcomes					
	CO1		Able to handle processing techniques of given material sample.		
	CO2		Identify the application of engineering materials and physical properties.		
	CO3		Able to carry out appropriate characterization of given material sample.		

Textiles

SP #	Course Code (IOCB)	Course Code (MARJ)	Туре	List of Subjects
1			Theory	
2			Theory	
3			Theory	
4			Theory	
5			Theory	
6			Theory	
7			Theory	
1			Laboratory	

Course Code: STT3201	Course Title: Technology of Fibres and Polymers	Cred	its = 4	
	reciniology of Fibres and Forymers	L	T	P
	Total contact hours: 36	2	1	0

Students will have better understanding of different natural and synthetic fibres, their properties as well as important concept of polymer chemistry which will help in manufacturing as well as designing processing parameters.

Sr No.	Course Contents (Topics and subtopics)	Reqd. hrs
1	Introduction to textile fibre as polymer, Fibre forming characteristics of polymers,	4
	Definition of various basic textile terms, Introduction to Fibre, Yarn,	
	Fabric, Classification of fibres based on sources of origin and on chemical	
2	Natural fibres of plant, animal and mineral origin, chemistry, morphology, physical	8
	and chemical properties, structure property relationship with application,	
	commercially important fibres like cotton, jute, linen, bamboo, wool, silk etc., Fibre	
	to fabric conversion steps.	
3	Semi-synthetic fibres such as viscose rayon, cuprammonium rayon, acetate rayon,	4
	bamboo rayon and lyocell with respect to chemistry, manufacturing process,	
	morphology, physical and chemical properties and structure property relationship	
	with applications.	10
4	Synthetic fibres such as polyester and its variants, polyamides, acrylic,	10
	polypropylene, etc with respect to their raw materials, synthesis, manufacturing	
_	processes including LOY, FOY, POY, FDY, draw ratio, physical and chemical	4
5	General polymer chemistry; Classification of polymers, synthesis and mechanism, Techniques of polymerization.	4
6	Types of polymeric Molecular weight and its determination.	2
7	Microstructure of polymers, Fibre modification through texturization, TiO2 and	4
	chemical modification (using co monomer, other monomers and grafting), Brief	
	idea about polymer composites: Polymer waste and techniques of utilization List of Text Books/ Reference Books	
1	Textile Fibres-I, Mathews, J.M, 4th edition, 1924.	
2	Textile Chemistry, Peters R.H, Vol-1, Elsevier Publishing Company, London, 1963.	
3	Man-made Fibres, Moncriff, R.W., Newnes Butterworth, London, 6th edition, 1965.	
4	Man-made Fibres, Moncriff, R.W., Butterworth Science, London, 6th edition, 1975.	

5	Tartila Eihnas Shanai V.A. Val 1. Saval Dublications Dombay 2rd edition 1001		
5	Textile Fibres, Shenai V.A., Vol-1, Sevak Publications, Bombay, 3rd edition, 1991.		
6	Joseph's Introductory Textile Science, Joseph, M.L., Hudson P.B., Clapp A. C., Fortworth:		
	Harcourt Brace Jovanovich College Publication, 6th edition, 1993.		
7	Microscopy of Textile Fibres, Greaves, P.H., Saville B.P.Oxford : BIOS Scientific Publishers Ltd., 1995.		
8	Modern Textile Characterization Methods, Raheel, M. Marcel Dekker Inc., New York, 1996.		
9	Handbook of Fibre Chemistry, Lewin Menachem, Eli M. Pearce, Marcel Dekker Inc., New		
	York, 2nd edition, 1998.		
10	Mishra, S. P. A Text Book of Fibre Science and Technology. India: New Age International,		
11	Ghosh, P Fibre Science and Technology. United States: McGraw Hill Education (India)		
Private Limited, 2004			
11 Kothari, V. Manufactured Fibre Technology. Netherlands: Springer Netherland, 2012			
	Natural Polymer man-made Fibres, Carrol and Porczynski C.Z., National Trade Press Ltd., London, 1965		
15			
14	Visco-Elastic Properties of Polymers, Ferry, J.D., John Wiley and Sons, New York, 3 rd		
15	Textbook of Polymer Science, Billmeyer F.W., John Wiley and Sons, New York, 3rd edition, 1984.		
16	Polymer Science, V R Gowarikar, New Age international (P) Ltd Publications, New		
	Course Outcomes (students will be able to)		
1	Understand fibre forming properties with different textile terms as well as their classification (K4).		
2	Acquire deeper understanding and insights in basic chemistry, production processes and physical and chemical		
	properties of Natural and Synthetic fibers. (K2).		
3	Understand different areas of applications of these fibres vis a vis their properties. (K4).		
4	Comprehend fundamental knowledge of polymers, their classifications, as well as techniques and mechanism of		
	polymerization(K2).		
5	Describe chemical and physical methods used for fibre modification and recycling. (K2)		

	Course Code:	Course Title: Technology of Textile Dyeing	Cr	edits =	- 4
STT3.	502		L	Т	Р
		Total contact hours: 36	3	1	0
to solv	ve them, the develo	the importance and relevance of textile coloration, the problem opments in machinery with respect to growth of industry, the al relevance of dyeing processes			
Sr.No.		Course contents (topics/subtopics)		Requi hrs	red
SECT	ION I				
	•	nical characteristics of textile fibres in relation to dyeing, extiles and quality of water in relation to dyeing		2	2
	Parameters of qua	lity dyeing, machines used and terms used; Classification oblication, Performance characteristics of dyed textiles	of	2	2
3	-	ents in processes and machinery for dyeing of textiles in var res, yarns, woven and knitted fabric	rious	2	2

4	Dyeing of cellulosic fibres with Direct, Azoic, Vat, Solubilized Vat, Sulphur, Oxidation colours and OBA's	4					
5		2					
6	Dyeing of Acrylic with Basic and modified cationic dyes	2					
7	Dyeing of Indigo and Natural dyes	2					
8	Dyeing of Polyester with Disperse dyes	4					
9	Dyeing of Cellulosics with Reactive dyes	2					
10	Dyeing of blends, Dyeing of union fabrics; Dyeing of micro fibre fabrics	2					
11	Batch, semi-continuous and continuous type dyeing machinery for all forms of textiles.	4					
12	Dosing systems for dyeing, automatic colour and chemical dispensing systems, automated inventory 2 management systems for dyes and chemicals 2						
13	13 Right First Time approach, Faults in dyed materials and their correction. 2						
14	Machinery used for washing and soaping of dyed materials, Recent developments in machinery and dyeing techniques	2					
15	Concept of conservation of chemicals and water in dyeing	2					
	List of Text Books/ Reference Books						
1	1 The Theory and Practice of Wool Dyeing, Bird, C.L., SDC Publ., Bradford, 1972						
2							
3	Wiley and Sons, New York, 1984 Wool Dyeing by D M Lewis, SDC Publication, 1992						
4	Batchwise Dyeing of Woven Cellulose Fabric by John Shore, SDC Publ., 1993						
5	Colour for Textiles-User's Handbook, W. Ingamells, SDC Publ., 1993						
6	Technology of Dyeing, Shenai V.A., Vol. 6, Sevak Publication, Bombay, 1994.						
7	Cellulosic Dyeing by John Shore, SDC Publ., 1995						
8	Blends Dyeing by John Shore, 1998						
9	Handbook of Synthetic Dyes and Pigments, K.M.Shah, Multitech Publishing, 1998.						
10	Reactive Dyes for Textile Fibres, A. Hunter and M. Renfrew, SDC Publ., 1999.						
11	Basic Principles of Textile Coloration by A D Broadbent, SDC Publ., 2001						
12	Synthetic Fibre Dyeing by C Hawkyard, SDC Publ., 2004						
	Course Outcomes (students will be able to)						
	Understand the importance of various textile processing parameters for quality dyeing						
	Identify the correct process to be carried out based on type and form of the substrate (K2)						
	Explain the developments in dyes, machinery and processes in tune with constantly c requirements of the industry (K2)	hanging					
4	Analyse the quality of dyeing and suggest corrective measures. (K4)						
	Design the process for dyeing of novel fibres and blends based on its physico-chemic characteristics. (K4)	al					

	Course Code:	Course Title: Technology of Textile Printing	C	redits	. = 3
ST 1	[3403	rechnology of rextile rinning	L	Т	Р
		Total contact hours: 36	2	1	0
Th	e course will make studer	In to understand printing as one of the most versatile method of colour significance in value addition of textiles.	ration of	f textile:	and its
Sr. No.		Course contents (topics/subtopics)			Req. hrs.
		SECTION I			4
1	Introduction to various c	olouration technics, Stages in printing of textiles, History of textile pr	rinting.		4
2	synthetic thickeners, clas	e, functions of various ingredients of print paste, Various Natural, mo ssification of thickeners, Preparation of stock thickening, Selection of s, style and method, Rheology of printing pastes			6
3	Three Basic styles of Prin	nting and various special styles of printing			4
4	printing, Defects and ren	bock, stencil, Screen; hand screen, flat bed, rotary, Roller, Transfer and hedial actions in various methods of printing, Machines used for print ck, stencil, flat and rotary screens, rollers for printing.	0	ef idea	6
5	Various methods of fixat treatment of printed mate	ion, Selection of fixation method, Machines for fixation and its workin erials.	ng; vario	ous after	r 4
6		olyamides, polyester and acrylic with different dyes. Printing of blend les; Printing of velvet, carpets and knits	led fibre	e/fabrics	\$ 6
7	Evaluation of printed fa machinery and technique	abrics, Ecological aspects in printing of textiles; Recent developments;	ents in	printing	g 6
List	of Text Books/ Referenc	e Books			
1	Dyeing and Printing, Coo	ckett S.R., Hilton K.A., Leonard Hill Books Ltd., London, 1961.			
2	Introduction to Textile P	rinting, W. Clarke, Newness Butterworths, London, 4th edition, 1977	•		
3	Guide to Printing Techni	ques, Naoharu Oyabu, Mahajan Brothers Publish Ltd., Ahmedabad,	1978.		
4	Technology of Printing,	V. A. Shenai, Sevak Publications, Bombay, Vol. 4, 1990.			
5	Textile Printing by L. W	. C. Miles, revised second edition published by SDC, 2003			
5	Design and Printing Text				
7		es by H. Ujiiye, Woodhead Publishing Series in Textiles, 2006			
8	Dyeing and Screen-Print	ing on Textiles by Joanna-Kinnersly Taylor, Revised and Updated, 20)12.		
		Course Outcomes (students will be able to)			
1	Comprehend fundament	tal knowledge on stages of printing (K2)			

2	Describe and use different types of printing methods and styles, fixation conditions, after treatments used for printing. (K3)
3	Identify and evaluate thickening agents, chemicals and dyestuffs for printing; Formulation and rheological properties of printing pastes(K4)
4	Evaluate quality of printed goods and suggest remedial actions to overcome faults in printing (K4)
5	Comprehend and apply the recent developments in the machinery techniques and special printing techniques. (K3)

STT3404 T The course will provide student deep underspecialty chemicals used in different industriates and the specialty chemicals used in different industriates. To the student deep underspecialty chemicals used in different industriates. Sr. No. Co 1 Nomenclature, functions and classifiered. 2 Surface activity phenomenon, Surfactants: Properties and sulphates, alkane sulphonates and p 4 Cationic Surfactants: Chemistry, Pr 5 Nonionic Surfactants: Chemistry, P 6 Processing Aids: The structure properties	ies. urse contents (topics/subtopics		T 1	P 0 es of variou
The course will provide student deep undersected by chemicals used in different industrials Sr. No. Co 1 Nomenclature, functions and classimation 2 Surface activity phenomenon, Surfation 3 Anionic Surfactants: Properties and sulphates, alkane sulphonates and p 4 Cationic Surfactants: Chemistry, Pr 5 Nonionic Surfactants: Chemistry, Pr 6 Processing Aids: The structure properties in Preparation, Lubricants	tanding about the role of different functies. urse contents (topics/subtopics	ional groups on the		-
Specialty chemicals used in different industriation Sr. No. Co 1 Nomenclature, functions and classifier 2 Surface activity phenomenon, Surfact 3 Anionic Surfactants: Properties and sulphates, alkane sulphonates and p 4 Cationic Surfactants: Chemistry, Pr 5 Nonionic Surfactants: Chemistry, P 6 Processing Aids: The structure properties in Preparation, Lubricants	ies. urse contents (topics/subtopics		propertio	es of variou
1 Nomenclature, functions and classi 2 Surface activity phenomenon, Surfa 3 Anionic Surfactants: Properties and sulphates, alkane sulphonates and p 4 Cationic Surfactants: Chemistry, Pr 5 Nonionic Surfactants: Chemistry, P 6 Processing Aids: The structure prop Enzymes in Preparation, Lubricants	ication of textile auxiliaries)		-
 Surface activity phenomenon, Surfa Surface activity phenomenon, Surfa Anionic Surfactants: Properties and sulphates, alkane sulphonates and p Cationic Surfactants: Chemistry, Pr Nonionic Surfactants: Chemistry, P Processing Aids: The structure prop Enzymes in Preparation, Lubricants 		H Nomenclature, functions and classification of textile auxiliaries		Reqd
 Surface activity phenomenon, Surfa Surface activity phenomenon, Surfa Anionic Surfactants: Properties and sulphates, alkane sulphonates and p Cationic Surfactants: Chemistry, Pr Nonionic Surfactants: Chemistry, P Processing Aids: The structure prop Enzymes in Preparation, Lubricants 				Hrs
 Anionic Surfactants: Properties and sulphates, alkane sulphonates and p Cationic Surfactants: Chemistry, Pr Nonionic Surfactants: Chemistry, P Processing Aids: The structure prop Enzymes in Preparation, Lubricants 	ctants and their chemistry and application			2
 sulphates, alkane sulphonates and p 4 Cationic Surfactants: Chemistry, Pr 5 Nonionic Surfactants: Chemistry, P 6 Processing Aids: The structure prop Enzymes in Preparation, Lubricants 		ons.		2
 5 Nonionic Surfactants: Chemistry, P 6 Processing Aids: The structure prop Enzymes in Preparation, Lubricants 	uses of anionics from carboxylic acids, hosphate esters, etc.	alkylaryl sulphonat	tes, alkyl	4
6 Processing Aids: The structure prop Enzymes in Preparation, Lubricants	operties and applications			2
Enzymes in Preparation, Lubricants	Nonionic Surfactants: Chemistry, Properties and applications			
	erty relationships of Antimigrants, Defo , Peroxide Stabilizers, Printing Binders, Sizes			6
Agents, Antistatic Agents, Durable	are property relationships of Antimicrob Press Agents, Dye Fixatives, Elastomer Modifiers (Softeners and Hand Builders Ultraviolet Absorbers	ic Finishes, Enzyme	es in	6
8 Qualitative and quantitative evaluat of ionic nature.	ion of auxiliaries; Testing of surfactants	, detergency, identi	fication	4
9 Biodegradability of surfactants				2
10 Banned chemicals in pretreatments.	Natural textile auxiliaries			3
11 Recent developments in textile aux	liaries			3
List of Text Books/ Reference Books				
1 Textile Chemicals and Auxiliaries,	Speel H.C., Reinhold Processing Corpor	ration, New York, 1	952	
2 Textile Auxiliaries, Batty, J.W., De	gamon Press, Oxford, 1967.			
3 Colourants and Auxiliaries: Organi	c Chemistry and Application Properties,	Shore, J., SDC, Bra	adford, 1	.990.
4 Laundry Detergents, Smulders, E.,	Wiley VCH, Weinheim, 2002.			
5 Chemistry and Textile Auxiliaries,				

6	Textile finishing, D. Heywood, ed., Society of Dyers and Colourists, Bradford, England, 2003			
7	Chemical finishing of textiles, W.D. Schindler and P.J. Hauser, Woodhead Publishing, Cambridge, England, 2004			
	Course Outcomes (students will be able to)			
1	Understand fundamental of textile auxiliaries. (K1)			
2	Describe the role of surfactants in textile and their different types (K2)			
3	Write synthesis of important textile auxiliaries (K2)			
4	Evaluate surfactants and identify the ionic nature. (K3)			
5	Explain biodegradability of surfactants and eco-friendly textile auxiliaries. (K2)			

	urse Code: 3405	Course Title: Technology of Finishing	С	redits	= 4
511	5405		L	Т	Р
		Total contact hours: 36	3	1	0
This	course will	help students understand effect of various mechanical and chen	nical fir	ishes i	in terms
		red functionality to meet the end use application.			
		Course contents (topics/subtopics)		Rec hrs	quired
1	Objective of	f textile Finishing and type of finishing techniques.			2
2		finishes like Calendaring, raising, sueding, crabbing, potting, compacting, sar e and machinery involved.	nforising	,	4
3	Heat setting	of synthetic fabrics; Machinery used and principle involved.			4
4	Drying equi efficiency o	pment; stenters, vertical drying ranges, curing ranges. Process control systems f drying.	s to enha	nce	4
5	Evaluation a	and durability of mechanical finishes			2
6		nishing – conventional softeners, stiffeners, binders, weighting agents, silicon nvolved in finishing of Yarn, Knit, Woven, Denim, Terry towel, Garments	e finishe	5.	5
7		es - wrinkle resistance, wash and wear, and durable press properties of fabrics s for resin finishing- Pad-dry cure and Moist cross linking, machinery involve		nt	4
8		finishes - antibacterial, flame retarding, water/oil repelling, soil release, antis loisture management, UV Protection, Cellulase Bio Polishing etc.	tatic		8
9	Performanc	e evaluation of conventional and effect finishes.			3
List o	of Text Books/	Reference Books			
1	Textile Fini	shing, Hall A.J., Heywood book, London, 1966.			
2	An Introduc	tion to Textile Finishing, Marsh J.T., B.I. Publication, Bombay, 1979.			
3	Technology	of Finishing, Shenai V.A., Vol. 10, Sevak Publication, Bombay, 1990.			
4	Handbook o	f Fibre Finish Technology, Slade, P.E., Marcel, New York, 1998.			
5	Encycloped	ia of Textile Finishing, Rouette, H.K., Springer Verlag, New York, 2001.			

6	Chemical Finishing of Textiles, Schindler, W.D and Hauser P.J., Woodhead, 2004
7	Principles of Textile Finishing, Choudhury A. R, Woodhead Publishing, 2017
8	Textile Finishing; Recent Developments and Future Trends, Mittal K.L., Scrivener Publishing, 2017
Cour	se Outcomes (students will be able to)
1	Explain different methods and machineries available for application of finish and calculate finish add on onto fabric (K2)
2	Describe different types of softeners, fastness improving agents, antimicrobial, antistatic, flame retardant, their chemistry, application on fabric and evaluation tests (K2)
3	Determine use of appropriate machine and process parameters for finishing(K3)
4	Compare and choose various mechanical and thermal process control systems to enhance efficiency of drying and heat setting (K4)
5	Explain different methods for evaluation and durability of finishes. (K2)

Course (Course Title:		Credits = 2			
STT3507	Effluent Characterisation and Treatment				Р	
	Total contact hours: 36 3 1					
	List of Prerequisite Courses					
	Technology of pretreatment, dyeing, printing, an	d finishing	g			
	List of Courses where this course will be prerequ	isite				
	Process house management					
	Description of relevance of this course in the B.Te	ech. Progr	am			
Understand effluent pai	l importance and relevant of environmental aspects related to sustainability rameters	in textile we	et proc	essing ar	id the	
Sr No.	No. Course contents (topics/subtopics)					
	ater requirement by textile wet processing industry, quality of incoming pro- process water, overview of methods used to test incoming water	ocess water, s	standa	rd norms	⁵ 8	
2. Me	Methods to treat incoming water such as, screening, filtration, clarification, disinfection etc.,				8	
3. De	Design of effluent treatment plant, primary, secondary and tertiary treatments				10	
4. att	Activated sludge and its modification, trickling filters, rotating biological contractors, suspended and attached growth anaerobic systems. Stabilisation ponds, aerated lagoons, etc. Sludge treatment and disposal. 10 Treated effluent disposal in inland waters and marine environment.					
List of Te	xt Books/ Reference Books					
1 E	conomy Energy & Environment in textile Wet Processing - ACT, Edited by	y S.S. Trived	li.			
2 E	Environmental Issues - Technology option for Textile Industry Edited by R. B. Chavan, Indian Journal of Fibre & Tex					
	Eco-friendly Textiles Challenges to Textile Industry - Textile Committee.					
4 E	Environmental Success - America Textile Industry, AATCC Symposium - 1996.					
Course O	utcomes (students will be able to)					

1	Comprehend requirements of water and energy conservations during textile processing (K2)						
2	Explain methods to determine presence of metal or other impurities in the effluent. (K2).						
3	Demonstrate fundamentals about environment and its charactertics (K3).						
4	4 Describe various ecosystems and ecolables. (K2)						
5	Explain effluent treatment procedures and their application to textile processing waste-						

Course Code: STT3506		e: Course Title: High-tech and Industrial Fibres			= 3
		rigii-tech and muustral ribres		Τ	Р
		Total contact hours: 36	2	1	0
The c	ourse will b	e helpful to understand manufacturing, properties and applications of the most fibres	commor	ıly used	high tech
Sr No		Course contents (topics/subtopics)		Re	qd. Hrs.
1.		on to fibres and their manufacturing techniques, terminology, Definition of Hig ferences between conventional and High Tech fibres	h Tech		4
2.		uring of carbon fibres from PAN precursors, viscose and pitch fibres. Difference properties and Application of each type in different areas/fields	es betwe	en	4
3.		ibres, Synthesis of polymer, manufacturing, Discussion on Liquid crystals, Discussion and aramid fibre, Application in different areas/fields	fference		4
4.	 Ultra High Molecular weight Polyethylene Fibres, Synthesis, manufacturing, Special focus on its structure, Discussion on Sheesh Kebab structure, Gel spinning, Super drawing, Difference between regular olefin and UHMW fibre, Application in different areas/fields 				
5.	Discussion	ane/Elastomeric Fibres, Synthesis of polymer along with precursors, manufactu n on block/segmented structure, comparison with rubber, stretchability, Applica reas/fields			6
6.	different t	es including optical glass fibres , their manufacturing, Rotary jet spinning techn ypes like C,E and S, Sizing and its reasons. Properties vis a vis Aramide and C n Tech fibres, Application in different areas/fields	-	d	6
7.		assion about different biodegradable fibres, monomers used, polymers synthesi lication in medical field	s, nano		6
		List of Text Books/ Reference Books			
1	Natural and	man-made Textile fibres, G.E Linton, New York duell, sloan and pearce 1966			
		F., Vigo, T. L. High-tech Fibrous Materials: Composites, Biomedical Materials United States: American Chemical Society, 1991	s, Protec	tive Clo	othing, and
3	Bicomponent fires.,Jeffries,Merrow publishing,1996				
4]	Hongu, T., Phillips, G. O. New Fibers. United Kingdom: Elsevier Science, 1997				
5	High Performance Fibers, J.W.S. Hearle, Wood head Publishing,2001				
6	Advanced fiber spinning Technology, T.Nakajima, Wood head publication, 2002				
7	7 New millennium fiber ,Thongu,CRC press,2005				

8	Phillips, G. O., Takigami, M., Hongu, T. New Millennium Fibers. United Kingdom: Elsevier Science, 2005
9	Medical Textiles and biomaterial for healthcare, Anand S.C. Wood head publishing, 2006
10	High-Performance and Specialty Fibers: Concepts, Technology and Modern Applications of Man-Made Fibers for the Future. (n.d.). Japan: Springer Japan
11	High Performance Technical Textiles. United Kingdom: Wiley, 2019
	Course Outcomes (students will be able to)
1	Recognise the need, technology and difference between conventional and High Tech fibres (K2)
2	Describe manufacturing of Carbon fibres using different precursors, their applications and properties (K2)
3	Understand manufacturing of Glass and Aramide fibres, their applications including optical fibres and properties (K1)
4	Explain manufacturing of Ultra high molecular weight Polyethylene and Poly urethane fibres, their applications and properties (K2)
5	Predict end use applications and performance evaluation criteria of hi-tech fibres (K3)

Special lab-1- Analysis of fibres and fabrics

Sr No.	Course Contents (Topics and subtopics)
1	Identification of fibres – Hand feel, Microscopic structure, Burning behavior, Chemical
	analysis of fibres,
2	Blend analysis - polycotton, polyvis, woolycot, polywool.
	Properties of Yarn – Twist, Twist behavior, Crimp characterization of texturised yarn, Yarn numbering determination.
	Properties of Fabric –, Drape, Bending length, Crease recovery angle measurement, Tensile strength, Tear strength, Bursting strength, Abrasion resistance, Pilling.
5	Specification of fabric - GSM, EPI-PPI, Cover factor
1	Structure of fabric – basic structure, Understanding common names of polyester fabric varieties - Crepe, Georgette, and chiffon. Cotton fabric varieties – poplin, denim, cord.
7	Hand weaving using frames
8	Characterization - DSC, FTIR, TGA and XRD demo

Special lab 2- Treatment of textiles

Sr No	Course Contents (Topics and subtopics)		
1	Stain removal by spotting, chemicals used and methods of stain removing.		
2	Methods of Desizing of cotton woven fabric - acidic, enzymatic, and oxidative, qualitative and quantitative		
	evaluation of desizing efficiency- TEGEWA scale staining, loss in weight, water absorbency.		
3	Scouring of cotton-open boil, pressure boil; Scouring of knitted cotton fabric - conventional and bio-scouring		
	Evaluation of scouring efficiency-Drave's test, sinking time, wicking property, loss in weight, core alkali		
	determination – boil fabric and check pH, phenolphthalein.		
4	Bleaching of cotton with oxidative and reductive bleaching agent, Scouring and bleaching of polyester/cotton		
	blends.		
5	Scouring and bleaching of wool, Degumming and Bleaching of Silk		
6	Drumming and weight reduction of polyester fabric, Bleaching of polyester with hydrogen peroxide and nylon		
	with sodium chlorite.		

7	Evaluation of bleaching efficiency - whiteness index and bleach clean-up (peroxide killer - enzymatic and
	reducing agent).
8	Mercerisation of cotton with and without tension, Evaluation of mercerization - Shrinkage, Barium Activity no.
	dye uptake, strength and elongation; microscopic observation.
9	Assessment of cotton for degradation by Methylene Blue Absorption.
10	Application of OBA/FBA on natural and synthetic fabrics and evaluation of fabric for whiteness index - exhaus
	and pad application
11	Pre-treatment by semi-continuous process - combined desizing, scouring, bleaching; Pre-treatment by
	continuous process – separate and combined scouring, bleaching
12	To study effect of heat setting on dye uptake, dimensional stability and strength

Annexure I

R.26 Credit System and Mode of evaluation for Trimester Pattern

For Integrated M. Tech. in Chemical Engineering offered by Institute of Chemical Technology (ICT) at Bhubaneswar and Marathwada, Jalna Campus

1. Introduction

Integrated M. Tech. course after 12th Standard (HSSC) of 5 year duration consisting of 15 trimesters with alternate term in industry, with major in Chemical Engineering and minor in 6 different disciplines has been started to ensure improved quality and industry relevance in curricula in the field of Chemical Engineering as major branch with minor in Petrochemicals, Textiles, Polymers and Materials, Foods and Pharmaceuticals, and Energy Engineering, Food Engineering (in Marathwada, Jalna). The salient features are:

- 1. Four-month Trimester pattern with studies and In-plant training (IPT) alternate term.
- 2. Simultaneous 2 years' experience in various Industries.
- 3. Student is continuously monitored and participates in classroom discussions, home assignments, and research projects.

This concept/curriculum of Integrated M. Tech. is new and being introduced in India for the first time.

2. Course Structure

The course has a trimester-based structure. Each quarter consisting of 4 months, approximately12 weeks of teaching. The schedule of trimesters is as follows:

Year	Trimester	Scheme of
		trimesters
1	T1	Theory
1	Т2	Theory
1	Т3	In-plant
2	Τ4	Theory
2	Т5	In-plant
2	Т6	Theory
3	Τ7	In-plant
3	Т8	Theory
3	Т9	In-plant
4	T10	Theory
4	T11	In-plant
4	T12	Theory
5	T13	In-plant
5	T14	Theory
5	T15	Theory

During the Term T3, students will be asked to choose their Minor. Students will be allotted different branches based on their choices and Merit Rank based on their CGPA after T2. Maximum number of students allotted to any branch would not be more than 11 (eleven). This would ensure that all the branches get equal number of students. Once a particular Minor is allotted, students will not be allowed to change their Minor.

There are mainly two types of courses in the Institute: lecture courses and laboratory courses. Lecture courses consist of lecture (L) and tutorial (T) hours. Laboratory courses consist of practical (P) hours. The credit (C) for a course is dependent on the number of hours of instruction per week in that course, as given below:

- (1) 1h/week of lecture (L) or tutorial (T)
- (2) 2h/week of Practicals (P)
- (3) Credit (C) for a theory course
- = 1 credit = 1 credit
- No. of hours of lectures per week + No. of hours of tutorials per week = L + T
- (4) Credits (C) for a laboratory course
- = 0.5 × No. of hours of laboratory course per week

Credits will be assigned to In-plant, Seminar, Projects and other mandatory course requirements also and these will be mentioned in the syllabi.

3. Evaluation

3.1 The marks allotted for evaluation to all subjects would be 100. The weightage to different modes of assessments shall be as under.

	In-term Evaluation		End Term	Components of continuous mode	
	Continuous Assessment	Mid Term- Exam	Exam		
Theory	50	-	50	Quizzes, class tests (open or closed book), home assignments, group assignments, <i>viva-voce</i> assignments, discussions	
Practicals	50	-	50	Attendance, viva -voce, journal, assignments, project, experiments, tests	

3.2. In-Term Evaluation:

- (a) It is expected that the teacher would conduct at least three assessments of equal weightage and approximately equally spaced throughout the term under the continuous mode.
- (b) The teacher will announce at the beginning of the respective course the method of conducting the tests under the continuous mode and the assignment of marks
- (c) In-term performance of all students should be displayed and sent to the academic office by the teacher at least 5 days before the end-term examination.
- (d) The in-term, continuous assessment evaluation shall be shown to the student from time to time throughout the term, as and when the evaluations are conducted by the subject teacher.
- (e) The cumulative marks for all in-term evaluation would be 50.

3.3. End-Term examination:

- (a) The Term end examination will cover the full syllabus of the course and will be conducted as per the Institutional timetable at the end of each term.
- (b) End term examination for all subjects will be for 50 marks and 2 h duration.
- (c) The end term examination answer books shall be graded by the subject teacher within a period of 7 days from the date of examination.
- (d) The subject teacher shall conduct an "open house session" with the candidates registered for the course, wherein, the registered candidates can see the assessment of their answer books by the subject teacher. After conducting such a session and making changes in the marks, if any, the subject teacher shall send the marks to the Academic Office.
- (e) No revaluation of these examinations will be allowed.

3.4 Evaluation in Laboratory Courses

The evaluation of Laboratory courses would be done in the following manner:

Continuous Assessment		End Term Examination		
Parameter	Marks	Parameter	Marks	
Completion of all experiments (based on grades in the laboratory log book)	25	Satisfactory Performance of Experiment(s)	10	
Submission of fair Journal	15			
Quality of Flow Diagram	15	Quality of Flow Diagram Results,	10	
Results, Graphs, Comments		Graphs, Comments		
Viva(s)	15	Viva	10	

3.5 Evaluation of the In-Plant Training

At the end of every in-plant training term, students will have to submit:

- (i) a written report of the work carried out, and
- (ii) an evaluation of the student from the Industry Mentor.
- (iii) After coming back to the Institute, the student would have to present the work carried out to a committee of two faculty members of the Institute. The presentation would be evaluated by the committee and student will be given a grade for the in-Plant training based on the following parameters

3.5.1 Format for Evaluation by Industry Mentor

Name of the Student:						
Name and Designation of the Mentor:						
Name and Address of Organization / Place of Internship:						
Email:	Phone:					
Internship Duration: Start Date:, End Date:						

Instructions to the Mentor:

Please evaluate the student on following Parameters & tick appropriate column:

Excellent: > 80%, Good: 60 – 80%, Satisfactory: 40 – 60%, Needs Improvement: < 40%

	Needs Improvement	Satisfactory	Good	Excellent
General Behaviour: Ethics and Attendance				
Oral and Written Communication Skills				
Interpersonal Skills				
Technical Knowledge				
Professional Skills: Initiative and Motivation				
Managerial Skills: Time and Resource				
Any Other Remarks:				•

Signature of the Mentor: _____

3.5.2 Format for Evaluation by Faculty Members of the Institute and assigning grade

Name of the student: _____

	Item	Marks
Report/IPT Dairy	Background of Project/Industry	/05
	Technical work done/Industry study	/30
	Any of the followings	
	i. Experiment performed	
	ii. Mathematical modelling if any	
	iii. Design	
	iv. Techno-economic feasibility	
	v. Analysis of data	
	vi. Process study and observations	
	Conclusions	/10

	Writing skills including formatting as per given instructions	/05
Presentation	 i. Presentation based on the work performed and its analysis. ii. Presentation skill 	/20
Industry Mentor	Marks given by industry mentor	/30
Total		/100

3.6 Pass and Fail

- (a) The candidates who obtain 40% and more marks of the total marks of a subject head shall be deemed to have **passed** the respective subject head.
- (b) The candidates who obtain marks less than 40% of the total marks of a subject head shall be deemed to have **failed** in the respective subject head **(Grade FF).**

3.7 Grades

- (a) The performance of a student shall be documented by a **Letter grade.** Each letter grade has a **Grade point** associated with it. The Grades and Grade points shall be assigned to each head of passing and both will be indicated in the mark-list of the term examination.
- (b) The total marks (in-term+end-term) of a candidate in a subject head are converted into a letter grade, based on the relative (and sometimes the absolute) performance of the student.

,1
Grade Point
10.0
9.0
8.0
7.0
6.5
6.0
5.5
5.0

(c) For granting class and calculating percentage marks secured by the candidate, CGPA will be multiplied by 10. If CGPA is greater than 7.0, candidate would be assigned First Class with Distinction. If 6.0 ≤ CGPA ≤ 6.99 candidate would be assigned First class.

If $5.0 \le CGPA \le 5.99$ candidate would be assigned Second class.

(d) The grades to be allotted in the case of students who fail or do not appear at the end-term examination shall be as under.

Letter	Grade	Explanation
Grade	Point	
FF	0	The candidate fails in subject head. The candidate will be allowed to take end-term
		repeat or subsequent examinations as per rules.
XX		The candidate has not kept term for the subject head due to attendance less than requisite. Further see 3.5(g) below. In the above cases, the candidate has to repeat the respective course by paying the fees.
1	0	The candidate has kept term for the subject head, has taken all the internal examinations with satisfactory performance, but has failed to take the end-term examination or repeat examination due to genuine reasons. The candidate will be allowed to take end-term repeat or subsequent examinations as per rules.

FR	0	The candidate has exhausted all the permissible chances to clear the end-term examinations. The candidate has to register for the respective term again for all the subject heads or will be out of the respective degree course as per the rules.
DR	0	(i) The candidate hasn't participated in academic programme.(ii) The candidate has taken a drop for the subject head;
		- provided he/she intimates the same (i or ii) at least 7 days in advance of the commencement of the end-term examination for the respective year.

- (e) Grades **FF** and **I** are place-holders only and do not enter into CPI/SPI calculations directly. These grades get converted to one of the regular grades after the subsequent examinations.
- (f) A candidate with an **FR** grade is not eligible for any repeat examination in that course and has to re-register for that term by paying the appropriate fees.
- (g) I grade will not be continued beyond the permissible number of end-term/repeat examinations. In the six consecutive exams conducted by the institute, irrespective of whether the candidate fails to take any of these exams.
- (h) 'XX' Grade: The grade XX in a course is awarded if (i) candidate does not maintain the minimum 75% attendance in the Lecture/Tutorial/Practical classes, (ii) candidate receives less than 40% of the marks assigned for continuous assessment (iii) candidate indulges in a misconduct/uses unfair means in the examination, assignments, etc., of a nature serious enough to invite disciplinary action in the opinion of the teacher.

(Note: Award of the XX grade in the case of i(iii) above shall be done by Disciplinary Action Committee (DAC)).

(i) The names/roll numbers of students to be awarded the **XX** grade should be communicated by the teacher to the Academic office as per academic calendar before the last date of submission of the application for end-term examination.

3.8. Awarding the grades

The grading scale ranks the students on a statistical basis on the basis of the overall performance of the students of a given class in the given subject head. Therefore, statistical data on students' performance is a prerequisite for applying the grading system. While assigning grades in a given subject head, it is essential to know the **average marks (AM)** obtained by the students *who have passed the subject head* and the **highest marks (HM)** obtained in the *same subject head*.

3.8.1. If the **average marks (AM)** obtained by the students *who have passed the subject head* is <60%, the interval AM shall be awarded grade CC and the other grades shall be decided as follows:

- i. AA, AB, BB, and BC grades shall be decided between the AM and HM by dividing the range in equal intervals.
- ii. CD, DD and EE grades shall be decided between the AM and minimum marks required for passing the head (i.e. 40%) by dividing the range in equal intervals.

3.8.2. If the **average marks (AM)** obtained by the students *who have passed the subject head* is such that **60%** ≤ **AM** < **70%**, the interval AM shall be awarded grade BC and the other grades shall be decided as follows:

- i. AA, AB, BB grades shall be decided between the AM and HM by dividing the range in equal intervals.
- ii. CC, CD, DD and EE grades shall be decided between the AM and minimum marks required for passing the head (i.e. 40%) by dividing the range in equal intervals.

3.8.3. If the **average marks (AM)** obtained by the students *who have passed the subject head* is such that **70%** ≤ **AM** < **80%**, the interval AM shall be awarded grade BB and the other grades shall be decided as follows:

- i. AA and AB grades shall be decided between the AM and HM by dividing the range in equal intervals.
- ii. BC CC, CD, DD and EE grades shall be decided between the AM and minimum marks required for passing the head (i.e. 40%) by dividing the range in equal intervals.

3.8.4. If the **average marks (AM)** obtained by the students *who have passed the subject head* is such that **80%** ≤ **AM** < **90%**, the interval AM shall be awarded grade AB and the other grades shall be decided as follows:

- i. AA grades shall be decided between the AM and HM by dividing the range in equal intervals.
- ii. BB, BC CC, CD, DD and EE grades shall be decided between the AM and minimum marks required for passing the head (i.e. 40%) by dividing the range in equal intervals.

3.8.5. If the **average marks (AM)** obtained by the students *who have passed the subject head* is such that $AM \ge 90\%$, the interval AM shall be awarded grade AA and the other grades shall be decided as follows:

- i. AB, BB, BC CC, CD, DD and EE grades shall be decided between the AM and minimum marks required for passing the head (i.e. 40%) by dividing the range in equal intervals.
- **3.8.6.** Absolute Grading: Absolute grading is to be awarded for subjects under the following cases:
 - Subject in which candidate works under the supervision of a guide on a project involving work in individual capacity or working in a small group. The subjects where such work is involved are, for example, Seminar, Home Paper, Literature Review, Critical Review, Research Project, In-Plant Training, Summer Project, etc. Grades are awarded directly on the basis of marks secured by the student in such a subject head, as per the following table.
 - ii. Subject in which the registered candidates are less than 10 in number. In such cases, calculation of Average Marks (AM) intervals and intervals for awarding grades higher than AM and lower than AM becomes statistically inaccurate. In such cases, grades are awarded directly on the basis of marks secured by the student in such a subject head, as per the following table.

	Letter Grade	Grade Points
Marks secured ≥ 80%	AA	10
75% ≤ Marks secured < 80%	AB	9
70% ≤ Marks secured < 75%	BB	8
65% ≤ Marks secured < 70%	BC	7
60% ≤ Marks secured < 65%	СС	6.5
55% ≤ Marks secured < 60%	CD	6
50% ≤ Marks secured < 55%	DD	5.5
40% ≤ Marks secured < 50%	EE	5
Marks secured < 40%	FF	0

4. TPI and CPI

a) **Term Performance Index (TPI):** The performance of a student in a term is indicated by **Term Performance Index (TPI)**, which is a weighted average of the grade points obtained in all the courses taken by the student in the term and scaled to a maximum of 10. (TPI is to be calculated up to two decimal places.)

A Term Grade Point Average (TGPA) will be computed for each term as follows:

$$TGPA = \frac{\Sigma c_i g_i}{\Sigma c_i}$$

Where

 c_i is the number of credits allotted to a particular subject, and

 g_i is the grade-points awarded to the student for the subject based on his performance as per the above table. TGPA will be rounded off to the second place of decimal and recorded as such.

b) Cumulative Performance Index (CPI): An up-to-date assessment of the overall performance of a student from the time he entered the Institute is obtained by calculating the Cumulative Performance Index (CPI) of a student. The CPI is a weighted average of the grade points obtained in all the courses registered by the student since he entered the Institute. CPI is also calculated at the end of every term (up to two decimal places).

Starting from the first term at the end of each term (T), a Cumulative Grade Point Average (CGPA) will be computed. CGPA will be rounded off to the second place of decimal and recorded as such.

- c) The CGPA, TGPA and the grades obtained in all the subjects in a term will be communicated to every student at the end of every term/beginning of the next term.
- d) When a student gets the grade 'FF', or I' in any subject head during a term, the SGPA and CGPA from that term onwards will be tentatively calculated, taking only 'zero' grade point for each such 'FF' or 'I' grade. When the 'FF' grade(s) has/have been substituted by better grades after the repeat examination or subsequent term examination, the TGPA and CGPA will be recomputed and recorded.

5.1. For those candidates who fail in a subject head or are eligible for appearing at the repeat examination, **Repeat End-Term Examination** will be conducted, as per **Regulation R.14**. as per schedule given below. The repeat examinations for a particular trimester will be conducted in the gap between the subsequent trimesters as per the schedule shown in the table below:

Year	Trimester	Trimester Type	Repeat Exam of
1	T1	Theory	
1	T2	Theory	
			T1
1	Т3	Inplant	
			T2
2	T4	Theory	
2	T5	Inplant	
			T4
2	Т6	Theory	
3	T7	Inplant	
			T5
3	Т8	Theory	
3	Т9	Inplant	
			Т8
4	T10	Theory	
4	T11	Inplant	
			T10
4	T12	Theory	
5	T13	Inplant	
			T12
5	T14	Theory	
5	T15	Theory	Repeat of T14, T15

5.2. The marks obtained by candidates in the in-term examinations (continuous assessment) will be carried forward in such cases.

5.3. Grading the performance in the Repeat Examination: The grades will be assigned as per 3.5 and 3.6 above. However, for a candidate taking any repeat examination or subsequent regular term examination shall be awarded **one grade lower** than that decided on the basis of the actual marks obtained; provided 'EE' grade obtained in such an examination shall remain 'EE'. For reference see the table below.

Grade obtained in repeat or subsequent end term examination	Grade to be assigned	Grade point
AA	AB	9.0
AB	BB	8.0
BB	BC	7.0
BC	CC	6.5
CC	CD	6.0
CD	DD	5.5
DD	EE	5.0
EE	EE	5.0

5.4 Repeat Practical Examination

Repeat examination in practical subject is permitted only under following cases: (i) Candidate has obtained 50% marks in Continuous assessment and appeared for the regular end semester practical examination and failed, (ii) Candidate has obtained 50% marks in Continuous assessment and could not appear for the regular end semester practical examination due to valid medical reason or family bereavement.

6. Passing of a Term examination

A candidate shall be declared as 'PASSED' any term examination if he/she has

- a. Cleared all heads of passing by securing grades EE or higher in all the heads;
- b. Passed all the heads of passing such as project, seminar, training, etc. as per the rules;
- c. Satisfactorily completed all the mandatory requirements of the course;
- d. Paid all the Institute dues;
- e. No case of indiscipline pending against him/her.

7. Eligibility for the Award of a Degree

A candidate shall be declared eligible for the award of a degree, if he/she has cleared all the trimester examinations as given in (6) above.

8. Allowed to keep terms (ATKT)

8.1 A candidate who has I grade in one or more heads of passing of a trimester of an academic year shall be allowed to keep terms as per Table below.

8.2. A candidate shall be allowed to keep terms for the subsequent academic Terms if he/she has FF or I grades in not more than two heads of passing from all the heads of passing of the two terms of the previous academic term taken together as per the Table below. Such a candidate shall be declared as **FAILED**, **ATKT**.

8.3. Candidates will be allowed to register for subsequent trimesters only if he has cleared previous trimesters indicated in the Table below:

Year	Trimester	Trimester Type	Students allowed to register for a
			particular term only if
1	T1	Theory	
1	T2	Theory	
1	Т3	In-plant	
2	Τ4	Theory	
2	Т5	In-plant	
2	Т6	Theory	
3	Τ7	In-plant	Trimesters: T1-T3 are clear
3	Т8	Theory	
3	Т9	In-plant	
4	T10	Theory	Trimesters: T1-T6 clear
4	T11	In-plant	
4	T12	Theory	
5	T13	In-plant	Trimesters: T1-T9 are clear
5	T14	Theory	
5	T15	Theory	

9. Repeating a course

9.1 A student is required to repeat the course of a subject head under the following situations:

- a. A student who gets an XX, FR, or DR grade in a course; or
- b. A student has exhausted all permissible chances to clear the subject head.

9.2 A candidate who remains absent for the in term and end-term examination of a term and the corresponding repeat examination for **ALL SUBJECTS** shall have to take fresh admission for the corresponding term; unless the candidate has dropped out / terminated from the course.

10. Improvement of performance

A candidate will be allowed to appear at the **entire End Term examination** after the regular end term examination as per the respective rules to improve the performance. In such a case if the result of the examination repeated:

- 1. Is better than the previous one, the previous result shall be declared null and void; and
- 2. Is worse than the previous one, the result of the subsequent examination shall not be declared.

11. Exemption of subjects

A candidate who had to repeat a year due to year drop may request exemption from re-appearing for the exam in the subjects in which the marks obtained by the candidate were greater than 50%.

12. Exit rules for poorly performing students

A candidate shall be excluded from a course under the following conditions:

(a) If he/she fails to pass any term examination of any year of the course in not more than four consecutive attempts (Examination conducted by Institute) from the date of joining the course.

(b) If he/she does not keep two consecutive terms/terms without giving any reasonable justification (as prescribed by the institute) for doing so.

(c) If a candidate fails to fulfil all the requirements of his/her respective degree within the prescribed period from the date of taking admission to the course, the candidate shall be excluded from the course.