Syllabus for Integrated Master of Technology (Int. M. Tech.) Major: Chemical Engineering and Multidisciplinary Minors (MDM)

(Under the National Education Policy 2020) (NEP 2020)

in

(2023-2024)

Offered by

INSTITUTE OF CHEMICAL TECHNOLOGY MUMBAI MARATHWADA CAMPUS, JALNA

(University Under Section-3 of UGC Act, 1956) Elite Status and Center for Excellence Government of Maharashtra

BT-5/6, Biotechnology Park, Additional MIDC Area, Chhatrapati Sambhajinagar (Aurangabad) Road, Jalna – 431 203.

> www.ictmumbai.edu.in, www.marj.ictmumbai.edu.in Tel: (91-22) 3361 1111, Fax: 2414 5614

ENERGY TECHNOLOGY

Page 1 of 153

List of Multidisciplinary Minors (MDM)

Sr. No.	Multidisciplinary Minors (MDM)
1.	Energy Technology
2.	Food Technology
3.	Pharmaceutical Chemistry & Technology
4.	Polymer and Materials Engineering
5.	Petroleum and Petrochemicals Technology
6.	Lipid Engineering
7.	Chemical Sciences
8.	Materials Physics

SYLLABUS OF THE CURRICULUM

for

MULTIDISCIPLINARY MINOR DEGREE

in

ENERGY TECHNOLOGY

[Under the National Education Policy (NEP 2020)]

2023-2024

Offered by

Institute of Chemical Technology Mumbai

Marathwada Campus, Jalna

(University Under Section-3 of UGC Act, 1956) Elite Status and Center for Excellence Government of Maharashtra

BT-5/6, Biotechnology Park, Additional MIDC Area, Chhatrapati Sambhajinagar (Aurangabad) Road, Jalna – 431 203.

Preamble

The essence of human existence lies in energy, serving as a catalyst for a country's economic development. We are currently in a transitional phase, focusing on substituting carbon-based fuels with non-carbon alternatives to extend the lifespan of the former without causing environmental degradation. The adoption of renewable energy sources, coupled with advanced technologies, is anticipated to address challenges such as fossil fuel scarcity, potential depletion, energy security, access, and environmental sustainability. The commitments made by numerous countries necessity for widespread utilization of renewable energy sources. The design, deployment, operation, and maintenance of energy conversion systems demand a skilled workforce at all levels. Recognizing this need, The Institute of Chemical Technology Mumbai Marathwada Campus is initiated the Integrated Master of Technology (I. M. Tech.) program in Chemical Engineering with multidisciplinary minor in energy technology.

The aim of the Integrated Master of Technology (I. M. Tech.) program in Chemical Engineering, with a multidisciplinary minor in energy technology, is to equip postgraduate engineers specializing in the energy sector with versatile analytical skills. This course is tailored for the energy sector and integrates inputs from various disciplines such as chemical engineering (e.g., transport processes), mechanical engineering (e.g., thermodynamics, thermal engineering), and electrical engineering. Additionally, core energy courses are included to furnish students with the necessary knowledge for analyzing and designing energy systems.

Programme Specific Outcomes (PSOs)

Multidisciplinary Minor Degree (Energy Technology)

Students will be able to:

	Program Specific Outcomes (PSOs)							
PSO1	Understand the core concepts underlying energy generation, conversion, storage, and distribution (Factual Knowledge) K1							
PSO2	Comprehend engineering principles to design, develop, and optimize energy systems and technologies, considering factors such as cost-effectiveness, reliability, and safety (Conceptual Knowledge) (K2, K3)							
PSO3	Demonstrate proficiency in designing, implementing, and troubleshooting energy systems, including power generation, distribution, and storage (Procedural Knowledge) (K4)							
PSO4	Reflect on personal learning experiences and adapt strategies to enhance understanding and performance in energy technology and evaluate ethical implications, societal responsibilities associated with the application of energy technologies (Metacognitive Knowledge) (K5, K6)							
PSO5	Cater to the needs of power stations, research organizations and academic institutes. set-up their own ventures and generate employment, promote awareness in society about Energy Technology profession							

1. Recommended batch size: Minimum 10; Maximum 15

2. Duration: Three years

3. Eligibility criteria

Students enrolled in the Integrated Master of Technology in Chemical Engineering of Institute of Chemical Technology, Marathwada Campus, Jalna will be eligible. The allotment of minor degree programme will be as per the policy of the Institute.

4. Pedagogy/ Teaching methods

- Lecture/ Discussions: These sessions will discuss the subject contents of the course.
- **Experiential Learning:** The sessions will involve hands on training.
- **Tutorials:** Problem solving / case studies / relevant real-life applications / student presentations / home assignments / individual or group projects

5. Evaluation

Theory courses

Continuous Assessment Tests (CATs): Continuous assessment will vary from course to course; the instructor will decide the evaluation mode. Two to three CATs will be conducted throughout the course, usually before and after the midsemester examination. These CATs will carry a total weightage of 20%. Depending on the instructor, class test, assignments, case studies, group discussions, report submission and seminar/presentation could also form part of the continuous assessment.

Mid-semester: Total 30 Marks (Theory paper)

End-semester: Total 50 Marks (Theory paper)

Practical courses

Continuous assessment: 50 Marks

Performing given experiments as per the instructions, submission of lab journal on time, viva voce, group/ personal discussions, and quizzes can be part of continuous assessment. The course instructor will discuss the composition of marks for these at the beginning of the course.

End Semester: 50 Marks (Lab experiment performance followed by viva-voce examination)

Semester	Course Code	Subjects	Faculty
III	SET4351	Conventional Energy and Combustion Chemistry of Fuels	SKM
IV	SET4352	Renewable Energy Systems	SKM
1 1	SEP4351	Energy Laboratory-I	AHB
V	SET4353	Energy Conversion and Storage	SKM
v	SEP4352	Energy Laboratory-II	SKM
VI	SET4354	Materials for Energy Applications	SKM
VII	SET4355	Advanced Thermodynamics of Energy Systems	DK

6. Instructors: (Tentative)

SKM: Dr. Supriyo Kumar Mondal, AHB: Dr. Atul H. Bari, DK: Dr. Debashis Kundu

Multidisciplinary Minor Degree in Energy Technology

Subject Code	Sem	Subject Credits Hrs./Week		Marks for various Exams						
				L	Т	Р	CA	MS	ES	Total
SET4351	III	Conventional Energy and Combustion Chemistry of Fuels	02	2	0	0	20	30	50	100
SET4352	IV	Renewable Energy Systems	02	2	0	0	20	30	50	100
SEP4351	1 V	Energy Laboratory-I	02	0	0	4	50	0	50	100
SET4353	V	Energy Conversion and Storage	02	2	0	0	20	30	50	100
SEP4352	v	Energy Laboratory-II	02	0	0	4	50	0	50	100
SET4354	VI	Materials for Energy Applications	02	2	0	0	20	30	50	100
SET4355	VII	Advanced Thermodynamics of Energy Systems	02	2	0	0	20	30	50	100
		Total	14	10	0	8				

Courses	K-Level	PSO1	PSO2	PSO3	PSO4	PSO5
Conventional Energy and Combustion Chemistry of Fuels	K1, K2	3	3	-	-	-
Renewable Energy Systems	K3	2	3	1	-	-
Energy Laboratory-I	K2, K3, K4	1	3	3	-	-
Energy Conservation and Storage	K2, K4, K5	2	3	3	1	1
Energy Laboratory-II	K3, K4	2	3	3	1	2
Materials for Energy Applications	K4, K5, K6	2	3	3	2	3
Advanced Thermodynamics of Energy Systems	K4, K5, K6	1	3	3	3	3

Mapping of All Courses of Energy Technology with PSOs

Semester III

Cour	se Code: SET4351	Course Title: Conventional Energy and Combustion	Cr	edits	= 2		
Cour	se Coue: SE14551	Chemistry of Fuels	L	Т	Р		
Seme	ester: III	Total contact hours: 30	2	0	0		
		List of Prerequisite Courses					
	rial and Energy Balan	ce Calculations, Chemical Engineering Thermodynamics II,	Phys	ics II	and		
	List	of Courses where this course will be prerequisite					
Labo		ry – I, SET4352-Renewable Energy Systems, SEP4352-Energ nergy Conversion and Storage, SET4354-Materials for Energy					
	Description	of relevance of this course in the Int. M. Tech. Program					
	=	of energy generation, distribution, and control systems					
• To		g of sources of energy and its significance					
	Course Contents (Topics and subtopics)						
1	 Basics of energy: Different forms of energy, energy conversion process, indirect and direct energy conversion; Different energy sources; Conventional energy systems: engines, power plants, various methods of power generation; Basics of fuels: Modern concepts of fuel, Solid, liquid and gaseous fuels, composition, basic understanding of various properties of solid fuels - heating value, ultimate analysis, proximate analysis, ash deformation points; liquid fuels - heating value, density, specific gravity, viscosity, flash point, ignition point (self, forced), pour point, ash composition and gaseous fuels 						
2	chain reaction, Adi	nodynamics: Combustion mechanism, elementary steps, abatic Flame Temperature, Equilibrium constant and free n Kinetic Elementary, consecutive, and parallel reactions ry,		5			
3	Coal as a source of energy: Coal reserves - World and India, Coal liquefaction process, various types of coal and their properties, Origin of coal, composition of coal, analysis and properties of coal, briquetting, carbonization, gasification and liquefaction of coal, Coal derived chemicals						
4	Petroleum as a source of energy and chemicals:Origin, composition, classification of petroleum, grading of petroleum; Processing of petroleum: Distillation of crude petroleum, petroleum products, purification of petroleum products - thermal processes, catalytic processes, specifications and 						
5	Natural Gas			4			
6	Nuclear Energy			4			
		Total		30			
	1	List of Textbooks / Reference Books					
1	Nag P. K. (2014); B	asic and Applied Thermodynamics, McGraw Hill					

2	Theraja B. L. and Theraja A. K. (1998); A Text Book in Electrical Technology, S. Chand and Co.					
3	Sarkar S. (2010); Fuels and Combustion, Third Edition, CRC Press					
4	"An Introduction to Combustion: Concepts and Applications," Third Edition, by Stephen R. Turns, McGraw-Hill (2012)					
5	Principles of Combustion, Kenneth Kuan-yun Kuo					
6	Jaccard M. (2006); Sustainable Fossil Fuels, Cambridge University Press					
	Course Outcomes (students will be able to)					
CO1	List forms of energy, conversion processes	K1				
CO2	Categorize renewable and non-renewable energy sources	K2				
CO3	Apply knowledge to estimate calorific value and other characteristics of coal- based fuels	K2				
CO4	Explain energy generation and distribution system	K2				
CO5	Optimize process to minimize emissions	K2				

Mapping of Course Outcomes (COs) with Programme Specific Outcomes (PSOs)										
		PSO1	PSO2	PSO3	PSO4	PSO5				
		K1	K2+K3	K4	K5	K6				
CO1	K1	3	3	-	-	-				
CO2	K2	3	2	-	-	-				
CO3	K2	3	3	1	-	-				
CO4	K2	3	3	-	-	-				
CO5	K2	3	3	1	-	-				
Course	K1, K2	3	3	-	-	-				

Semester IV

Course C	ode: SET4352	Course Title: Renewable Energy Systems	Cre	edits	= 2	
Course Co	Jue: 5E14552	Course The: Kenewable Energy Systems	L	Τ	P	
Semester:	IV	Total contact hours: 30	2	0	0	
		List of Prerequisite Courses				
Material a Chemistry		Calculations, Chemical Engineering Thermodynamics II, I	Physi	cs II	anc	
	List of	Courses where this course will be prerequisite				
		, SEP4352-Energy Laboratory-II, SET4353-Energy Co r Energy Applications, SET4355-Advanced Thermodynam				
	Description of	relevance of this course in the Int. M. Tech. Program				
• To exa	mine the principles o	f sustainability and renewable energy				
conver	sion systems.	of solar energy conversion including photovoltaic (PV) and with use of biomass-based energy	sola	r ther	ma	
- 10 0/4		Contents (Topics and subtopics)		Reqd Tours		
1 Bioenergy: World and India's bioenergy scenario, production of biomass, photosynthesis, assessment of biomass resources, Biomass composition and energy content; Biofuels, types of biofuels and production technologies; Advanced bio-systems and biofuel production						
te b:	chnology, Design of	ion: Bio-methanation: biogas production mechanism and biogas plants, biogas slurry utilization and management, ost benefit analysis of biogas for cooking, lighting, power s, Case studies		5		
3 T T g st	hermochemical con orrefaction and pyro asifiers and mechani oves, heat and mass	iversion: Charcoal production, Biomass gasification; lytic oil, typical composition Biomass Gasifiers: types of sms of operation, gasifier product gas analysis, gasifier balance of gasification system; Gasification based power t benefit analysis, case studies		5		
4 S sp						
m F co	aterials; Different so ilm solar cell, Tano	ble of photovoltaic conversion; Solar cell basics and blar cell technologies: Crystalline silicon solar cell, Thin dem solar cell; Photovoltaic system: Component and d and grid connected PV systems, PV system design and		5		
		rsion: Theory and Basics. Introduction to different solar ms: Solar flat plate collector, Concentrating collector,		4		

	Solar cooker, Solar pond, Solar passive heating and cooling system; Design an components and flat plat collector; Development of solar thermal collectors Solar cooling and refrigeration; Concentrating solar collector: optical design of concentrators, solar water heaters, solar dryers; Solar thermal power generation and economics;	s; f					
7	Wind energy conversion, tidal energy conversion, Resource assessment, power, and energy calculations, aerodynamic analysis, development of the Betz limit, design limitations and optimization, and environmental impact of wind energy conversion devices.4						
	Total						
	List of Textbooks / Reference Books						
1	Sorensen B. (2010); Renewable Energy, Fourth Edition, Academic press						
2	Mukunda H. S. (2011); Understanding Clean Energy and Fuels from Biomass	, Wiley India					
3	Wind Energy Handbook, Second Edition, by Tony Burton. 2011						
4	Wind Energy Explained, Theory Design and Application, Second Edition, by Manwell. 2009.	James					
5	Solar Energy Conversion Systems (Elsevier, Academic Press), 2013 by J. R. S	S. Brownson					
	Course Outcomes (students will be able to)						
CO1	Apply principles of mathematics, science and engineering to the analysis of solar, wind and biomass power	К3					
CO2	Design systems for harnessing biomass, solar, wind and hydrokinetic energy	K3					
CO3	Integrate the considerations of economic, environmental, factors for analysis of renewable energy systems	K2					
CO4	Analyze the sustainability, health and safety, social, and political impacts	K3					
CO5	Resource assessment, power, and energy calculations	K2					

Mapping of Course Outcomes (COs) with Programme Specific Outcomes (PSOs)									
		PSO1	PSO2	PSO3	PSO4	PSO5			
		K1	K2+K3	K4	K5	K6			
CO1	K3	2	3	-	-	-			
CO2	K3	2	3	1	-	-			
CO3	K2	3	2	-	-	-			
CO4	K3	3	3	1	-	-			
CO5	K2	2	3	1	-	-			
Course	K3	2	3	2	2	-			

C			Credits = 2				
Course	Code: SEP4351	Course Title: Energy Laboratory-I	L	Т	Р		
Semeste	er: IV	Total contact hours: 60	0	0	4		
		List of Prerequisite Courses					
SET435		Combustion Chemistry of Fuels					
		Courses where this course will be prerequisite					
		SET4354-Materials for Energy Applications, SET	4355	-Adv	/anced		
Thermo	dynamics of Energy Syste						
		relevance of this course in the Int. M. Tech. Program					
		echniques of conventional energy sources					
		d interpret analytical results					
• 10		ative determination of sample	1				
		Contents (Topics and subtopics)		Hou	irs		
1	ASTM distillation.	zation characteristics of given petroleum product by					
2	Determination of flash p	point and fire point					
3	-	index of given petroleum sample.					
4		residue of given petroleum fraction.					
5	Determination of drop p						
6		ity of given petroleum sample.					
7	Determination of cloud						
8	Determination of the sm						
9		ic value of fuel by Bomb calorimeter.					
		Total		6()		
	Cou	rse Outcomes (students will be able to)	1				
CO1		iples of different petroleum characterization techniques.		K	2		
CO2		terization techniques for given petroleum sample.		K	4		
CO3		al knowledge of petroleum products		K	3		
CO4		f different physicochemical parameters		K	3		
CO5		zation techniques development of different module		K	2		

Ν	Mapping of Course Outcomes (COs) with Programme Specific Outcomes (PSOs)							
		PSO1	PSO2	PSO3	PSO4	PSO5		
		K1	K2+K3	K4	K5	K6		
CO1	K2	1	3	3	-	-		
CO2	K4	1	3	3	-	-		
CO3	K3	1	3	3	-	-		
CO4	K3	3	3	1	-	-		
CO5	K2	2	3	1	-	-		
Course	K2, K3, K4	1	3	3	3	-		

Semester V

Course	Codo: SET4252	Course Title: Energy Conversion and Storage	C	redit	s = 2	
Course	Code: SET4353	Course The. Energy Conversion and Storage			Р	
Semest	er: V	Total contact hours: 30	2	0	0	
		List of Prerequisite Courses				
Chemic Fuels	al Engineering Thermod	lynamics II, SET4351-Conventional Energy and Combustio	n Ch	iemis	try of	
	List of C	ourses where this course will be prerequisite				
		, SEP4352-Energy Laboratory-II, SET4354-Materials ed Thermodynamics of Energy Systems	s fo	r Ei	nergy	
	Description of r	elevance of this course in the Int. M. Tech. Program				
• T	o expose students to ene	rgy storage chemistry particularly for storage of electrici	ty			
• P	rovide fundamental know	wledge of the energy storage devices and systems				
• T	o review conversion of e	energy in form of fuels				
	Course C	Contents (Topics and subtopics)		Hou	rs	
1		energy storage; Mechanical, Chemical, Electrical, gical, Magnetic, Electromagnetic, Thermal; Comparison ologies.		4		
2		e: principles and applications, Sensible and Latent heat, ; solar energy and thermal energy storage, case studies.		3		
3	Flywheel and compressed air storage; Pumped hydro storage; Hydrogen energy storage					
4	Capacitor and super Principles, performance	capacitor, Electrochemical Double Layer Capacitor: e and applications.		3		
5	characteristics and perf	y storage: Battery-fundamentals and technologies, ormance comparison: Lead-acid, Nickel-Metal hydride, ystem model, emerging trends in batteries.		6		
6		rrier and storage; Hydrogen resources and production; t energy conversion using fuel cells		5		
7						
8	Application of Energy energy storage	Storage: Food preservation, Waste heat recovery, Solar		2		
		Total		30)	
		List of Textbooks / Reference Books				
1	Wiley	A. (2011); Thermal Energy Storage: Systems and Appl				
2		Energy Storage: Fundamentals, Materials and Application	ons. S	Sprin	ıger	
	Cour	rse Outcomes (students will be able to)				
CO1	Describe criteria use disadvantages	d to determine performance, advantages, and		K2		

CO2	Perform efficiency analysis of energy storage systems	K4
CO3	Recommend optimal (appropriateness, cost and sustainability) solutions to any potential energy storage application	K5
CO4	Characterization and modelling of different fuel cells	K3
CO5	Applications in food preservation, waste heat recovery	K4

Mappin	Mapping of Course Outcomes (COs) with Programme Specific Outcomes (PSOs)						
			PSO2	PSO3	PSO4	PSO5	
		K1	K2+K3	K4	K5	K6	
CO1	K2	3	3	-	-	-	
CO2	K4	2	2	3	3	-	
CO3	K5	2	2	3	3	2	
CO4	K4	3	3	1	1	2	
CO5	K4	3	3	1	1	2	
Course	K5	3	2	3	3	3	

Cours	e Code: SEP4352	Course Title: Energy Laboratory II	Credits = 2			
Course	e Coue. 5E1 4552	Course Title: Energy Laboratory-II	L	Т	P	
Semester: V		Total contact hours: 60	0	0	4	
<u>apm 40</u>		List of Prerequisite Courses				
SE143		Technology, SET4354-Materials for Energy Applications				
05742		Courses where this course will be prerequisite	1			
system		gy and Combustion Chemistry of Fuels, SET4352-Rene aboratory – I, SET4353-Materials for Energy Application f Energy Systems				
	Description of	relevance of this course in the Int. M. Tech. Program				
•]	Γο learn to characteriza	tion techniques of renewable energy sources				
•]	Γο learn to collect, colla	ate and interpret analytical results				
•]	Fo Learn quality and qu	antitative determination of sample				
	Course	Contents (Topics and subtopics)	H	Hours	3	
1	Solar cell effectivene	288				
2	Solar Thermal Heate	r				
3	Performance analysis	s of Solar PV Electricity Generator				
4	PV system charactershadow	rization under the influence of varying radiation and				
5	Biogas production fr	om wate (biomass/wastewater)				
6	Biohydrogen from w	aste (biomass/wastewater)				
7	Production of biofue	1				
8	Characterization of b	iofuel				
9	Fuel cell experiment					
10	Wind turbine					
		Total		60		
	Со	urse Outcomes (students will be able to)				
CO1	Describe the basic characterization tech	c principles of different renewable energy source niques	s	K4	Ļ	
CO2	O2 Suggest possible characterization techniques for given renewable energy source					
CO3	Strengthen the theore	Strengthen the theoretical knowledge of renewable energy source				
CO4	Able to clearly communicate the results of experimental work in oral and written formats					
CO5	Able to design and d	evelop biofuels, wind turbines		K5	i	

Integrated Master of Technology in Chemical Engineering and Multi-Disciplinary Minor (MDM) ICT Marathwada Campus, Jalna

Mapping	Mapping of Course Outcomes (COs) with Programme Specific Outcomes (PSOs)						
			PSO2	PSO3	PSO4	PSO5	
		K1	K2+K3	K4	K5	K6	
CO1	K4	1	-	-	-	-	
CO2	K3	1	3	3	-	-	
CO3	K4	2	3	3	-	-	
CO4	K4	3	3	3	-	-	
CO5	K5	2	3	2	2	3	
Course	K3, K5	2	3	3	2	3	

3, Strong Contribution; 2, Moderate Contribution; 1, Low Contribution; - No Contribution

Semester VI

		Course Title: Materials for Energy Applications	Credits =		= 2	
Course	e Code: SET4354	course rue. Materials for Energy Applications		Τ	Р	
Semest	ter: VI	Total contact hours: 30	2	0	0	
		List of Prerequisite Courses				
SET43: Fuels	52-Renewable Energy Sy	stems, SET4351-Conventional Energy and Combustion	Che	mistr	y of	
	List of C	ourses where this course will be prerequisite				
	52-Energy Laboratory-II odynamics of Energy Sys	, SET4354-Materials for Energy Applications, SET43 tems	55-A	Advar	nced	
	Description of r	elevance of this course in the Int. M. Tech. Program				
ene • To sto • To	ergy devices analyze the material de rage devices	epts of energy materials and their characterizations and a esign and relate to photovoltaic device, fuel cell system innovation / creativity towards material design for va	is an	d ene	ergy	
mai	ů.	Contents (Topics and subtopics)		Hour	.s	
1	Device fabrication technologies: diffusion, oxidation, photolithography, sputtering, physical vapor deposition, chemical vapor deposition (CVD), plasma enhanced CVD (PECVD), hot wire CVD (HWCVD)					
2	Plasma enhanced CVD (PECVD), hot wire CVD (HWCVD)High efficiency solar cells: PERL Si solar cell, III-V high efficiency solar cells, GaAs solar cells, tandem and multi-junction solar cells, solar PV concentrator cells and systems, III-V, II-VI thin-film solar cells; Amorphous silicon thin- film (and/or flexible) technologies, multijunction (tandem) solar cells, organic/flexible solar cells, polymer composites for solar cells, Spectral response of solar cells, quantum efficiency analysis, dark conductivity, I-V characterization					
3	Introduction to material characterization: Scanning electron microscopy (SEM), Transmission electron microscopy (TEM), X-ray diffraction (XRD), Raman spectroscopy, Atomic force microscopy (AFM); device fabrication and characterization;					
4		es for energy storage: Carbon Nano-Tubes (CNT), NTs for hydrogen storage, CNT-polymer composites		4		
		Total		30		
	•	List of Textbooks / Reference Books				
1	Duncan W. B., Dermot	O., and Richard I. W. (2011). Energy Materials, 1st Edit	ion,	Wile	y	
2	Fahrenbruch A. L. and Conversion, Academic	l Bube R. H. (1983); Fundamentals of Solar Cells: PV Press	Sola	r Ene	ergy	
3	-	5. and Vladimir D. (2014). Organic Photovoltaics: Mateuring Technologies, 2nd Edition, Wiley-VCH	erials	s, De	vice	

4	San P. J. and Pei K. S. (2013). Nanostructured and Advanced Materials for Fuel Cells, 1st Edition, CRC Press					
	Course Outcomes (students will be able to)					
CO1	Students will be able to understand and apply principles in solid state chemistry / physics, material science and engineering, adsorption, surface science, and catalysis in analyzing materials for energy applications	K4				
CO2	Students will learn about the physical, chemical, thermal, electrical, and mechanical properties of materials relevant to energy applications	K5				
CO3	Students will develop critical thinking skills to analyze complex issues related to energy materials and apply their knowledge to solve real-world problems in energy research and development.	K6				
CO4	Apply characterization techniques for analysis of materials	K4				
CO5	Develop materials and devices for energy storage	K5				

Ma	Mapping of Course Outcomes (COs) with Programme Specific Outcomes (PSOs)							
		PSO1	PSO2	PSO3	PSO4	PSO5		
		K1	K2+K3	K4	K5	K6		
CO1	K4	-	-	3	3	2		
CO2	K5	1	3	3	3	3		
CO3	K6	-	2	2	2	3		
CO4	K5	3	3	3	2	-		
CO5	K5	2	3	2	2	2		
Course	K4, K5, K6	2	3	3	2	3		

Semester VII

C	C. J., SET 4255	Course Title: Advanced Thermodynamics of	Cr	edits	= 2	
Course	Code: SET4355	Energy Systems	L	Т	Р	
Semest	er: VII	Total contact hours: 30	2	0	0	
		List of Prerequisite Courses				
SET435 Fuels	52-Renewable Energy S	Systems, SET4351-Conventional Energy and Combustic	on Ch	emist	ry of	
	List of	Courses where this course will be prerequisite				
systems		y and Combustion Chemistry of Fuels, SET4352-Reported and Combustion Chemistry of Fuels, SET4352-Report of Fuels, SET4352-Energy Laboratory – II, SET435			U .	
	Description of	relevance of this course in the Int. M. Tech. Program	l –			
• T	o impart understanding	of fundamentals of energy conversion, reversibility and	irrev	ersibi	lity	
• T	o study energy convers	ion and storage from molecular perspective				
	Course	Contents (Topics and subtopics)]	Hour	S	
1	-	icroscopic analysis of direct and indirect energy chemical, electrochemical, thermomechanical and other				
2	Kinetic theory and tra	nsport phenomena in energy systems	8			
3	Exergy analysis for e	nergy conversion systems	8			
4		fuels, electrochemical cells, fuel cells, photovoltaics, bined power generation cycles	, 6			
				30		
	·	List of Textbooks / Reference Books				
1	Renaud Gicquel, Ene CRC Press, ISBN 978	rgy Systems: A New Approach to Engineering Thermod 80415685009	ynam	ics, 2	012,	
2	Chandler, David (19 Press. ISBN 0-19-504	87). Introduction to Modern Statistical Mechanics. Ox 2277-8.	ford 1	Unive	ersity	
3	Ibrahim Dincer and 1 097089-9	Marc A. Rosen, Exergy, 2013, 2nd edition, Elsevier, IS	SBN:	978-()-08-	
	Сот	rse Outcomes (students will be able to)				
CO1	Evaluate feasibility o	f a particular energy conversion process or storage		K5		
CO2	Assess a process for e improvements	nergy efficiency using exergy analysis and recommend		K4		
CO3	Design efficient energy storage, etc.	gy systems for recovery of waste heat, electrochemical		K6		
CO4	Apply characterization	n techniques for analysis of materials		K4		
CO5	Develop materials and devices for energy storage K5					
K1 - F	Remembering, K2 – Unde	erstanding, K3 – Applying, K4 – Analyzing, K5 – Evaluating,	K6 –	Creat	ing	

Mappin	Mapping of Course Outcomes (COs) with Programme Specific Outcomes (PSOs)						
		PSO1	PSO2	PSO3	PSO4	PSO5	
		K1	K2+K3	K4	K5	K6	
CO1	K5	-	-	2	3	3	
CO2	K4	-	2	3	3	3	
CO3	K6	1	3	3	3	3	
CO4	K5	2	2	2	1	-	
CO5	K5	2	2	2	2	3	
Course	K4, K5, K6	2	2	2	3	3	

K, knowledge level from cognitive domain

SYLLABUS OF THE CURRICULUM

for

MULTIDISCIPLINARY MINOR DEGREE

in

FOOD TECHNOLOGY

[Under the National Education Policy (NEP 2020)]

2023-2024

Offered by

Institute of Chemical Technology Mumbai

Marathwada Campus, Jalna

(University Under Section-3 of UGC Act, 1956) Elite Status and Center for Excellence Government of Maharashtra

BT-5/6, Biotechnology Park, Additional MIDC Area, Chhatrapati Sambhajinagar (Aurangabad) Road, Jalna – 431 203.

FOOD TECHNOLOGY

Page 21 of 153

Preamble

The way the food system has changed over time has been complex and dynamic, reflecting larger shifts in society. A worldwide, industrialized food system has replaced small-scale, locally focused post-harvest processing techniques, and this transition has been driven by a number of reasons including population growth, ever increasing urbanization, technological improvements, and shifts in consumer preferences for foods. Food processing plays a crucial role in ensuring value addition, food safety, extended shelf life, convenience and accessibility to diversified food products and thus creating global economic impact. In recognition of the growing importance of food science and technology in addressing global challenges and ensuring the safety, quality, and sustainability of the world's food supply, Institute of Chemical Technology, Marathwada Campus, Jalna proudly offers a Minor Degree in Food Technology. This program is designed to provide students with a comprehensive understanding of the scientific principles of food processing, preservation, analysis of different food commodities, safety and toxicological aspects, packaging technologies, and innovations that shape the field of food processing.

This minor course is crafted to complement a major degree in chemical engineering, allowing students to broaden their knowledge base in food processing, and food analytical skills. As the food industry becomes increasingly complex and dynamic, this minor equips students with the necessary expertise to navigate and contribute to this vital sector. According to National Education Policy guidelines, the course has been designed for a total of 14 credits as per the requirements of a minor degree.

Programme Specific Outcomes (PSOs) Multidisciplinary Minor Degree (Food Technology)

Students will be able to:

PSO1	Understand the basic constituents of foods and their role in processing, preservation and quality. (Factual Knowledge) (K1)
PSO2	Select and categorize appropriate food processing unit operations for processing and value- addition of different food commodities. (Conceptual Knowledge) (K2, K3)
PSO3	Investigate the compositions of foods, conduct experiments for analysis of different food commodities, evaluate food safety & quality. (Procedural Knowledge) (K4, K5)
PSO4	Apply knowledge of food additives, food packaging and preservation techniques for development of new food products and their safety evaluation. (Metacognitive Knowledge) (K6)
PSO5	Cater to the needs of food industries, research organizations and academic institutes. set-up their own ventures and generate employment, promote awareness in society about Food Technology profession

1. Recommended batch size: Minimum 10; Maximum 15

2. Duration: Three years

3. Eligibility criteria

Students enrolled in the Integrated Master of Technology in Chemical Engineering of Institute of Chemical Technology, Marathwada Campus, Jalna will be eligible. The allotment of minor degree programme will be as per the policy of the Institute.

4. Pedagogy/ Teaching methods

- Lecture/ Discussions: These sessions will discuss the subject contents of the course.
- **Experiential Learning:** The sessions will involve hands on training.
- **Tutorials:** Problem solving / case studies / relevant real-life applications / student presentations / home assignments / individual or group projects

5. Evaluation

Theory courses

Continuous Assessment Tests (CATs): Continuous assessment will vary from course to course; the instructor will decide the evaluation mode. Two to three CATs will be conducted throughout the course, usually before and after the midsemester examination. These CATs will carry a total weightage of 20%. Depending on the instructor, class test, assignments, case studies, group discussions, report submission and seminar/presentation could also form part of the continuous assessment.

Mid-semester: Total 30 Marks (Theory paper)

End-semester: Total 50 Marks (Theory paper)

Practical courses

Continuous assessment: 50 Marks

Performing given experiments as per the instructions, submission of lab journal on time, viva voce, group/ personal discussions, and quizzes can be part of continuous assessment. The course instructor will discuss the composition of marks for these at the beginning of the course.

End Semester: 50 Marks (Lab experiment performance followed by viva-voce examination)

Integrated Master of Technology in Chemical Engineering and Multi-Disciplinary Minor (MDM) ICT Marathwada Campus, Jalna

6. Instructors: (Tentative)

Semester	Course Code	Subjects	Faculty
III	SFT4351	Food Chemistry	RFC
IV	SFT4352	Food Processing Technology – I	RFC/VF
IV	SFP4351	Food Analysis Laboratory	RFC
V	SFT4353	Food Processing Technology – II	SRS
V	SFP4352	Food Processing Laboratory	SRS
VI	SFT4354	Food Additives and Toxicology	SRS/VF
VII	SFT4355	Food Preservation and Packaging	RFC/SRS/VF

RFC: Dr. Ramesh F. Chavan, SRS: Dr. Sandhya R. Shewale, VF: Visiting Faculty

Minor Degree in Food Technology

	Course	ourse		Hrs/Week			Marks for various Exams			
Semester	Code	Subjects	Credits	L	Т	Р	CA	MS	ES	Total
III	SFT4351	Food Chemistry	2	1	1	0	20	30	50	100
IV	SFT4352	Food Processing Technology – I	2	1	1	0	20	30	50	100
IV	SFP4351	Food Analysis Laboratory	2	0	0	4	50	00	50	100
V	SFT4353	Food Processing Technology – II	2	1	1	0	20	30	50	100
V	SFP4352	Food Processing Laboratory	2	0	0	4	50	00	50	100
VI	SFT4354	Food Additives and Toxicology	2	1	1	0	20	30	50	100
VII	SFT4354	Food Preservation and Packaging	2	1	1	0	20	30	50	100
		TOTAL	14	5	5	8				

Courses	K-Level	PSO1	PSO2	PSO3	PSO4	PSO5
Food Chemistry	K4	3	3	-	-	-
Food Processing Technology – I	K4	3	2	-	-	-
Food Analysis Laboratory	K4	1	3	3	-	-
Food Processing Technology – II	K4	2	3	3	-	-
Food Processing Laboratory	K4	1	1	2	2	2
Food Additives and Toxicology	K4	-	-	3	3	3
Food Preservation and Packaging	K4	-	2	3	3	3

Mapping of All Courses of Food Technology with PSOs

Semester III

Course	e Code: SFT4351	Course Title: Food Chemistry	Cr	edits =	= 2
Course	Couc. 51 14551		L	Т	Р
Semest	er III	Total contact hours: 30	1	1	0
		List of Prerequisite Courses		L	
Analyti	ical chemistry (CHT	24251), Basics of Organic and Inorganic Chemistry			
	List	of Courses where this course will be prerequisite			
Techno	• •	(SFP4351), Food Processing Technology – I (SFT4352), 3), Food Additives and Toxicology (SFT4354), Food			•
	Description	of relevance of this course in the Int. M. Tech. Progra	m		
 To du To pla To To To 	o understand the imp uring food processing o understand the sign ace in storage and sp o think critically on t	nificance and mechanisms of the reactions of food compo- poilage the role of water and its various forms in food preservatio e of food constituents responsible for nutritional, and aestl	ents t nents n	aking p	olace
• To	apply course conce	epts in solving problems related to food constituents			
Sr. No.		Course Contents		Requi Hou	
1	Introduction to the properties and foo	e constituents of foods: Water in food systems: Chemistry d significance	,	3	
2	Carbohydrates: C properties of carbo	lassification, Analysis, Physicochemical and function obydrates	al	7	
3	Proteins: Classific	ation, Analysis, Physicochemical and functional propertie	es	6	
4	Lipids: Classificat	ion, Analysis, Physicochemical and functional properties		6	
5	Vitamins: Classifie	cation, Analysis, Physicochemical and functional propertie	es	4	
6	Minerals: Classific	cation, Analysis, Physicochemical and functional propertie	es	4	
		Tota	ıl	30	
		List of Textbooks / Reference Books			

1	Food Chemistry – Belitz H.D, Grosch W, and Schieberle. P.3 rd Edn. Springer Berlin / Heidelberg						
2	Food Chemistry- Fennema O.R 2 nd Edn., Marcel Dekker, New york. (1985)						
3	Food Chemistry- Aurand L.W and Woods A.E, Avi Publishing Company, Inc, Westport, CT (1973).						
4	Principles of food chemistry - John DeMan, Springer, (2018)						
5	Food Chemistry. Meyer. Cbs Publisher. (2004)						
	Course Outcomes (Students will be able to)						
CO1	Understand the various constituents present in foods and their roles therein (K2)						
CO2	Describe the mechanisms and significance of physicochemical reactions involved in food processing and subsequent storage (K2)						
CO3	Describe the mechanisms and significance of physicochemical reactions involved in spoilage of foods (K2)						
CO4	Explain the significance of water in food quality, preservation and storage (K3)						
CO5	Describe and demonstrate the role of food constituents on nutritional/anti-nutritional and aesthetic quality of raw and processed foods (K4)						
CO6	Extrapolate the knowledge gained on food composition to practical problems in food quality (K4)						

Mapping	Mapping of Course Outcomes (COs) with Programme Specific Outcomes (PSOs)								
		PSO1	PSO2	PSO3	PSO4	PSO5			
		K1	K2, K3	K4	K5	K6			
CO1	K2	3	3	1	-	-			
CO2	K2	3	2	-	-	-			
CO3	K2	3	3	1	-	-			
CO4	К3	3	3	-	-	-			
CO5	K4	3	2	1	-	-			
CO6	K4	3	3	-	-	-			
Course	K4	3	3	-	-	-			

Semester IV

Cour	se Code: SFT4352	Course Title: Food Processing Technology-I	С	edits :	= 2			
Cours			L	Т	Р			
Seme	ster: V	Total contact hours: 30	1	1	0			
		List of Prerequisite Courses						
Food	Chemistry (SFT4351), Food Analysis Laboratory (SFP4351) (Simultaneous)						
	List	of Courses where this course will be prerequisite						
	Processing Technolorvation and Packagin	ogy – II (SFT4353), Food Additives and Toxicology (g (SFT4355)	SFT4	354), 1	Food			
	Description	of relevance of this course in the Int. M. Tech. Progra	m					
•	To understand the pr	rinciples of food processing and preservation						
•	To understand proce meat products	ssing and preservation of fruits and vegetables, plantation	crop	s, meat	t and			
•	• •	modify new products/processes for processing and value-a s, meat, and meat products	additi	on of p	ost-			
•	To learn different co	mmercial processing techniques for value addition						
•	To understand the ap	oplication of processing and preservation for product deve	lopm	ent				
Sr. No.		Course Contents		Requ Hou				
1	*	d processing and preservation; unit operations in for anical separation processes, food conversion operation etc.)		6				
2	Technology of fruits and vegetables processing: Current scenario of production of fruits and vegetables: post-harvest technology: commercial canning of fruits							
3	minor and major	Technology of plantation crops, herbs and spices processing: Processing of minor and major spices; extraction of spice oil and oleoresins; post-harvest6processing of plantation crops.6						
4		eat, fish, poultry and egg processing: Meat processing rocessing and preservation; processing of fish and mari	U	8				
		Τα	tal	3()			

	List of Textbooks / Reference Books
1	Post-Harvest Technology of Fruits and Vegetables: Handling, Processing, Fermentation and
1	Waste Management by Verma LR and Joshi VK
2	Introduction to Spices, Planation Crops, Medicinal and Aromatic Plants by N. Kumar and
2	Abdul Khader
3	Meat, Egg and Poultry Science and Technology by Vikas Nanda
4	Food Processing Technology by P. J. Fellows, CRC Publishers
	Course Outcomes (Students will be able to)
CO1	Understand the principles of food processing and preservation (K2)
CO2	Understand and apply the processing and preservation of different foods (K3)
CO3	Apply processing techniques for value-addition of post-harvest commodities, meat, and meat
005	products (K3)
CO4	Analyse processes for preservation and value addition of different food commodities (K4)
CO5	Apply and analyse various techniques of by-product processing and waste utilization (K4)

Mapping	Mapping of Course Outcomes (COs) with Programme Specific Outcomes (PSOs)								
		PSO1	PSO2	PSO3	PSO4	PSO5			
		K1	K2, K3	K4	K5	K6			
CO1	K2	2	3	-	-	-			
CO2	K2	2	3	1	-	-			
CO3	K2	3	2	-	-	-			
CO4	K3	2	3	1	-	-			
CO5	K4	2	3	-	-	-			
CO6	K4	2	3	1	-	-			
Course	K4	3	2	-	-	-			

Semester IV

Course	Code: SFP4351	Course Title: Food Analysis Laboratory	Cre	dits =	2
Course	Coue: 5114551	Course Thie: Food Analysis Laboratory	LT		P
Semester: IV Total contact hours: 60			0	0	4
		List of Prerequisite Courses	1	1	1
Food Ch	nemistry (SFT435	1), Introduction to Biological Sciences (BST4251)			
	List	t of Courses where this course will be Prerequisite			
Additive	e	logy – I (SFT4352), Food Processing Technology – I (SFT4354), Food Processing Laboratory (SFP4352), Foo		, .	
	Description	n of relevance of this course in the Int. M. Tech. Prog	gram		
• To	b give students ha	nds on training on chemical analysis of specific food pro	ducts		
	•	ntify the quality attributes of food			
	-	lyse the food adulterants			
	o train the students	s on different biochemical assay for food products			
Sr. No.		Course Contents	Req	uired l	Hour
1	Proximate comp	position in food		8	
2	Analysis of mill	k and dairy products		4	
3	Analysis of whe	eat flour		4	
	Analysis of tea and coffee 4				
4	5				
4 5	Estimation of pl			8	
	•	hytochemicals		8 4	
5	Estimation of pl Analysis of Foo	hytochemicals			
5 6	Estimation of pl Analysis of Foo Discriminative a	hytochemicals d adulteration		4	
5 6 7	Estimation of pl Analysis of Foo Discriminative a	hytochemicals d adulteration and Descriptive Sensory analysis of Foods meter, texture analyzer, DSC, etc.		4	
5 6 7 8	Estimation of pl Analysis of Foo Discriminative a Demo of colorir Demo of HPLC	hytochemicals d adulteration and Descriptive Sensory analysis of Foods meter, texture analyzer, DSC, etc.		4 8 4	
5 6 7 8 9	Estimation of pl Analysis of Foo Discriminative a Demo of colorir Demo of HPLC	hytochemicals d adulteration and Descriptive Sensory analysis of Foods meter, texture analyzer, DSC, etc. , GC-MS, etc. drier, extruder, SCFE, Tray drier etc.		4 8 4 4	
5 6 7 8 9 10	Estimation of pl Analysis of Foo Discriminative a Demo of colorir Demo of HPLC Demo of spray of	hytochemicals d adulteration and Descriptive Sensory analysis of Foods meter, texture analyzer, DSC, etc. , GC-MS, etc. drier, extruder, SCFE, Tray drier etc.		4 8 4 4 4	

1	AOAC International. 2003. Official methods of analysis of AOAC International. 17th Ed. Gaithersburg, MD, USA, Association of Analytical Communities					
2	Leo ML.2004. Handbook of Food Analysis. 2nd Edition. Vol 1,2 and 3, Marcel Dekker					
Course Outcomes (Students will be able to)						
CO1	Demonstrate the knowledge of redox chemical reactions to develop a protocol for analysing specific food attributes (K2)					
CO2	Interpret different chemical and biochemical analysis specific to food (K2)					
CO3	Compare protocols on different types of chemicals and sensory analysis in foods (K2)					
CO4	Apply and infer about the principles of different enzyme and microbial assays (K3)					
CO5	Perform microbial assay, enzyme assay, etc. (K4)					

Mappin	Mapping of Course Outcomes (COs) with Programme Specific Outcomes (PSOs)								
		PSO1	PSO2	PSO3	PSO4	PSO5			
		K1	K2, K3	K4	K5	K6			
CO1	K2	1	3	3	-	-			
CO2	K4	1	3	3	-	-			
CO3	K3	1	3	3	-	-			
CO4	K2, K3	1	2	2	-	-			
CO5	K4	1	2	3	-	-			
Course	K4	1	3	3	-	-			

Semester V

Course Code: SFT4353 Course Title: Food Processing Technology-II		Course Titles Food Processing Technology H	Credits = 2		
		L	Т	P	
Seme	ester: V	Total contact hours: 30	1	1	0
		List of Prerequisite Courses			
Food	Processing Technolog	gy-I (SFT4352), Food Chemistry (SFT4351)			
		of Courses where this course will be prerequisite			
Food		ology (SFT4354), Food Preservation and Packaging (SFT4	4355)		
		of relevance of this course in the Int. M. Tech. Program			
•		sics of various unit operations in food processing			
•		ocessing and milling of cereal, legume and oilseeds			
•	1	ous dairy products and the equipment's used for its process	sing		
•		bus bakery and confectionary products and the equipment's		for it	S
•		mmercial processing techniques for value addition			
Sr. No.		Course Contents		equii Hour	
1		a product and process development; important aspects of nent design for food processing; CGMP/HACCP.		4	
2	Technology of cereal, legume and oilseed processing: Types of cereal, legumes and pulses; Grain storage principles; wheat milling; paddy processing; legume and oilseed processing with newer techniques.8				
3	Technology of milk and dairy processing: Dairy developments in India; sampling and quality testing of milk; processing technology of dairy products.				
4	materials used in production; Biscui	ery and confectionary: Quality and functionality of raw bakery; Dough chemistry; Various methods of bread its and cookie manufacturing technology; Chocolate candy manufacturing.		10	
		Total		30	

List of Textbooks / Reference Books					
1	Fundamentals of Food Process Engineering, Toledo RT, 2000, Chapman and Hall.				

2	Chemistry and Technology of Cereals as Food and Feed by Matz			
3	Postharvest Technology of Cereals, Pulses and Oilseeds by M Chakraverthy			
4	Outlines of Dairy Technology by Sukumar Dey			
5	Bakery Technology by Jenkis, S.M, Lester and orpen (1975)			
6	Confectionary products manufacturing processes by Gutterson, M, Noyes developments			
0	corporation (1969)			
	Course Outcomes (Students will be able to)			
CO1	Understand the basic knowledge of food processing and value addition (K2)			
CO2	Develop an overall understanding of cereal, legume and oilseeds processing aspect (K2)			
CO3	Design/ develop processing technology for bakery, confectionary, and dairy products (K3)			
CO4	Understand and extrapolate importance of by-product processing and waste utilization (K3)			
CO5	Analyse and apply the processing technology for value addition and new product development			
	(K4)			

Mappin	g of Course	Outcomes (CC	Os) with Progr	amme Specifi	c Outcomes (P	SOs)
		PSO1	PSO2	PSO3	PSO4	PSO5
		K1	K2, K3	K4	K5	K6
CO1	K2	3	-	-	-	-
CO2	K2	2	3	3	-	-
CO3	K2	2	3	3	-	1
CO4	K2, K3	2	3	3	1	1
CO5	K4	3	-	-	-	1
Course	K4	2	3	3	-	-

Semester V

C	code: SED4252 Course Title: Food Processing Laboratory Cre			edits = 2		
Course Code: SFP4352		Course Title: Food Processing Laboratory		Т	Р	
Semest	ter: VI	Total contact hours: 60	0	0	4	
		List of Prerequisite Courses	1		1	
	e	ogy-I (SFT4352), Food Processing Technolog	gy-II	(SFT-	4352-)	
(Simul	taneous), and Food Ch					
		Courses where this course will be Prerequisite				
Food P	reservation and Packa					
	Description of	f relevance of this course in the Int. M. Tech. Prog	ram			
		ion of processing in food formulations				
	0 1	the process flow chart for any product development				
		and process formulations in food industry sing cost of any developed product				
•]	to evaluate the process	sing cost of any developed product		Dog	uirod	
Sr. No.		Course Contents		Required Hours		
1	Preparation of tomatoes products (minimum three types)				6	
2	Preparation of fruit preserves from selected fruits (minimum three types)				6	
3	Preparation of selected bakery products (minimum three types)				8	
4	Preparation of ferme	nted food products (minimum three types)		4		
5	Preparation of value-added poultry/meat/ egg products (minimum three types)				8	
6	Preparation of fried products (minimum three types)				4	
7	Preparation of milk based food products (minimum three types)				4	
8	Preparation of sugar based sweets/traditional Indian confection products (minimum three types)			4		
9	Preparation of extrue	Preparation of extrudate snack products (minimum three types)			4	
10	Preparation of non-a	lcoholic beverages (minimum three types)		4		
11	Preparation of soy-b	ased food products (minimum three types)		4		
12	Demonstration and cabinet or vacuum d	preparation of dehydrated food product using spiryer	ay,	4	4	
		То	tal	6	0	
		List of Textbooks / Reference Books				

1	Handbook of Food Products Manufacturing: Principles, Bakery, Beverages, Cereals, Cheese, Confectionary, Fats, Fruits, and Functional Foods by Y.H. Hui. 2007. John Wiley & Sons, Inc., Hoboken, New Jersey, USA
2	Meat and Meat Products Technology Including Poultry Products Technology by B.D. Sharma in 1999. Jaypee Brothers Medical Publishers Pvt. Ltd, New Delhi.
3	New Food Product Development: From Concept to Market place by Fuller,G.W. in 2011. 3rd ed, CRC Press,UK
4	Preservation of Fruits and Vegetables by Giridhari Lal, G.S. Siddappa, G.L.Tandon in 1998, ICAR,New Delhi.
	Course Outcomes (Students will be able to)
CO1	Apply the knowledge of material balance specific to different food processing operations (K3)
CO2	Explain the major processing steps applied for food preparations (K3)
CO3	Use different food processing equipment specific to the product (K3)
CO4	Develop and analyse protocol for different types of food preparations (K4)
CO5	Apply the engineering principles to design novel food product and process (K5)

Mappin	ng of Course (Dutcomes (CO	Os) with Prog	ramme Specif	ic Outcomes (I	PSOs)
		PSO1	PSO2	PSO3	PSO4	PSO5
		K1	K2, K3	K4	K5	K6
CO1	K2	1	-	-	-	-
CO2	K2	1	3	3	-	-
CO3	K2	2	3	3	-	-
CO4	K2, K3	3	3	3	-	-
CO5	K5	2	3	3	-	2
Course	K4	1	1	2	2	2

Semester VI

Course Code: SFT4354		Course Title: Food Additives and Toxicology		Credits = 2		
				Т	P	
Semes	ter: VI	Total Contact Hours: 30	1	1	0	
		List of Prerequisite Courses				
	Chemistry (SFT4351) plogy II (SFT4353)), Food Processing Technology I (SFT4352), and I	Food	Proce	ssing	
	List of	Courses where this course will be Prerequisite				
Food	Preservation and Packa	aging (SFT4355)				
	Description of	f relevance of this course in the Int. M. Tech. Progra	m			
• To ur • To ur	nderstand the safety of nderstand the effect of o	ce of different food additives in quality, preservation and use of different food additives different process conditions on stability of food additive urds and food safety aspects		ige of f	iood	
Sr. No.	Course Contents (Topics and subtopics)			Required Hours		
1	Additives used in food preservation such as preservatives, antioxidants, with respect to chemistry and food uses. Food colors and dyes (Natural and synthetic) their importance in processing, Food flavours and taste enhancers in food processing.			8	,	
2	Additives used as aids in food processing such as sequesterants, emulsifier, hydrocolloids, sweeteners, acidulants etc, and their functions in food processing and storage.					
3	Safety aspects of Food Additives: Tolerance levels & Toxic levels in Foods, Legal safeguard, Risks of food additives, Contaminants, Toxicants, and anti- nutritional compounds in food systems					
4	• 1	ds: biological, chemical and physical; Risk assessmer ag pathogens due to globalisation of food trade.	ıt;	6		
		Tota	ıl	3()	
		List of Textbooks / Reference Books	1			
1	Food Additives: Cha Publishing Corporation	racteristics, Detection and Estimation by S.N. Mahingon, New Delhi. S.S.	lru in	2008	Apl	

2	Handbook of Food Toxicology by S. S. Deshpande in 2002. Marcel and Dekker AG, Basel, Switzerland.					
3	Food Additives 2nd Edition By A L Brannen, P M Davidson, S Salminen, J H Thorngate III in 2002(eds). Marce IDekker Inc, New York.					
4	Handbook of Food Additivies, 2ndedn, T E Furia in 1972, (ed) CRC Press, Cleveland, Ohio					
5	Food Toxicology by Debasis Bagchi and Anand Swaroop CRC Press; 1st edition					
	Course Outcomes (Students will be able to)					
CO 1	Understand the importance and mechanisms of action of different food additives in processing, preservation and storage of food (K2)					
CO 2	Understand and apply the toxicity and safety aspects of use of food additives (K3)					
CO 3	Analyse the hazards to food products and importance of food safety evaluation system (K4)					
CO 4	Extrapolate the knowledge gained on food additives in food industries (K3)					
CO 5	Carry out application of food additives in new product development (K4)					

Марріі	Mapping of Course Outcomes (COs) with Programme Specific Outcomes (PSOs)						
		PSO1	PSO2	PSO3	PSO4	PSO5	
		K1	K2, K3	K4	K5	K6	
CO1	K2	_	-	3	2	3	
CO2	K2	1	3	3	2	3	
CO3	K2	_	2	2	3	3	
CO4	K2, K3	2	3	3	3	3	
CO5	K4	2	3	3	3	3	
Course	K4	_	-	3	3	3	

~			Cree	dits =	2				
Cours	e Code: SFT4355	Course Title: Food Preservation and Packaging	L	Т	Р				
Semes	ster: VI	Total Contact Hours: 30	1	1	0				
	List of Prerequisite Courses								
	Food Chemistry (SFT4351), Food Processing Technology-I (SFT4352), and Food Processing Technology-II (SFT4353)								
	List	of Courses where this course will be Prerequisite							
None									
	Description	n of relevance of this course in the Int. M. Tech. Progra	m						
• '	To understand the rol	le of food packaging in food preservation							
	To understand the va various food commo	rious food packaging materials and their applications with dities	i respe	ect to					
		ent types of package testing methods employed to evaluate ety of food packaging materials	e qual	ity,					
• '	To understand variou	as food-package interactions and environmental issues rela	ited to	packa	aging.				
• '	To understand newer	food packaging application technologies							
Sr. No.	(Course Contents (Topics and subtopics)		Requ Hou					
1		od preservation and packaging: causes of food spoilag od spoilage; packaging as a method for preservation of food		06	5				
2	Food packaging materials and its interaction: Different materials used in food packaging such as paper, glass, metal containers, plastics, laminates/08composites; Food and Packaging material interactions including migration.08								
3	Newer packaging technologies:VP/CAP/MAP; aseptic processing and packaging; active and intelligent packaging; Non-thermal preservation12technology12								
5	Quality evaluation of packaging materials:Quality evaluation of packaging materials:Testing of various packaging materials and packages for evaluation of quality;04Shelf life analysis.04								
		Tot	al	30)				

Semester VII

	List of Textbooks / Reference Books
1	Packaging Media by Paine F.A. Publisher: Blackie and son Ltd., Bishop Briggs (1977)

	Food Packaging and Preservation: theory and practice by Mathlouthi. M. Publisher Elsevier applied science publishers. London (1966)					
3	Food Processing Technology by P. Fellows					
4	Food Science by N. Potter					
	Course Outcomes (Students will be able to)					
CO1	Gain the ability to perform the root cause analysis of any food spoilage (K4)					
CO2	Understand the role of food packaging in food preservation (K2)					
CO3	Analyze different food packaging materials and their properties and application to various food commodities (K4)					
CO4	Comprehend food and packaging material interactions (K3)					
CO5	Ability to develop the strategies to preserve the food products (K4)					

Марріі	Mapping of Course Outcomes (COs) with Programme Specific Outcomes (PSOs)							
			PSO2	PSO3	PSO4	PSO5		
		K1	K2, K3	K4	K5	K6		
CO1	K2	-	-	2	3	3		
CO2	K2	-	2	3	3	3		
CO3	K2	1	3	3	2	3		
CO4	K2, K3	1	3	3	2	3		
CO5	K4	-	-	2	3	3		
Course	K4	-	2	3	3	3		

K, knowledge level from cognitive domain

SYLLABUS OF THE CURRICULUM

for

MULTIDISCIPLINARY MINOR DEGREE (MDM)

in

PHARMACEUTICAL CHEMISTRY & TECHNOLOGY Under the National Education Policy (NEP 2020)

Offered by

Institute of Chemical Technology Mumbai

Marathwada Campus, Jalna

(University Under Section-3 of UGC Act, 1956) Elite Status and Center for Excellence Government of Maharashtra

BT-5/6, Biotechnology Park, Additional MIDC Area, Chhatrapati Sambhajinagar (Aurangabad) Road, Jalna – 431 203.

Preamble

Welcome to the Multidisciplinary minor in Pharmaceutical Chemistry and Technology at the Institution of Chemical Technology Mumbai, Marathwada campus, Jalna. The pharmaceutical sector is a dynamic, intricate industry that continually evolves to satisfy the needs of patients around the globe. Recent years have seen a significant change in the use of technology in the healthcare industry, particularly in how drugs are discovered, developed and administered to patients. The pharmaceutical science and technology field has undergone dynamic and varied development, reflecting societal shifts on a larger scale. Pharmaceutical science and technology advancements have influenced how drug compounds and products are manufactured, formulated, discovered and delivered.

In light of this, a new minor degree course called "Pharmaceutical Science and Technology" has been designed to cover a range of topics related to pharmaceutical science and technology. The course is created to give students a fundamental understanding of these topics and help them develop their knowledge and skills in this field. The course has been developed in accordance with National Education policy guidelines, and it is worth 14 credits towards a minor degree. This specialised program is designed to provide students with a comprehensive understanding of the fundamental concepts in the pharmaceutical sciences and cutting-edge technologies that drive innovation in the pharmaceutical industry. This course aims to cultivate a deep understanding of the latest technological advancements in pharmaceutical manufacturing, quality control, regulatory affairs, drug discovery and drug delivery systems through hands-on experiences and practical training, including proficiency in state-of-the-art laboratory techniques and technologies. The particular course can encourage collaboration across various disciplines, fostering an environment where students can integrate knowledge from Pharmaceutical Technology, Chemical Engineering, and Chemical Technology. The broad goal is to nurture allied professionals who can contribute significantly to the evolution of pharmaceutical technologies to ensure the safe, economical and practical application of pharmaceutical products for the benefit of society.

Programme Specific Outcomes (PSOs) for MDM in Pharmaceutical Sciences and Technology

PSO1	Understand the theoretical and practical knowledge of pharmaceutical sciences and technology, which consists of dosage form design, routes of administration of various drugs, their mechanism of action, and the regulation of drugs and the fine chemical manufacturing etc. (Factual Knowledge) (K1)
PSO2	Able to choose appropriate equipment/s, or process/processes for manufacturing of active pharmaceutical ingredients, suitable dosage forms, and drug analysis, or choose an appropriate model/s for a drug discovery etc. (Conceptual Knowledge) (K2, K3)
PSO3	Investigate, conduct experiments, research, or model, analyse data to solve complex problems of pharmaceutical formulation technology and drug discovery and prepare the valid technical reports (Procedural knowledge) (K4, K5)
PSO4	Able to translate emerging science and technologies into innovative pharmaceutical products applying principles and knowledge gained throughout the program or to develop new methodologies through research (Metacognitive Knowledge) (K6)
PSO5	Cater to the needs of pharmaceutical industries, research organizations and academic institutes. set-up their own ventures and generate employment, promote awareness in society about pharmaceutical profession

1. Recommended batch size: Minimum 10 Maximum 15

2. **Duration:** Three years

3. Eligibility criteria:

Students enrolled in the Integrated M. Tech at the Institute of Chemical Technology, Marathwada Capus, Jalna, shall be eligible. The allotment to the minor degree programme will be as per the policy of the Institute.

4. PEDAGOGY/TEACHING METHODS:

Lecture/Discussions: These sessions will discuss the subject matters of the course

Experiential Learning: The sessions will involve hands-on training.

Tutorials: Problem solving/case studies/relevant real-life applications/student presentations/home assignments/individual or group projects

5. Evaluation

Theory courses

Continuous Assessment Tests (CATs): Continuous assessment will vary from course to course; the instructor will decide the evaluation mode. Two to three CATs will be conducted throughout the course, usually before and after the midsemester examination. These CATs will carry a total weightage of 20%. Depending on the instructor, class test, assignments, case studies, group discussions, report submission and seminar/presentation could also form part of the continuous assessment.

Mid-semester: Total 30 Marks (Theory paper)

End-semester: Total 50 Marks (Theory paper)

Practical courses

Continuous assessment: 50 Marks

Performing given experiments as per the instructions, submission of lab journal on time, viva voce, group/ personal discussions, and quizzes can be part of continuous assessment. The course instructor will discuss the composition of marks for these at the beginning of the course.

End Semester: 50 Marks (Lab experiment performance followed by viva-voce examination)

6. Instructors (Tentative)

Semester	Course Code	Subjects	Faculty
III	SRT4351	Introduction to Pharmaceutical Technology	NTH
IV	SRT4352	Pharmaceutical Chemistry	NTH
IV	SRP4351	Pharmaceutical Analysis Laboratory	NTH
V	SRT4353	Formulation Technology and Drug Delivery	NTH
V	SRP4352	Pharmaceutical Chemistry and Formulation Technology Laboratory	NTH
VI	SRT4354	Pharmaceutical Technology and Drug Design	NTH
VII	SRT4355	Process Development for Fine Chemicals and API	NTH

Minor Degree in Pharmaceutical Chemistry and Technology

Course	Sem Subjects		Credits	H	rs/W	Veek Marks for v Exams						
Code		Ŭ		L	Т	P	CA	MS	ES	Total		
SRT4351	III	Introduction to Pharmaceutical Technology	2	2	0	0	20	30	50	100		
SRT4352	IV	Pharmaceutical Chemistry	2	2	0	0	20	30	50	100		
SRP4351	IV	Pharmaceutical Analysis Laboratory	2	0	0	4	50		50 50		50	100
SRT4353	V	Formulation Technology and Drug Delivery	2	2	0	0	20	30	50	100		
SRP4352	V	Pharmaceutical Chemistry and Formulation Technology Laboratory	2	0	0	4	50		50	100		
SRT4354	VI	Pharmaceutical Technology and Drug Design	2	2	0	0	20	30	50	100		
SRT4355	VII	Process Development for Fine Chemicals and API	2	2	0	0	20	30	50	100		
		TOTAL:	14	10	0	8						

Courses	K-Level	PSO1	PSO2	PSO3	PSO4	PSO5
Introduction to Pharmaceutical Technology	K4	3	3	3	3	3
Pharmaceutical Chemistry	K4	3	3	2	2	2
Pharmaceutical Analysis Laboratory	K4	2	3	3	2	3
Formulation Technology and Drug Delivery	K4	2	3	2	2	3
Pharmaceutical Chemistry and Formulation Technology Laboratory	K4	2	3	2	2	3
Pharmaceutical Technology and Drug Design	K4	2	3	3	3	3
Process Development for Fine Chemicals and API	K4	3	2	2	2	3

Mapping of All Courses of Pharmaceutical Chemistry and Technology with PSOs

Semester III

Course Code: SDT4251	Course Title: Introduction to Pharmaceutical	Cr	edits =	= 2		
Course Code: SRT4351	Technology	L	Т	P		
Semester: III	Total Contact Hours: 30	1	1	0		
	List of Pre-requisite Courses			-		
OE: Biology						
List	of Courses where this course will be a pre-requisite					
	ry (SRT4352), Formulation Technology and Drug De Fine Chemicals and API (SRT4355)	elivery ((SRT4	.353)		
Descriptio	on of relevance of this course in the Int. M. Tech. Prog	gram				
Chemicals.	ed to know various aspects of the Technology of Pharm					
(Course Contents (Topics and Subtopics)					
morphological1raw materialsmethods for p	to Prokaryotes and Eukaryotes; Study of ultra-structure classification of bacteria, viruses, fungi; nutritional requirused for culture media, growth curve, isolation and pro- pure cultures, identification of bacteria using staining to 's & Acid-fast staining)	uirement eservatio	ts, on	4		
2	Pharmaceutical Industry; Origin & development a – IP/BP/USP, Introduction to Monograph and Biophar			4		
 3 Dosage form: Definition and classification based on route of administration, physical form along with special emphasis on Monophasic (Oral and Topicals) (solution, syrups, elixirs, linctus, glycerites, nasal drops, ear drops, etc.), Biphasic, Ointments, Creams, Gels, Suppositories, Aerosols - Suspensions and Emulsions 						
 General pharmacology (ADME, routes of administration, MOA) with different organ systems; Chemotherapy: Sulphonamides, Diaminopyridines, Quinolones, β-lactam antibiotics, Tetracyclines, Nitrobenzene derivatives, Aminoglycosides, Anti-malarial, Antifungal, Anti-tubercular, Anticancer agents, etc. 						
		Tot	al	30		
	Suggested/ Reference books					
1 Microbiology,	Pelczar, McGraw-Hill Education					

2	Prescott's Microbiology 11th Edition, Joanne Willey, Kathleen Sandman, Dorothy Wood; McGraw-Hill Education (2019)
3	Remington-The Science And Practice Of Pharmacy (Vol.1& 2), David B.Troy, 21st edition,2006, Lippincott Williams & Wilkins
4	Pharmacology H. P. Rang, M. M. Dale, J. M. Ritter 5
5	J. McMurry, Brooks/Cole, Organic Chemistry
	Course Outcomes (Upon completion of the course)
CO1	Students will be able to know the cultivation/control methods for the diversity of microorganisms and their physiology.
CO2	Know the different drug categories.
CO3	Students will be able to understand general principles of Pharmacology, including pharmacokinetics and Pharmacodynamics.
CO4	Students will be able to conceptualise and develop monophasic, biphasic and other products.
CO5	Students will be able to comprehend Anti-malarial, Antifungal, Anti-tubercular drugs

Mapping of Course Outcomes (COs) with Programme Specific Outcomes (PSOs						
		PSO1	PSO2	PSO3	PSO4	PSO5
		K1	K2, K3	K4	K5	K6
CO1	K2	1	1	3	2	2
CO2	K2	3	2	2	3	3
CO3	K2	3	3	3	1	2
CO4	K3	3	3	3	3	3
CO5	K3	3	3	3	3	3
Course	K4	3	3	3	3	3

Semester IV

Course Code: SRT4352			С	redits	= 2
		Course Title: Pharmaceutical Chemistry		Τ	Р
Semest	ter: IV	Total Contact Hours: 30		1	0
		List of Pre-requisite Courses		1	
Introd	uction to Pharmaceu	tical Technology (SRT4351)			
	List	of Courses where this course will be pre-requisi	ite		
	ology and Drug D	and Formulation Technology Laboratory (SR esign (SRT4354), Process Development for Fin			
	Description	of relevance of this course in the Int. M. Tech.	Progran	1	
	mechanism of action (c) Anti-inflammator on the hormonal syst	ned to acquaint students with nomenclature, class , synthesis and SAR of (a) Anti-infective agents, (b ry agents, (d) Drugs acting on the cardiovascular s em (f) Drugs acting on the central nervous system edicinal Natural Products and Phytochemistry) Anti-his system, (e	staminio e) Drug	c agents, s acting
	Сс	ourse Contents (Topics and Subtopics)			Hours
	Classification of Drugs and their molecular targets: Enzymes, proteins and 4 receptors as drug targets				
1			proteins	and	4
1 2	receptors as drug to Overview of An Antimycobacteria		ungal ag s Affectir	gents;	4
	receptors as drug to Overview of Art Antimycobacteria Central Nervous S Introduction to Art	targets ntibacterial agents; Antiparasitic agents; Antif l agents; Anticancer agents; Antiviral agents; Drug	fungal ag s Affectir algesics	gents; ng the	_
2	receptors as drug to Overview of Art Antimycobacteria Central Nervous S Introduction to Art	targets ntibacterial agents; Antiparasitic agents; Antif l agents; Anticancer agents; Antiviral agents; Drug System; Cholinergic Drugs; Adrenergic Drugs; An nti-inflammatory drugs; Cardiovascular Drugs; D	ungal ag s Affectir algesics rugs actin	gents; ng the	15
2	receptors as drug to Overview of Art Antimycobacteria Central Nervous S Introduction to Art	targets ntibacterial agents; Antiparasitic agents; Antif l agents; Anticancer agents; Antiviral agents; Drug System; Cholinergic Drugs; Adrenergic Drugs; An nti-inflammatory drugs; Cardiovascular Drugs; D	ungal ag s Affectir algesics rugs actin	gents; ng the ng on	15
2	receptors as drug to Overview of Arr Antimycobacteria Central Nervous S Introduction to Arr hormonal systems	targets ntibacterial agents; Antiparasitic agents; Antif l agents; Anticancer agents; Antiviral agents; Drug System; Cholinergic Drugs; Adrenergic Drugs; An nti-inflammatory drugs; Cardiovascular Drugs; D s; Other miscellaneous Classes of drugs	ungal ag s Affectir algesics rugs actin	gents; ng the ng on Total	15 11 30
2	receptors as drug to Overview of Arr Antimycobacteria Central Nervous S Introduction to Arr hormonal systems Foye's Principles edition, 2008. Burger's Medicina	targets htibacterial agents; Antiparasitic agents; Antif l agents; Anticancer agents; Antiviral agents; Drug System; Cholinergic Drugs; Adrenergic Drugs; An nti-inflammatory drugs; Cardiovascular Drugs; D s; Other miscellaneous Classes of drugs Suggested books/reference	fungal ag s Affectir algesics rugs actin villiams &	gents; ng the ng on Total & Wilki	15 11 30
2 3 1	receptors as drug to Overview of Arr Antimycobacteria Central Nervous S Introduction to Arr hormonal systems Foye's Principles edition, 2008. Burger's Medicina John Wiley & Sor Textbook Of Med	targets ntibacterial agents; Antiparasitic agents; Antif l agents; Anticancer agents; Antiviral agents; Drug System; Cholinergic Drugs; Adrenergic Drugs; An nti-inflammatory drugs; Cardiovascular Drugs; D s; Other miscellaneous Classes of drugs Suggested books/reference Of Medicinal Chemistry W. O. Foye, Lippincott W Al Chemistry & Drug Discovery(Vol. 1- 6) A. Burgested	Yilliams &	gents; ng the ng on Total & Wilki	15 11 30 ins, 6th olff;

5	Pharmaceutical Substances: Synthesis, Patents, Applications (N-Z) Kleemann Georg ThiemeVerlag-Stuttgart. Thieme, 4th edition, 2001
6	Dewick P.M., Medicinal Natural Products- A Biosynthetic Approach,2 edition/2002, John Wiley & Sons Ltd
	Course Outcomes (Upon completion of the course)
CO1	Students will be able to classify drugs based on different methods. (K2)
CO2	Students will be able to explain the SAR and MOA of drugs at the molecular level of understanding. (K2)
CO3	Students will be able to apply principles of drug discovery from hit to lead to preclinical molecules. (K2)
CO4	Students will be able to theoretically predict the absorption distribution, metabolism and excretion of drugs and the related concepts of prodrugs. (K3)
CO5	Students will be able to evaluate the effect of functional groups on the bioactivity and the toxicity. (K4)

Mapping of Course Outcomes (COs) with Programme Specific Outcomes (PSOs						
		PSO1	PSO2	PSO3	PSO4	PSO5
		K1	K2, K3	K4	K5	K6
CO1	K2	2	2	1	2	3
CO2	K2	3	3	3	3	3
CO3	K2	3	3	2	3	2
CO4	K3	3	3	2	2	2
CO5	K4	3	2	2	2	2
Course	K4	3	3	2	2	2

Semester IV

Course	Codo: SDD4251	Course Title: Pharmaceutical Analysis Laboratory		Credits =		
Course Code: SRP4351		Course Title: Pharmaceutical Analysis Laboratory		Т	P	
Semeste	er: IV	Total Contact Hours: 60	0	0	4	
		List of Pre-requisite Courses				
Chemi	stry Laboratory					
	List	of Courses where this course will be pre-requisite				
None						
	Description	n of relevance of this course in the Int. M. Tech. Program				
prepa	re solutions with acc	enable students to operate the instruments, understand their is surate concentrations, measure the readings, calculate and inter themselves with accelerated stability testing for shelf life calculate	erpret tl	ne rest		
Sr. No.	Course Contents (Topics and Subtopics)			Reqd. Hours		
1	1 1	ometric estimation of two components formulation by ation method and by absorbance ratio method, Eg Caffeine pate injection		4		
2		netric estimation of formulation by Difference spectroscopy: e HCl ophthalmic solution	4			
3	cm), e.g. H tablets/Hydrochlo	l products by UV spectroscopy (any two), using A (1%, 1 Paracetamol tablets, Propranolol tablets/Atenolol rothiazide tablets/Frusemide tablets/Albendazole capsules (two examples)	4			
4	Solubility determi	ination of any drug/formulation by using UV spectroscopy		4		
5	Separation and chromatography	identification of drug/Intermediate by TLC/Column		8		
6	Experiments base	d on HPLC, e.g. quantification of impurities in APIs		8		
7	Gas Chromatogra	phy (GC) handling and analyses of API intermediates		4		
8	Detection of resid	ual solvent in the formulation by using Gas Chromatography		4		
9	Working on FTIR	and Interpretation of IR spectra of any one drug.	4			
10	Polarimetry: Diff concentration and	erent concentrations of sugar, determination of unknown specific rotation	4			
11		omycin injection/Salicylic acid by using Colorimetry calibration curve using linear regression analysis)		8		

12	Accelerated stability testing of any suitable drug/ formulation, Problems based on Arrhenius equation for shelf life calculations	8		
	Total	60		
	List of Textbooks/Reference Books			
1	Current editions of IP, BP and USP			
2	G. D. Christian, Analytical Chemistry, John Wiley & Sons, Singapore, reprint Pvt. Ltd	by Wiley India		
3	A. H. Beckett and J. B. Stenlake, Practical Pharmaceutical Chemistry, Part Publishers and Distributors, India	I and II, CBS		
4	J. Mendham, R. C. Denney, J. D. Barnes, M. J. K. Thomas, Vogel's Textbook of Quantitative Chemical Analysis, Pearson Education Ltd.			
5	D. G. Watson, Pharmaceutical Analysis –A textbook for pharmacy students and pharmaceutical chemists, Churchill Livingstone Elsevier			
6	R. M. Silverstein, F. X. Webster and D. J. Kiemle, Spectrometric identificat compounds, John Wiley & Sons, Inc. (Indian edition), New Delhi	ion of organic		
	Course Outcomes (Upon completion of the course)			
CO1	Students will be able to record the absorbance and calculate the analyte conformulation or as an API by using A (1%, 1cm) by UV spectrophotometer.	oncentration in		
CO2	Students will be able to develop and optimise mobile phase composition for qualitative analysis by TLC and interpret qualitative analysis data by TLC.			
CO3	Students will be able to outline the workings and applications of HPLC.			
CO4	Students will be able to outline the working and application of GC.			
CO5	Students will be able to understand the sample preparation technique for FTIE and interpret the IR spectra to identify the functional groups.	R spectroscopy		

Mapping of Course Outcomes (Cos) with Programme Specific Outcomes (PSOs						
		PSO1	PSO2	PSO3	PSO4	PSO5
		K1	K2, K3	K4	K5	K6
CO1	K2	2	3	3	2	3
CO2	K2	2	3	3	2	2
CO3	K3	2	3	3	2	2
CO4	K3	2	3	3	2	2
CO5	K4	3	2	2	2	2
Course	K4	2	3	3	2	3

Semester V

Course Code: SRT4353	Course Title: Formulation Technology and Drug	Cr	redits	= 2
Course Code: SK14555	Delivery		Т	P
Semester: V	Total Contact Hours: 30	1	1	0
	List of Pre-requisite Courses			
Introduction to Pharmaceut	ical Technology (SRT4351)			
List o	of Courses where this course will be pre-requisite			
Pharmaceutical Chemistry	and Formulation Technology Laboratory (SRP4352)			
Description	of relevance of this course in the Int. M. Tech. Program	n		
of solid and sterile d	ed to train the students with respect to basics and application losage forms and introduce novel drug delivery systems, nts of pharmaceuticals.			
Cou	rse Contents (Topics and Subtopics)		Ho	urs
Granulation technic Formulation: Unit o	lets, Preformulation considerations for tablet dosage for ques, Direct compression; Excipients in tablets; Table operations, tablet punching: physics of tablet punching, sing ablet press, tablet tooling; quality control test; Packagin d, stages and types	ets gle	1	U
Hard and soft gelati	sules; Preformulation considerations for capsule dosage for an capsules: formulation considerations, capsule manufactu control tests, packaging, Large scale manufacture, layo sulation;	re	5	;
filters, environmen sterilisation; Water control tests, stora Small and Large vo like solutions, susp	parenteral manufacture with focus on air systems HEF atal classes for manufacture of parenterals; Methods for Injection: Monograph IP, methods of preparation, quali- ge; Containers and Closures for Parenteral Formulation lume parenterals: Formulation (discuss various dosage for bensions, emulsions, dry powders), Quality control, Lar and packaging with focus on equipment, Layout design an	of ity ns; ns ge	1	0
4 Introduction to Qua bodies for pharmace	ality by Design, Validation, Documentation and Regulato euticals.	ry	5	;
	Tot	al	3	0
	Suggested books/reference	•		

1	Remington-The Science And Practice Of Pharmacy (Vol.1& 2), David B.Troy, 21st edition,2006, Lippincott Williams & Wilkins
2	Pharmaceutics: The Science Of Dosage FormDesign, Michael E. Aulton, 1998, Churchill- Livingstone Dermatological Formulations, B. W. Barry, 198, New York, Marcel Dekker
3	ICH Guidelines
4	Coated Pharmaceutical Dosage Forms, K. H. Bauer, CRC Press, Boca Raton. Med Pharm.
5	Pharmaceutical Dosage Forms Vol. I & II, Liebermann, New York, Marcel Dekker, 1996.
6	Pharmacuetical Production Facilities: Design and Applciations G. C. Co
7	Pharmaceutics: The Science of Dosage Form Design. Michael E.Aulton, Churchill- Livingstone, 1998
8	Beotra's Law of Drugs Medicins and Cosmetics K. K. Singh, L. R. Bugga for the Law Book Co.Pvt. Ltd. Allahabad
9	Indian Pharmacopoiea, British Pharmacopoiea, United States Pharmacopoiea.
	Course Outcomes (Upon completion of the course)
CO1	Students will be able to describe preformulation, formulation, unit operation, large-scale manufacturing, and layout design of tablets.
CO2	Students will be able to explain the coating polymers, technology and equipments used for coating of tablets and describe microencapsulation techniques.
CO3	Students will be able to describe formulations for hard and soft gelatin capsules and machinery used for filling.
CO4	Students will be able to describe the preformulation, formulation, evaluation, packaging, large-scale manufacturing and facility design of parenteral products.
CO5	Students will be able to describe product and process validation and documentation required for the pharmaceuticals.

Mapping of Course Outcomes (COs) with Programme Specific Outcomes (PSOs						
		PSO1	PSO2	PSO3	PSO4	PSO5
		K1	K2, K3	K4	K5	K6
CO1	K2	3	3	3	2	2
CO2	K2	2	2	2	2	2
CO3	K3	2	2	2	2	2
CO4	K3	3	2	2	3	3
CO5	K4	2	2	2	3	3
Course	K4	2	3	3	3	3

Semester V

0	- J CDD4252	Course Title: Pharmaceutical Chemistry and Formulation Technology Laboratory		Credits = 2		
Course C	ode: SRP4352			Т	Р	
Semester	: V	Total Contact Hours: 60	0	0	4	
		List of Pre-requisite Courses	1			
Pharmac (Simultar		try (SRT4352), Formulation Technology and Drug Delive	ry (S	RT4	353)	
	Lis	at of Courses where this course will be pre-requisite				
None						
	Description	on of relevance of this course in the Int. M. Tech. Program				
wh	ile preparing the	gned to train the students with respect to practical aspects of g e commonly used organic compounds as a drug. It also introduc lation development technology.			•	
		Course Contents (Topics and Subtopics)	J	Hour	'S	
1	Evaluation of excipients: Bulking agents for Flow properties, Bulk density, Tapped density, Carr's index, Hausner's ratio and particle size and Disintegrating agents for Swelling index4					
2	Preparation and	evaluation of Transdermal/ophthalmic gels		4		
3	Preparation of E	Eye drops/ and Eye ointments		4		
4	Preparation of C	Creams (cold/vanishing cream)		4		
5	Preparation of F	Paracetamol pediatric elixir		4		
6	Representative of	examples of microencapsulation (Preparation and evaluation)		8		
7	Solubilisation o	f drugs by at least two novel techniques		8		
8	Evaluation of G	lass containers (as per IP)		8		
	Synthesis of one molecule/drug intermediate, which may include three or more steps to isolate, purify (chemical methods and through chromatography)16and characterise the product from each step16					
		Total		60		
		List of Textbooks/Reference Books				
1	Pharmaceutical	Dosage Forms Vol. I & II, Liebermann, New York, Marcel D	ekker	: (199	<i>i</i> 6)	
2	Latest Indian Ph	atest Indian Pharmacopoeia, British Pharmacopoeia, United States Pharmacopoeia				

3	Pharmaceutical Production Facilities: Design and Applications G. C. Cole, New York Ellis Horwood (1990)
4	Husa's Pharmaceutical Dispensing Martin E. W. Easton Mack Pub. Co. (1971)
5	Transdermal Delivery of Drug A. Kydonieus Florida, CRC Press (1987)
6	Strategies for Organic Drug Synthesis and Design, 2nd Edition, Daniel Lednicer, Wiley (2008)
	Course Outcomes (Upon completion of the course)
CO1	Prepare transdermal and ophthalmic formulations.
CO2	Prepare and evaluate the semisolid dosage form.
CO3	Prepare and evaluate the monophasic/biphasic liquid dosage form.
CO4	Plan and develop organic synthetic routes for small organic compounds
CO5	Develop a set of separation, purification and structural characterisation skills.

Μ	Mapping of Course Outcomes (COs) with Programme Specific Outcomes (PSOs									
		PSO1	PSO2	PSO3	PSO4	PSO5				
		K1	K2, K3	K4	K5	K6				
CO1	K2	3	3	3	2	3				
CO2	K2	2	2	2	2	2				
CO3	K3	2	2	2	2	2				
CO4	K4	3	2	2	2	3				
CO5	K4	2	2	3	3	3				
Course	K4	2	3	2	2	3				

Semester VI

Comme	e Code: SRT4354	Course Title:	Pharmaceutical	Technology and	C	Credit	s = 2
Drug Design		Drug Design		L	Т	Р	
Semest	ter: VI	Total Contact	Hours: 30		1	1	0
		List of	f Pre-requisite Cou	urses			
Introdu	ction to Pharmace	utical Technolog	gy (SRT4351), Pha	rmaceutical Chemist	ry (SR	T435	2)
	List	t of Courses who	ere this course wil	l be pre-requisite			
None							
	Descriptio	n of relevance o	of this course in th	e Int. M. Tech. Pro	gram		
	-			sicochemical proper		-	
	C	Course Contents	(Topics and Subt	opics)			Hours
1	Serendipity, rand drug design, Tech	lom screening, r	natural sources, and in modern drug dis	very- Sources of dr alogue-based design covery, Introduction and chemical divers	, Ration to QS	onal	4
2	Physicochemical and Biopharmaceutical Properties of Drug Substances: Lipinski rule of 5, Concept of toxicophores, Insilico calculation of log P, Modification of leads to incorporate suitable ADMET properties					4	
3	2-D QSAR: History and development of 2-D QSAR, Parameters – lipophilicity and related parameters, electronic parameters, steric parameters, other parameters, Quantitative models – Hansch approach, Free Wilson analysis, the mixed approach, Statistical methods – regression analysis, partial least square and other multivariate statistical methods Design of test series in QSAR-Some examples of Hansch and other methods					8	
4	cross terms, force	e field parameter		eneral features of fo imisation – non-deri tion			5
5	Docking by diffe	rent techniques					4
6		cophores, their s	sources, purification	very: A few selected n and drug-target in			5
					Т	otal	30
		Sugg	ested books/refere	ence			
1	-		rug Discovery and Rotella. August 20	Development. 7 th Ec 10	lition `	Volun	ne 1-9.

2	Practical Application of Computer-Aided Drug Design, Paul S Charifson, Ed., Marcel
	Dekker, Inc., 1997
3	Textbook of Drug Design and Discovery, PovlKrogsgaard-Larsen, Ulf Madsen, Kristian Stromgaard, 5 th Ed., 2016. Taylor and Francis.
4	3D QSAR in Drug Design: Theory, Methods and Applications, Kubinyi H Ed., Leiden ESCOM, 1993.
5	Drug Development, Hamner C. E., Ed., 2 nd Ed., CRC Press, Boca Raton, 1990
6	Advanced Drug Design And Development: A Medicinal Chemistry Approach, P N Kourounakis, E. Rekka, 1 st ed., Taylor & Francis, Year: 1994
7	Lead Generation Approaches in Drug Discovery, Chapter 7: Role of Natural Products in Drug Discovery, Hugo Lachance, Stefan Wetzel, Herbert Waldmann, 2010, Wiley online library
8	Phytochemistry of Medicinal Plants, Vol. 29, J.T. Arnason, R. Mata, J. T. Romeo, 1995, Springer Science, Business Media New York
9	Total Synthesis of Natural Products, Jie Jack Li and E. J. Corey, 2012, Springer
	Course Outcomes (Upon completion of the course)
CO1	Students will be able to understand the basics of QSAR for applications in drug design.
CO2	Students will be able to understand the basics of the physicochemical properties of drugs and their implications.
CO3	Students will be able to design new potential therapeutic molecules using structure-based drug design.
CO4	Students will be able to design new potential therapeutic molecules using ligand-based drug design.
CO5	Students will be able to rationalise natural products' contribution to new drug discovery.

Mapping of Course Outcomes (Cos) with Programme Specific Outcomes (PSOs)									
		PSO1	PSO2	PSO3	PSO4	PSO5			
		K1	K2, K3	K4	K5+K6	K6			
CO1	K2	2	3	2	3	3			
CO2	K2	2	3	3	3	3			
CO3	K3	2	3	3	3	3			
CO4	K4	2	3	3	3	3			
CO5	K4	2	3	3	3	3			
Course	K4	2	3	3	3	3			

Semester VII

C	Callar SDT 4255	Course Title: Process Development for Fine		Credits	= 2
Course	Code: SRT4355	Chemicals and API	L	Т	Р
Semeste	er: VII	Total Contact Hours: 30	1	0	
		List of Pre-requisite Courses			
Intro	oduction to Pharma	aceutical Technology (SRT4351), Pharmaceutical C	hemistry	y (SRT4	352)
	Lis	t of Courses where this course will be pre-requisi	te		
None					
	Descriptio	n of relevance of this course in the Int. M. Tech.	Progran	n	
	Ũ	to help students understand the principles of chemic als and acquire knowledge of green chemistry, proc	-		
	(Course Contents (Topics and Subtopics)			Hours
1	search methodolo	cess Development for API's: Background informat gies for the development of API's and Intermediate synthesis/manufacture of API (Green processes), I oratory data	es, Select	tion of	8
2	1	aceutical industry: Status of bulk drugs, natural dia vis-a-vis industrialised nations	product	ts and	3
3	selection of rout	logy of Selected APIs: Case studies with emphasis of es, raw materials, process control methods, pol norphs, safety, etc.			6
4	Economy, Alterna	chnology of Fine Chemicals: Introduction, Role of C tive Reagents and Catalysts, Multiproduct and Multi s for fine Chemicals, Safety Aspects of Fine Chemic	purpose		5
5		emical Technologies with examples: Alkylation, tion, Esterification, Nitration, and Hydrogenation	Haloger	nation,	4
6	impurity formati	rations: Introduction, Steps to optimising reaction on by identifying impurities first, Method dev esis and Isolation of impurities and their characterisa	velopme	-	4
				Total	30
,		Suggested books/reference			
1	Levenspiel, O. Ch	emical Reaction Engineering; 3rd ed.; John Wiley &	Sons, N	New Yor	rk (1999)
2	Gadamasetti, K., (1999)	Process Chemistry in Pharmaceutical Industry; 1 st	ed.; CR	C Press	, Londor

3	Anderson, N. G.; Practical Process Research & Development: A Guide for Organic Chemists; 2 nd ed.; Academic Press, London (2012)
4	Harrington, P. J.; Pharmaceutical Process Chemistry for Synthesis: Rethinking the Routes to Scale-Up; Wiley, London (2011)
5	A. Cybulski M.M. Sharma R.A. Sheldon J.A. Moulijn; Fine Chemicals Manufacture: Technology and Engineering, Elsevier Science & Technology Books, (2001)
	Course Outcomes (Upon completion of the course)
CO1	Students will be able to understand the principles of process design along with the selection of different routes. (K2)
CO2	Students will be able to get insights into underlying technologies in the manufacturing of various APIs (K2)
CO3	Students will be able to differentiate between bulk drugs and fine chemicals and state their various applications in industry and daily life. (K3)
CO4	Students will be able to explore the process of manufacturing a variety of fine chemicals. (K4)
CO5	Students will be able to apply steps to optimising reactions, and minimising impurities. (K4)

Mapping of Course Outcomes (Cos) with Programme Specific Outcomes (PSOs									
		PSO1	PSO2	PSO3	PSO4	PSO5			
		K1	K2, K3	K4	K5	K6			
CO1	K2	3	2	2	2	3			
CO2	K2	2	3	2	3	3			
CO3	K3	2	3	3	2	2			
CO4	K4	3	2	2	3	3			
CO5	K4	3	2	3	3	3			
Course	K4	3	2	2	2	3			

K, knowledge level from cognitive domain

SYLLABUS OF THE CURRICULUM

for

MULTIDISCIPLINARY MINOR DEGREE

in

POLYMER AND MATERIALS ENGINEERING [Under the National Education Policy (NEP 2020)]

2023-2024

Offered by

Institute of Chemical Technology Mumbai

Marathwada Campus, Jalna

(University Under Section-3 of UGC Act, 1956) Elite Status and Center for Excellence Government of Maharashtra

BT-5/6, Biotechnology Park, Additional MIDC Area, Chhatrapati Sambhajinagar (Aurangabad) Road, Jalna – 431 203.

POLYMER AND MATERIALS ENGINEERING Page 59 of 153

Preamble

This field lies at the intersection of chemistry, physics, and engineering, focusing on the study and manipulation of materials to meet the demands of modern technological advancements. Throughout this program, students will study the fundamental principles governing the behavior, properties, and applications of materials, with a specific emphasis on polymers – versatile compounds with a wide range of applications. The Polymer and Materials Engineering Minor curriculum is designed to provide students with a comprehensive understanding of materials science and engineering principles, as well as specialized knowledge in polymer chemistry, processing, and characterization techniques. Students will gain hands-on experience through laboratory work, projects, and industry collaborations, preparing them for careers in diverse sectors such as aerospace, automotive, electronics, healthcare, and sustainable technologies. By exploring topics such as material synthesis, structure-property relationships, and polymer processing, students will develop the critical thinking skills and technical expertise necessary to address complex challenges in materials design, performance optimization, and sustainability.

Designed according to the National Education Policy guidelines, the minor degree course in Polymer and Materials Engineering offers students the chance to explore diverse domains within the field. With 14 credits, students will delve into fundamental principles and emerging scientific and technological advancements, preparing them for a rewarding career in polymer and materials engineering.

Programme Specific Outcomes (PSOs) for Multi-Disciplinary Minor in Polymer and Materials Engineering

	Torymer and Waterhals Engineering
PSO1	Understand different terminologies and fundamental concepts related to Polymer and
1501	Material Engineering (Factual Knowledge).
	Comprehend different theories and models, equipment, or processes to meet the specified
PSO2	needs considering feasibility, safety, health hazards, societal, economic, environmental or
1302	sustainability factors as well as critically analyse relationships between these factors
	(Conceptual Knowledge)
	Demonstrate the knowledge, skills, and practical experience necessary to pursue careers
PSO3	in industries such as manufacturing, automotive, aerospace, biomedical, and electronics, or
1303	to pursue further studies in graduate programs related to materials science and engineering
	(Procedural Knowledge).
	Apply the ability to analyze complex materials-related problems, identify innovative
PSO4	solutions, and make informed decisions based on scientific principles and engineering
	considerations (Metacognitive Knowledge).
	Cater to the needs of polymer industries, research organizations and academic institutes.
PSO5	set-up their own ventures and generate employment, promote awareness in society about
	Polymer Engineering profession
-	

1. Recommended batch size: Minimum 10; Maximum 15

2. Duration: Three years

3. Eligibility criteria

Students enrolled in the Integrated Master of Technology in Chemical Engineering of Institute of Chemical Technology, Marathwada Campus, Jalna will be eligible. The allotment of minor degree programme will be as per the policy of the Institute.

4. Pedagogy/ Teaching methods

- Lecture/ Discussions: These sessions will discuss the subject contents of the course.
- **Experiential Learning:** The sessions will involve hands on training.
- **Tutorials:** Problem solving / case studies / relevant real-life applications / student presentations / home assignments / individual or group projects

5. Evaluation

Theory courses

Continuous Assessment Tests (CATs): Continuous assessment will vary from course to course; the instructor will decide the evaluation mode. Two to three CATs will be conducted throughout the course, usually before and after the midsemester examination. These CATs will carry a total weightage of 20%. Depending on the instructor, class test, assignments, case studies, group discussions, report submission and seminar/presentation could also form part of the continuous assessment.

Mid-semester: Total 30 Marks (Theory paper)

End-semester: Total 50 Marks (Theory paper)

Practical courses

Continuous assessment: 50 Marks

Performing given experiments as per the instructions, submission of lab journal on time, viva voce, group/ personal discussions, and quizzes can be part of continuous assessment. The course instructor will discuss the composition of marks for these at the beginning of the course.

End Semester: 50 Marks (Lab experiment performance followed by viva-voce examination) presentations / home assignments / individual or group projects

Semester	Course Code	Subjects	Faculty
III	SMT4351	Introduction to Material Technology	AMS/NK
IV	SMT4352	Polymer Science and Technology- I	AMS/NK
IV	SMP4351	Synthesis and Characterization of Resins and Polymers	AMS/NK
V	SMT4353	Polymer Science and Technology- II	AMS/NK
V	SMP4352	Materials Processing Laboratory	AMS/NK
VI	SMT4354	Material Processing	GJ/NK
VII	SMT4355	Structure-Property Relationship	GJ/AMS/NK

6. Instructors (Tentative)

	Course	Subjects	Credits	Hr	s/Wee	ek	Ma	arks f Ex	or va ams	rious
Semester	r Code	Subjects	Creuits	L	Т	Р	CA	MS	ES	Total
III	SMT4351	Introduction to Material Technology	2	2	0	0	20	30	50	100
IV	SMT4352	Polymer Science and Technology- I	2	2	0	0	20	30	50	100
IV	SMP4351	Synthesis and Characterization of Resins and Polymers	2	0	0	2	50	-	50	100
V	SMT4353	Polymer Science and Technology- II	2	1	1	0	20	30	50	100
V	SMP4352	Materials Processing Laboratory	2	0	0	2	50	-	50	100
VI	SMT4354	Material Processing	2	1	1	0	20	30	50	100
VII	SMT4355	Structure-Property Relationship	2	2	0	0	20	30	50	100
		TOTAL	14	7	2	4				

MDM Course in Polymer and Materials Engineering

Mapping of All Courses of Polymer and Materials Engineering with PSOs

Courses	K-Level	PSO1	PSO2	PSO3	PSO4	PSO5
Introduction to Material Technology	K4	3	2	3	2	-
Polymer Science and Technology- I	K4	2	2	3	2	1
Synthesis and Characterization of Resins and Polymers	K4	3	3	3	3	2
Polymer Science and Technology- II	K4	3	3	3	3	2
Materials Processing Laboratory	K4	3	3	3	2	2
Material Processing	K4	3	3	3	3	3
Structure-Property Relationship	K5	3	3	3	3	3

Semester III

Cours	se Code: SMT4351	Course Title: Introduction to Material Technology	C	Credits	s = 2			
Somo	ster: III	Total contact hours: 30	L T		Р			
Seme	5101.111	Total contact nours. 50	2	0	0			
		List of Prerequisite Courses		4				
	Basic Physics, Ch	emistry and Mathematics						
	Description	of relevance of this course in the Int. M. Tech. Progr	am					
	• This course aims to acquaint the students with fundamental knowledge of materials. The course content discusses the basic structure of solids, classification of materials							
		and the correlation between the structure and properties.						
		of Courses where this course will be prerequisite						
	-	nd Technology- I (SMT4352), Material Processing (S Relationship (SMT4355)	SMT4	354),				
Sr. No.		Course Contents (Topics and subtopics)			Reqd. hours			
1	Introduction to Materials: Introduction, history and evolution of materials, classification of materials, need to study of materials, bonding in atoms- Primary bonding and Secondary bonding. Crystal Structure: Concepts of unit cell and Bravais lattice, crystallographic directions and planes, Miller indices, linear and planar density, crystal defects.							
2	Metals and its Alloys: Introduction, Classification, Concept of stress-strain, shear stress, torsion, tensile strength, ductility, brittleness, resilience, toughness, impact strength, hardness, creep, Mechanical behavior of Metals- Deformation of metals, Material Properties of interatomic bonding force/energies, Stiffness versus Modulus, Ferrous and Non-Ferrous alloys, effect of impurities, Heat treatment.							
3	Thermodynamics: Phase rule, phase diagrams, Lever rule, Solid solutions and alloys,Invariant reactions, Fick's laws of diffusion, Mechanisms of diffusion, Phasetransformation, Nucleation kinetics and growth.							
4	Ceramics: Introduction, classification, Glass and glass ceramics, Mechanical behavior of Ceramics, Crystal structure and bonding of Ceramics, Imperfection in Ceramics, Application of Ceramics in advanced technologies							
5	molecular weight, methods to determ temperature, stres	of polymers, classification criteria, applications, c , crystallinity, tacticity, glass transition temperature, ex nine glass transition temperature, factors affecting glass s-strain relationships in polymers, stress-strain behaviours affecting mechanical behaviour.	perim s trans	iental sition	6			

6	Composites: Introduction, definition, composite classification, fibre reinforced composites (polymer matrix, metal matrix, ceramic matrix, carbon-carbon composites), structural composites, Composite interfaces, Bonding mechanisms, other interfacial properties, manufacturing, and processing of composites (hand lay-up, spray lay-up, pultrusion, prepreg, resin-transfer moulding, pressure bag and vacuum bag techniques).	6				
	Total	30				
	List of Textbooks/ Reference Books					
	1. Introduction to Material Science and Engineering, William J Callister, John Wiley & Sons, Inc.					
	2. Material Science and Engineering, V. Raghavan, Prentice Hall of India					
	3. Polymer Science and Technology, Joel Fried, Prentice Hall.					
	 Foundation of Material Science & Engineering, William Smith, Javad Hashemi, McGraw Hill. 					
	Course Outcomes (Students will)					
CO1	Remember fundamental properties of materials, along with the fundamental aspects of phase diagrams and the concepts of degradation and failure.	K1				
CO2	Define the basic concept of monomer, polymer and repeating units and their properties.	K1				
CO3	Understand the various engineering materials knowledge.	K2				
CO4	Understand the significance of material science in domestic and engineering applications.	K2				
CO5	Understand structural composites, Composite interfaces, Bonding mechanisms	K3				

Mapping of Course Outcomes (COs) with Programme Specific Outcomes (PSOs)									
		PSO1	PSO2	PSO3	PSO4	PSO5			
		K1	K2, K3	K4	K5	K6			
CO1	K2	3	2	3	1	-			
CO2	K2	2	3	3	1	-			
CO3	K2	3	3	3	1	-			
CO4	K3	3	2	2	2	-			
CO5	K3	2	3	3	2	1			
Course	K4	3	2	3	2	-			

Semester IV

Course Code: SMT4352		Course Title: Polymer Science and Technology- I		Credits	ts = 2		
Seme	ster: IV	Total contact hours: 30	L 2	T 0	P 0		
		List of Duono quicito Counces	2	U	U		
		List of Prerequisite Courses					
	to Materials Technol	I (CHT4151), Applied Chemistry-II (CHT4152) and In logy (SMT4351)	ntrodu	ction			
	Description of relevance of this course in the Int. M. Tech. Program• This course will enable the students to understand the basic concept of polymer and its classification, mechanism of formation and various techniques of Polymerization.						
	List	of Courses where this course will be prerequisite					
	Polymer Science and Technology- II (SMT4353), Structure-Property Relationship (SMT4355), Synthesis and Characterization of Resins and Polymers (SMP4351)						
Sr. No.	Course Contents (Topics and subtopics) I Introduction to Materials: Historical developments in polymeric materials, Basic						
1	Introduction to Materials: Historical developments in polymeric materials, Basic concepts & definitions: monomer & functionality, oligomer, polymer, repeating units, degree of polymerization, molecular weight & molecular weight distribution, Classification of Polymers, Natural polymers, Chemical & Physical structure, properties, source, important chemical modifications, applications of polymers such as cellulose, lignin, starch, rosin, shellac, latex, vegetable oils and gums, proteins etc.						
2	Polymerization Methods and Techniques: Addition Polymerization- Free Radical Polymerization, Anionic Polymerization, Cationic Polymerization, Coordination Polymerization etc. Condensation Polymerization- Kinetics of Condensation Polymerization, Copolymerization, Carothers Equation, Reactivity ratio, Bulk, Solution, Suspension, Emulsion, Interfacial, Comparison of these systems with Advantages and Disadvantages.						
3	of Styrenic polymer 6,6,	vmers: Synthesis, structure-property relationship, and a s – Polystyrene, HIPS, SAN, ABS, Polyamides- Nylo olymers & copolymers, Polyvinyl chloride & its copoly led cellulosic.	n 6, N	lylon	4		
4	Polyester resins, pho	rs: Synthesis, structure-property relationship, and applenolic, Amino resins, Epoxy resins, Polyurethanes, Allics, Silicones thermoplastics and thermosets.			4		
5		: Overview and importance of rheology, stress, strain parameter, compliance, elasticity, plasticity, visc		•	5		

1		
	Newtonian, and non- Newtonian fluids, thixotropy and rheopexy, thermal dependence of viscous flow (free volume), Deborah number, Taylor number, Weissenberg effect,	
	die swell, Rheological concepts of Polymer solutions and melts.	
6	Polymer Testing and Characterization: Molecular weight determination, viscosity of polymers and polymer solutions, electrical properties, chemical properties, flammability, mechanical properties, Miscellaneous Test- Melt flow index, weathering test etc.	3
7	Recycling and Waste Management: Introduction to waste management: global policies and regulations, social and environmental challenges of plastic waste in India, sorting techniques and classification, classification of waste management: primary, secondary, tertiary, quaternary recycling with examples. Disposal and waste treatment techniques: Controlled tipping, pulverization, composting, incinerators, pyrolysis, gasification, on-site disposal methods, compacting and bailing.	3
	Total	30
	List of Textbooks/ Reference Books	
	1. Polymer Science by Gowarikar, John Wiley and Sons 1986.	
	2. Encyclopaedia of Polymer Science and Technology, John Wiley and Sons, Inc 1965.	
	3. Polymer Chemistry by Malcolm P. Stevens, Oxford University Press, Inc, 1990.	
	 Introduction to Polymer Science and Technology, H. S. Kaufman and J. J. Falcetta, Wiley – Interscience Publication, 1977 	
	5. Handbook of polymer Testing Roger Brown, Marcel Dekker Inc, 1999.	
	6. Chandra R., Adab A., (2004) Rubber and Plastic Waste: Recycling, Reuse and Future Demand, CBS Publisher	
	Course Outcomes (Students will)	
CO1	Remember the basic concept of polymers, their classifications, their chemical and physical structures.	K1
CO2	Understand various polymerization techniques and methods and their kinetics.	K2
CO3	Understand the basics of rheology in polymer materials & its effect on processing & application.	K2
CO4	Understand the importance of recycling and waste management of polymers.	K2
CO5	Be able to choose the raw materials and reactants for the synthesis and manufacturing of resins and polymers.	K3

Mapping of Course Outcomes (Cos) with Programme Specific Outcomes (PSOs)									
		PSO1	PSO2	PSO3	PSO4	PSO5			
		K1	K2, K3	K4	K5	K6			
CO1	K2	3	2	3	2	1			
CO2	K2	2	3	3	2	1			
CO3	K3	2	3	3	2	1			
CO4	К3	3	2	2	2	1			
CO5	K3	3	2	2	3	2			
Course	K4	2	2	3	2	1			

Semester IV

Course	Code: SMP4351	Course Title: Synthesis and Characterization of Resins and Polymers	(Credits = 2		
Semeste	r• IV	Total contact hours: 60	LT		Р	
Semeste	1.1.	Total contact nours. 00	0	0	2	
		List of Prerequisite Courses	1			
		ry-I (CHT4151), Applied Chemistry-II (CHT4352) and nology- I (SMT4352)	Pol	ymer		
	Descriptio	on of relevance of this course in the Int. M. Tech. Progra	m			
	• This course will enable the students to apply various techniques for polymer synthesis and learn about different polymerization techniques.					
	Lis	st of Courses where this course will be prerequisite				
	Structure-Property Relationship (SMT4355)					
Sr. No.	Course Contents (Topics and subtopics)					
1	To synthesis poly method.	mer using Bulk, solution, suspension & emulsion polymeriz	zatio	on		
2	Synthesis of copo Polymerization.	lymers by emulsion Bulk, solution & suspension, and emul	sion	1,		
3	Synthesis of Nov	olac and its analysis.				
4	Synthesis of Reso	ol and its analysis.				
5	Synthesis of Epoy	xy resin and its analysis.			-	
6	Synthesis of Unsa	aturated Polyester resin and its analysis.				
7	Synthesis of Ami	no Resin and its analysis.			-	
			To	otal	60	
		List of Textbooks/ Reference Books				
	5	nistry: A Practical Approach (The Practical Approach in C tion Fred J. Davis Oxford University Press 2004.	hem	nistry		
		Course in Polymer Chemistry. H. Pinner, Borough Poly amon Press, he., New York, 1961	ytec	hnic,		
		ns chemistry, Applications, Standardization, Safety and Econger-Verlag Berlin Heidelberg 2000.	olog	gy by		
	4. Chemistry and Technology of Epoxy Resins by Eliss Brayn, Spring Nethelands,1993					
		Course Outcomes (Students will)				

CO1	Able to choose different monomers, raw materials for polymer synthesis based on different techniques.	K5
CO2	Understand general concepts, principles, and method of polymerization.	K3
CO3	Able to learn synthesis of unsaturated Polyester resin and its analysis.	K3
CO4	Able to study amino Resin and its analysis.	K3
CO5	Apply analytical techniques for characterizations of polymers	K4

Mapping of Course Outcomes (COs) with Programme Specific Outcomes (PSOs)								
		PSO1	PSO2	PSO3	PSO4	PSO5		
		K1	K2, K3	K4	K5+K6	K6		
CO1	K2	3	3	3	3	1		
CO2	K2	3	2	3	2	2		
CO3	К3	2	3	3	2	1		
CO4	К3	2	2	2	2	1		
CO5	K4	2	2	3	3	3		
Course	K4	3	3	3	3	2		

Semester V

Course Code: SMT4353		Course Title: Polymer Science and Technology- II	C	redit	ts = 2		
Seme	ester: V	Total contact hours: 30	L	Τ	Р		
benne			1	1	0		
		List of Prerequisite Courses					
	Applied Chemistry-I Science and Technolog	(CHT4151), Applied Chemistry-II (CHT4352) and Po gy- I (SMT4352)	olyme	er			
	Description of	relevance of this course in the Int. M. Tech. Program					
	• This course will enable the students to understand various polymer processing techniques considering the equipment, material behavior, processing parameters etc.						
	List of Courses where this course will be prerequisite						
	Materials Processing Laboratory (SMP4352), Material Processing (SMT4354)						
Sr. No.	Course Contents (Topics and subtopics) Injection Molding:						
	Introduction, basic components and processes, types of machines, machine specification and rating, materials, drying, moulding cycle, co-injection moulding, gas/water assisted injection moulding, Injection Blow Molding, advantages, and limitations of the process, troubleshooting and safety measures, process parameters and their effects on product quality, Injection molding of thermosets.						
2	Extrusion: Introduction, components of extrusion and extruder screw, process, materials, extruder output, extrusion blown film, sheet extrusion, pipe extrusion, Extrusion blow molding, process parameters & their effects on product quality, Mixing sections, co-extrusion,				8		
3	troubleshooting, twin screw extruder.Compression Molding:Introduction, basic process, moulding cycle, moulding materials, bulk factor, process parameters, types of molds, advantages and limitation of process, troubleshooting.				4		
4	 a) Rotational Molding: Introduction, basic process, moulding cycle, moulding materials, bulk factor, process parameters, types of molds, advantages and limitation of process, troubleshooting. b) Calendaring: Introduction, material, process, types of calendar roll, process parameters, film and sheet lines, Advantages, disadvantages, troubleshooting. 						

5	Composite Processing:	
	Introduction, basic process, moulding cycle, moulding materials, types of machines,	4
	process parameters and their effect on product quality, troubleshooting.	-
	Total	30
	List of Textbooks/ Reference Books	
	1. Plastics Engineering Handbook, J. Frados, Van Nostrand Reinhold Company 2007.	
	2. Plastics Processing Handbook, A. S. Athalye, Colour Publications (Pvt.) Ltd. 2002.	
	3. SPI Plastics Engineering Handbook, Michael Berins, Springer, 1991.	
	4. Principles of Polymer Processing, A. Tadmor and C. G. Gagos, John Wiley & Sons, New York, 2006	
	5. Plastics Materials and Processing, A. Brent Strong, Prentice Hall, 2000	
	Course Outcomes (Students will)	
CO1	Understand different moulding techniques and their applications.	K2
CO2	Solve the problems during processing by optimizing the processing parameters.	K3
CO3	Compare the different polymer processing techniques their design and problems associated	K4
CO4	Able to learn moulding cycle, moulding materials, bulk factor	K3
CO5	Able to understand process parameters and their effect on product quality	K4

Mapping of Course Outcomes (COs) with Programme Specific Outcomes (PSOs)									
		PSO1	PSO2	PSO3	PSO4	PSO5			
		K1	K2, K3	K4	K5	K6			
CO1	K2	3	2	2	3	2			
CO2	K2	3	3	3	3	2			
CO3	K3	3	3	3	3	2			
CO4	K3	1	2	2	2	2			
CO5	K4	2	2	3	3	3			
Course	K4	2	3	3	3	3			

Semester V

Course	e Code: SMP4352	Course Title: Materials Processing Laboratory	C	redit	s = 2		
Semest	tom V	Total contact hours: 60	L	T	Р		
Semes				0	2		
		List of Prerequisite Courses		.1			
		y-I (CHT4151), Applied Chemistry-II (CHT4352) and nology- II (SMT4353)	d Pol	ymer			
	Description	n of relevance of this course in the Int. M. Tech. Progr	am				
		Il enable students to learn about the production, prop hermoset and thermoplastic polymers.	erties,	and			
	Lis	t of Courses where this course will be prerequisite					
	Polymer Science	e and Technology- II (SMT4353), Material Processing (SI	MT43	54)			
Sr. No.	Course Contents (Topics and subtopics)						
1	To study injection	moulding & batch mixer, extrusion process					
2	Compounding of H	Polymeric material using two roll mills.					
3	To produce an arti	cle from blow moulding machine.					
4	Compounding of H	Polymeric material using compressing molding.					
5	Study of construct	ion and working of thermoforming.					
6	Study of construct	ion and working of rotational moulding for multilayered	produc	ct.			
			,	Total	60		
		List of Textbooks/ Reference Books					
	1. Principles of po	olymer processing by Fenner R.T., Chemical publishing N	.Y. (1	979)			
	2. Polymer Proce (Author), Dimi	essing: Principles and Design 1st Edition by Donald tris I. Collias	G. I	Baird			
		olymers: Theory and Practice by C.Chung, Hanser Publica hermoplastics, Second Edition Olagoke Olabisi by CRC					
	Course Outcomes	s (Students will able to)					
CO1	Handle processing	g techniques of given material sample.			K3		
CO2	Discover the vario	bus processing techniques suitable for different resins and	polym	ners	K4		
CO3	Apply and underst	tand the practical problems related to the experiment.			K4		
CO4	Design the proces respective experim	ss parameters like temperature, pressure, curing time et nents based on sample polymer.	c. of	the	K5		
CO5	Develop different	polymers for various applications			K5		

Mapping of Course Outcomes (COs) with Programme Specific Outcomes (PSOs)									
		PSO1	PSO2	PSO3	PSO4	PSO5			
			K2, K3	K4	K5+K6	K6			
CO1	K2	3	3	3	2	2			
CO2	K2	3	3	3	2	2			
CO3	K3	2	3	3	2	2			
CO4	K3	2	2	2	2	3			
CO5	K5	2	3	3	3	3			
Course	K4	3	3	3	2	2			

Semester VI

Course Code: SMT4354		Course Title: Material Processing		Credits	= 2	
Semeste	r: VI	Total contact hours: 30	L	T	Р	
					0	
		List of Prerequisite Courses Technology I (SMT4352), Structural Propert	ty Relatio	nship		
		ction to Material Technology (SMT4351)				
	-	relevance of this course in the Int. M. Tech	<u> </u>			
	techniques which	ents with fundamental knowledge of mater will be helpful in practical implementation o	of process			
	List of (Courses where this course will be prerequi	isite			
		None				
Sr. No.		ourse Contents (Topics and subtopics)			Reqd. hours	
1	Metal Processing:					
	Solidification- Pure	process, Classifications of manufactur metal and alloy, Mechanism of solidification in and dendrites growth in metal properties.		ocess. drites	4	
2	Metal Casting:					
	Moulding materials and their requirements; Patterns: Types and various pattern materials. Various casting methods, viz., sand casting investment casting- Mould sand composition, testing sand properties, pressure die casting, centrifugal casting, continuous casting, thin roll casting; Mould design; Casting defects and their remedies.					
3	a) Metal Forming:					
	cold Working, viz.,	ng techniques and their analysis, Deformation forging, rolling, extrusion, wire drawing waging, thread rolling; Super plastic defor	g, sheet	metal	8	
	Metal joining process- Concepts of Fusion and solid-state welding processes, Brazing and soldering, Welding defects.					
4	Ceramic Processing					
	processing, Slip cast molding, Extrusion; Electrophoretic depo Drying, Binder bur	onal ceramics- spray granulation, Pressing, C ing, Pressure casting, Tape casting, Gel cas Rapid- prototyping through Additive r osition, Production of ceramic fibres, Ele nout, Green machining, Sintering; Sol-g spraying, Thick and thin film coatings- P filtration techniques	sting, Inje manufactu ectro-spin gel proces	ection uring, nning; ssing,	6	
5	Composite Manufac	cturing Techniques:				
		nt winding, Pultrusion, Resin transfer moldir operation process, materials, economic aspe es			6	
			· · · ·	Total	30	
		List of Textbooks/ Reference Books				

	 Manufacturing Technology, Foundry, forming and welding, P N Rao, McGraw Hill Education, ISBN-13: 978-93-5316-051-7. Material science and engineering, William D. Callister, JR.David G.Rethwisch, Wiley, ISBN-13: 9781119321590, 10th edition 			
	Course Outcomes (Students will able to)			
CO1	Understand the different materials processing techniques			
CO2	Understand the basics of Microstructural aspects with the different processing of materials	К3		
CO3	Interpret importance of mould during processing.	K3		
CO4	Learn production of ceramic fibres, Electro-spinning; Drying, etc.	K4		
CO5	Apply basic operation process, materials, etc.	K4		

Mapping of Course Outcomes (COs) with Programme Specific Outcomes (PSOs)									
		PSO1	PSO2	PSO3	PSO4	PSO5			
		K1	K2, K3	K4	K5	K6			
CO1	K2	3	3	3	2	2			
CO2	K2	3	2	3	3	3			
CO3	K3	3	3	3	3	3			
CO4	K3	1	1	2	2	2			
CO5	K4	2	3	3	3	3			
Course	K4	2	2	3	3	3			

Semester VII

Course Code: SMT4355		Course Title: Structure-Prope	erty Relationship	Cr	edits: 2	2	
Semester: VI	Ι	Total contact hours: 30		L T 2 0		Р	
				2	0		
	-1'-1 Cl'-	List of Prerequisite Co		10.	1		
	Applied Chemistry-I (CHT4151), Applied Chemistry-II (CHT4352) and Polymer Science and Technology- I (SMT4352)						
		of relevance of this course in t					
t		ll enable the students to understand nsidering the equipment, n					
	List	of Courses where this course v	vill be prerequisite				
Nor	ne						
Sr. No.		Course Contents (Topics and	d subtopics)			Reqd. hours	
		ral features of polymers:		1			
on	properties of	pes of bonds, bond dissociation polymers, Configuration & mers, Molecular mass heteroge	conformation and	struc	ture	5	
Pol	Polymer Solutions:						
2 pol	Thermodynamics of dissolution, factors effecting dissolution and swelling of polymers, phase equilibrium of polymer-solvent systems, Flory-Huggin's theory.					6	
Pol	lymer Chain	Flexibility:					
3 affe	ected by flex ented forms	ility, many factors deciding flex bility. Intermolecular orders- of polymers, crystallinity of perties affected by crystallinity of	Amorphous, crystall polymers, factors	ine,	and	5	
Th	ermal Prope	ties:					
4 the fire	rmal stress in	s, Heat capacity, Thermal exp naterials. Structure property rela mers, factors affecting glass tra case studies	ationship in anisotrop	ic me	edia,	4	
	0	l stabilization:					
the	stability of p	acting on polymers and their inf lymers with case study	luence, method of im	prov	ing	4	
	ect of Additi						
6 diff var reta	ferent additivious rheology	adation of plastics due to UV, h s to prevent this- Plasticizers, L modifiers, UV stabilizers, Impa ting agents, blowing agents, Cr ditives	ubricants, Processing act modifiers, Flame	aids	&	6	
				Т	otal	30	
		List of Textbooks/ Referen	nce Books				

	 Polymer Structure, Properties and application, R.D. Deanin, American Chemical Society, 1974 Polymer Science by Gowarikar, John Wiley & Sons 1986. Structure – Property Relationships in Polymers, Raymond B. Seymour and Charles E. Carraher, Jr., Plenum Press New York and London, 1984. Polymer Solutions; Introduction to Physical Properties, Teraoka, Iwao, John Wiley and Sons. Inc, 2002. Plastics Additive Handbook, Gachter and Mullar, Hanser Publishers, 1987. 	
	Course Outcomes (Students will able to)	
CO1	Understand the importance of structure-property correlation study of materials and its suitable applications.	K2
CO2	Classify different type of materials, and their structures.	K4
CO3	Understand the degradation/stabilization of polymers, effect of additives and analyse the respective case studies	K4
CO4	Analyze various stresses acting on polymers and their influence	K4
CO5	Apply concepts of degradation of plastics due to UV	K5

Mapping of Course Outcomes (COs) with Programme Specific Outcomes (PSOs)									
		PSO1	PSO2	PSO3	PSO4	PSO5			
		K1	K2, K3	K4	K5	K6			
CO1	K2	3	2	2	2	3			
CO2	K2	3	3	2	2	3			
CO3	K3	3	3	3	3	3			
CO4	K4	3	3	3	3	3			
CO5	K5	2	2	3	3	3			
Course	K5	3	3	3	3	3			

K, knowledge level from cognitive domain

SYLLABUS OF THE CURRICULUM

for

MULTIDISCIPLINARY MINOR DEGREE

in

PETROLEUM AND PETROCHEMICALS TECHNOLOGY

[Under the National Education Policy (NEP 2020)]

2023-2024

Offered by

Institute of Chemical Technology Mumbai

Marathwada Campus, Jalna

(University Under Section-3 of UGC Act, 1956) Elite Status and Center for Excellence Government of Maharashtra

BT-5/6, Biotechnology Park, Additional MIDC Area, Chhatrapati Sambhajinagar (Aurangabad) Road, Jalna – 431 203.

PETROLEUM AND PETROCHEMICALS TECHNOLOGY Page 79 of 153

Preamble

The petroleum refinery industry is an important sector that processes crude oil into various refined products, including gasoline, diesel, jet fuel, and petrochemical feedstock. On the other hand, the petrochemical industry transforms hydrocarbons derived from crude oil and natural gas into a diverse range of chemical products, such as plastics, solvents, and fertilizers, crucial for enhancing various aspects of modern life. Thus, petroleum refining and petrochemical industries plays a pivotal role in meeting global energy, providing fuel for transportation and manufacturing of products essential to daily life, thereby sustaining modern civilization's infrastructure and advancements.

The course structure of multidisciplinary minor in Petroleum and Petrochemical Technology at Marathwada campus Jalna and IOCL Campus Bhubaneshwar of Institute of Chemical Technology, Mumbai is designed to equip students with the knowledge, skills, and ethical values required to excel in the field of petroleum refining and petrochemical engineering. This course is designed in such a way that in theoretical subject's students can study the concepts of refining technology and principles of petrochemical processes based on their knowledge of fundamental chemical engineering subjects like heat transfer, mass transfer, fluid flow and chemical reaction engineering. This will cover refining processes like cracking, reforming, isomerization, alkylation and petrochemical processes, like polymerization, alkylation, hydrogenation etc. Also the practical courses give student an exposure to both experimental and process simulation in petroleum science and technology. This includes crude oil and its product characterization tests, simulation studies using various software gaining insights into the complexities of processes within the petroleum refining industry.

Thus, this comprehensive program integrates theoretical chemical engineering fundamentals with practical applications, preparing students to contribute significantly to the global petroleum and petrochemical sector. Upon successfully completing the courses of this multidisciplinary minor, students will be well-prepared to make meaningful contributions through a balance of theoretical knowledge, practical experience, and a commitment to continuous learning.

Programme Specific Outcomes (PSOs)

Multidisciplinary Minor Degree (Petroleum and Petrochemicals Technology)

Upon completion of this course, students will be able to:

PSO1	Understand the chemical composition and properties of various petroleum fractions, including crude oil, and their significance in refining and petrochemical processes. (Factual Knowledge) (K1)
PSO2	Analyse and evaluate the fundamental principles underlying petroleum refining and petrochemical technology, including thermodynamics, kinetics, and process optimization, to solve complex problems. (Conceptual Knowledge) (K2, K3)
PSO3	Demonstrate the operation and utilization of equipment and techniques employed in petroleum refining and petrochemical processes, including distillation, separation, catalysis, reforming and cracking ensuring safe and efficient production practices. (Procedural Knowledge) (K4, K5)
PSO4	Apply expertise in refining processes, operations, catalysts, and quality control to innovate and optimize manufacturing of petroleum products, meeting societal needs while upholding safety and environmental standards. (Metacognitive Knowledge) (K6)
PSO5	Cater to the needs of petroleum industries, research organizations and academic institutes. set-up their own ventures and generate employment, promote awareness in society about Petroleum and Petrochemicals profession

2. Recommended Batch Size

10; Maximum 15

3. Duration

6 Semesters

4. Eligibility Criteria

Students enrolled for the Integrated M.Tech programmess of the Institute of Chemical Technology at Marathwada/IOCL Bhubaneshwar campus and have passed the Sem-I and Sem-II examinations are eligible for the admission to minor degree Petroleum and Petrochemicals Technology.

5. Prerequisites

The candidate must have passed the HSC/EQUIVALENT examination with Physics, Chemistry Mathematics.

6. Instructors (Tentative)

Dr. Atul H. Bari (ICT Marathwada Campus, Jalna)

Subject Code	Sem	Subject	Credits	H	rs/W	'eek	N	larks for	r various	s Exams
				L	Т	Р	CA	MS	ES	Total
SPT4351	III	Introduction to Petroleum Technology	2	2	0	0	20	30	50	100
SPT4352	IV	Petroleum refining processes	2	2	0	0	20	30	50	100
SPT4353	V	Reservoir Technology	2	2	0	0	20	30	50	100
SPP4351	V	Petroleum laboratory I	2	0	0	4	50	0	50	100
SPT4354	VI	Refinery engineering	2	2	0	0	20	30	50	100
SPP4352	VI	Petroleum laboratory-II	2	0	0	4	50	0	50	100
SPT4355	VII	Petrochemicals Technology	2	2	0	0	20	30	50	100
		Total	14							

Multidisciplinary Minor Degree (Petroleum and Petrochemicals Technology)

Mapping of All Courses of Petroleum and Petrochemicals Technology with PSOs

Courses	K-Level	PSO1	PSO2	PSO3	PSO4	PSO5
Introduction to Petroleum Technology	K2	3	2	1	-	-
Petroleum refining processes	K2	3	3	2	1	1
Reservoir Technology	K3	3	1	2	2	1
Petroleum laboratory I	K2	3	3	2	1	1
Refinery Engineering	K4	3	3	2	1	1
Petroleum laboratory-II	K4	3	3	2	1	2
Petrochemicals Technology	K5	3	2	3	3	3

Semester: III

Course Code: SDT4251	Course Titles Introduction to Detroloum Tecky de-	Credits =			
Course Code: SPT4351	Course Title: Introduction to Petroleum Technology	L	Т	Р	
Semester: III	Total contact hours: 30	2			
	List of Prerequisite Courses				
	(CHT4151) & Applied Chemistry II (CHT4151), Physics I, balance calculations (CEP4151).				
Lis	t of Courses where this course will be prerequisite				
Ũ	processes (SPT4352), Reservoir Technology (SPT4353), ng (SPT4354), Petrochemicals Technology (SPT4355), -I (SPP4351).				
Descriptio	on of relevance of this course in the Int. M. Tech. Program				
-	dents an overview of: Petroleum and petrochemical industry, product, their characterization and general refinery setup.	, their	r his	tory,	
	Course Contents (Topics and subtopics)	Reg	ld. h	ours	
1 Indian and global sc	eum and petrochemical industry, history of petroleum, Current cenario, oil pricing, fuels from crude oil and gas, petroleum anic chemicals, future trends and developments.		4		
2 composition, compos	organic and inorganic theories of origin of petroleum, Kerogen sition of crude oil, hydrocarbons and non-hydrocarbons present ups, name, structure, role etc.), classification of crude oil.		6		
3 refineries, history and	ery, Types of refineries: simple, intermediate and complex d current status of Indian refineries, general refinery setup and nits, refinery flow diagram.		4		
4	ion: Pipe still heaters, atmospheric distillation unit (ADU), nit (VDU), different petroleum fractions.		4		
5 lube oil etc.,), the requirements and tes	oducts (LPG, gasoline, kerosene, diesel, aviation turbine fuel, ir specification (Indian context), additives used to meet sting methods for petroleum products. Treatment techniques: reatment of LPG, kerosene, gasoline, lube oil.		6		
6 Major petrochemical	products, Feed stock for petrochemicals		6		
I	List of Textbooks	<u> </u>			
Modern petroleum re	fining processes by B K Bhaskara Rao				
	Reference Books	<u> </u>			
	g, Technology and Economics by J H Gary and G E Handwork. nd Technology of Petroleum by James G Speight,				

	3. Composition and properties of Petroleum by H J Neumann, B P Lahme and B	
	Severin	
	4. Modern Petroleum Technology : G D Hobson and W Pohl	
	Course Outcomes (students will be able to)	
1	Effectively communicate the fundamentals of petroleum refining and petrochemical	K1
	technology through oral and written means.	KI
2	Comprehend the history and origin of petroleum.	K1, K2
3	Understand the importance of petroleum refinery and petrochemical industry.	K1
4	Explain specifications of various petroleum products.	K1
5	Explain distillation of crude oil to give different petroleum fractions	K1, K2
6	Explain different types of refinery set ups.	K1, K2

Mapping of Course Outcomes (COs) with Programme Specific Outcomes (PSOs)								
		PSO1	PSO2	PSO3	PSO4	PSO5		
		K1	K2, K3	K4	K5	K6		
CO1	K1	3	1	1	1	-		
CO2	K1, K2	3	2	1	1	_		
CO3	K1	3	2	1	1	-		
CO4	K1	3	3	1	-	_		
CO5	K1, K2	3	3	1	-	-		
CO6	K1, K2	3	2	2	-	-		
Course	K2	3	2	1	-	-		

		Semester: IV			
Cou	rse Code: SPT4352	Course Title: Petroleum refining processes		edits T	1
Sem	nester: IV	Total contact hours: 30	L 2	P	
		List of Prerequisite Courses			
	Applied Chemistry I (CHT415 to Petroleum Technology (SPT	51) & Applied Chemistry II (CHT4151), Introduction (4351).			
	List of Cour	rses where this course will be prerequisite			
	Refinery engineering (SPT Petroleum laboratory-II (SPP4	(SPT4354), Petrochemicals Technology ((SPT4355), 352)			
	Description of relev	vance of this course in the Int. M. Tech. Program			
•	The objective of this course is to crude oil into valuable products	o understand the chemistry and processes involved in cos in the petroleum refinery.	onv	erting	g the
	Course C	ontents (Topics and subtopics)		Reqo hour	
1	Separation of oil and gas, protransportation and storage.	e-treatment methods, removal of moisture and salts,		2	
2	Thermal cracking, thermal pro- flexicoking.	cessing like visbreaking, delayed coking, fluid coking,		4	
3	Catalytic cracking: Cracking r bed catalytic cracking (FCC),	reactions, cracking catalysts, cracking units, fluidized new designs for FCC units.		4	
4		ocessing: Hydrocracking reactions, hydrocracking ydro-processor, hydrogen production and purification.		4	
5	Catalytic reforming: Reformi reactor design, catalytic reform	ng reactions, feed preparations, reforming catalyst, ner.		8	
6		ation, alkylation and polymerisation.		8	
		List of Textbooks			
	1. Modern petroleum refin	ning processes by B K Bhaskara Rao.			
	2. Advanced Petroleum R	efining by G. N. Sarkar.			
	List of Addit	ional Reading Material / Reference Books	I		
	1. Petroleum Refining En	gineering by W L Nelson.			
	2. Petroleum Processing,	Principles and Applications by R J Hengstebeck.			
	3. Modern Petroleum Tec	hnology by G.D. Hobson			
	Course	Outcomes (students will be able to)			_

Semester: IV

1	Explain the separation of oil and gas in the petroleum refining industry.	K1
2	Explain various refining processes in detail.	K1, K2
3	Explain the interconnections between various refining processes and their impact on the overall refining scheme.	K2, K3
4	Assess and optimize refining processes based on specific objectives and constraints.	K3, K4
5	Identify the process/technique to improve quality of given petroleum fraction.	K3, K4
6	Address the practical problems related to petroleum refining processes	K4

Mapping of Course Outcomes (COs) with Programme Specific Outcomes (PSOs)							
		PSO1	PSO2	PSO3	PSO4	PSO5	
		K1	K2, K3	K4	K5	K6	
CO1	K1	3	3	2	1	-	
CO2	K1, K2	3	3	2	1	-	
CO3	K2, K3	3	3	3	1	-	
CO4	K3, K4	3	3	3	2	1	
CO5	K3, K4	3	2	2	2	1	
CO6	K4	3	2	2	2	1	
Course	K3	3	3	2	1	1	

		Semester: V			
Co	urse Code: SPT4353	Course Title: Reservoir Technology	Cr	edits	= 2
CU	urse coue. 51 14555	Course Thie. Reservoir reenhology	L	Т	Р
Sen	nester: V	Total contact hours: 30	2		
		List of Prerequisite Courses			
	Introduction to petroleum te Chemical Engineering Operation	echnology (SPT4351), Fluid Flow (CET4251), ons (CET4254).			
	List of Cours	ses where this course will be prerequisite	•		
	None				
	Description of relev	rance of this course in the Int. M. Tech. Program	L		
p	-	butline with respect to both basic and advanced topic ke petroleum geology, drilling, exploration, enhance			
	Course Co	ntents (Topics and subtopics)	Re	eqd. l	iours
1	Petroleum geology, types of roo and accumulation of oil and ga gas in rocks, fundamentals of gas hydrates.		4		
2	system, equilibrium ratios, reserved	viour of hydrocarbon system, ideal & non ideal rvoir fluid sampling, PVT properties determination, atory measurements, data reduction, evaluation and		4	
3	Reserve estimation: resource techniques: Volumetric, MBE classification, predicting res simulation.	5 4			
4	basin and exploration strateg	hysical and geochemical methods of exploration, ies, application of remote sensing in petroleum ents used – principles and working; magnetometers, and gravimeters.		4	
5		ical, deviated and horizontal), cable tool, rotary and ent: Drilling rigs and drilling string, drilling fluid-		6	

6	Oil recovery: Well logging and well completion, well testing and control, free flow and gas lifting, mechanical pumping, primary oil recovery, secondary oil recovery and enhanced oil recovery methods, gravity drainage, water flooding.	8
	List of Textbooks	
	1. Advanced Reservoir Engineering by T. Ahmed and P. McKinney.	
	2. Principles of Petroleum Reservoir Engineering by G.L. Chierici.	
	List of Additional Reading Material / Reference Books	
	1. Applied Petroleum Reservoir Engineering by R.E, Terry, M. Hawkins and B.C. Craft.	
	2. Fundamentals of Reservoir Engineering by L.P. Dake.	
	Course Outcomes (students will be able to)	
1	Understand the key concepts of petroleum geology.	K1
2	Explain the concept of oil and gas traps in geological formations.	K1, K2
3	Explain the composition and functions of drilling rigs, drilling string, and drilling fluid.	K1, K2
4	Predict the reservoir performance using reserve estimation techniques.	K2, K3
5	Demonstrate understanding of well logging, well completion, well testing, primary, secondary, and enhanced oil recovery techniques.	K2, K4

Mapping of Course Outcomes (COs) with Programme Specific Outcomes (PSOs)						
		PSO1	PSO2	PSO3	PSO4	PSO5
		K1	K2, K3	K4	K5, K6	K6
CO1	K1	3	3	3	1	1
CO2	K1,K2	3	1	2	2	1
CO3	K1,K2	3	1	3	1	1
CO4	K2, K3	3	1	3	2	1
CO5	K2, K4	3	1	2	3	1
Course	K2	3	1	2	2	1

Cou	rse Code: SPT4354	Course Titles Definery engineering	Cr	edits	= 2
Cou	rse Coue: 5r 14554	Course Title: Refinery engineering		2 2 2 2 3 6	Р
Sem	ester: VI	Total contact hours: 30	2		
	List of Prerequisite Courses Introduction to Petroleum Technology (SPT4351), Petroleum refining processes (SPT4352), Chemical Engineering operations (CET4254), Separation processes (CET4356), Heat transfer (CET4252), Chemical Reaction Engineering (CET4351). List of Courses where this course will be prerequisite Petroleum laboratory-II (SPP4352) Description of relevance of this course in the Int. M. Tech. Program • In this course student will apply their knowledge of mass transfer, heat transfer, equi and chemical reaction engineering to complex processes of petroleum refineries Course Contents (Topics and subtopics) 1 Design aspects of pipe still heaters, radiant and convection sections, calculation of heat flux, radius and number of pipes. Furnace design: Heat load calculations for furnace heaters, typical heat flux values, basic constructional features, different furnace types, factors to be considered in the design of fired heaters.				
			<u> </u>		
	_				
	Petroleum laboratory-II (SPP43	352)			
	Description of relev	ance of this course in the Int. M. Tech. Program			
•]	In this course student will apply	their knowledge of mass transfer, heat transfer, equ	ipme	ent de	esign
ä	and chemical reaction engineerir	ng to complex processes of petroleum refineries			
]	Hour	.'S
1	0 1 11				
			3		
2		BP, EFV distillation curves; experimental details,			
	_	relations by Nelson and Edmister correlations.			
		equilibrium, flash distillation, key components, dew ations. Multicomponent distillation, calculation of		6	
		on, calculation of minimum reflux and number of			
	plates, feed plate location.	in, calculation of minimum reflex and number of	/ f 6		
3		: Types of refluxes, concept of overflash, overall	+		
U	_	f top, bottom, side draw tray temperatures, energy			
		lation tower. Vacuum distillation tower: Type of			
	1	n column internals, flash zone and tower base		6	
	calculations, flash zone pressu	re, steam requirements, heat and material balance			
	calculations.				
4	Multicomponent liquid - liqui	d equilibrium relations, estimation of number of		3	
	stages by triangular and rectang	gular diagrams for complex petroleum oils.		5	
5	Multicomponent absorption an	nd stripping in refinery operations, absorption and			
		ficance. Mathematical analysis of multi- component		6	
	absorbers and strippers, Krems	er-Brown absorption factor methods.			

6	Adsorption, breakthrough phenomena, concept of adsorption zone height, unsteady state fixed bed operation, LUB concept, design of absorbers. Sorbex technologies and its concepts.	6
	List of Textbooks	
	List of Additional Reading Material / Reference Books	
	1. Petroleum Refining Engineering by W L Nelson.	
	2. Petroleum Refinery Distillation by R.N.Watkins,	
	3. Refinery process modelling by G. L. Kaes.	
	4. Chemical Reactor Design and Process Plants, Vol I and II, H.F.Rase.	
	5. Heterogeneous Reactions, Analysis, Examples and Reactor Design, L. K.	
	Doraiswamy and M. M. Sharma.	
	Course Outcomes (students will be able to)	
1	Perform calculations for heat flux, radius, and the number of pipes in refinery heating systems.	K3
2	Interpret and use ASTM, TBP, and EFV distillation curves, including their experimental details for designing of crude distillation unit.	K3, K4
3	Perform calculations for multicomponent distillation, including the determination of the number of stages, minimum reflux, and feed plate location.	K4
4	Design multicomponent separation technique for separation any hydrocarbon stream.	K5
5	Analyze multi- component absorbers and strippers	K5

Mapping of Course Outcomes (COs) with Programme Specific Outcomes (PSOs)								
		PSO1	PSO2	PSO3	PSO4	PSO5		
		K1	K2, K3	K4	K5	K6		
CO1	K3	3	3	3	1	1		
CO2	K3, K4	3	3	2	1	1		
CO3	K4	3	3	3	1	1		
CO4	K5	3	3	3	1	1		
CO5	K5	2	1	2	2	1		
Course	K4	3	3	2	1	1		

Car	area Cadas SDT 4255	Course Titler Detresherrisels Technology	Cr	edits	= 2	
Cot	irse Code: SPT4355	Course Title: Petrochemicals Technology		Т	P	
Sem	ester: VII	Total contact hours: 30	2			
		List of Prerequisite Courses				
	Chemistry I & II, Introducti refining processes(SPT4352).	ion to petroleum technology (SPT4351), Petroleum				
	List of Cou	rses where this course will be prerequisite	1			
	None.					
	Description of rele	vance of this course in the Int. M. Tech. Program	1			
	-	bad outline of manufacturing processes of important p mics, kinetics, mechanism and process flow diagram.	etro	ochem	nica	
	Course Contents (Topics and subtopics)					
1	Chemicals derived from C1-C2. Chemicals from natural gas, naphtha etc. Principal reactions of Methane, ethane, ethylene and acetylene. Naphtha and gas cracking to produce C2-C4 olefins, dienes and aromatics.					
2	Chemicals from C3 and C4. Production of isopropanol, acrylonitrile, acrylic acid, propylene oxide, propylene glycol, polymers and copolymers of propylene, dehydrogenation of butane, production of MTBE, acetic acid from butene, butadiene from butane, maleic anhydride.					
3	C	ar weight n-paraffin: Oxidation of n-paraffin to fatty ination and sulfonation of n-paraffin.		4		
4	synthesis of ethylbenzene, pl	cals based on benzene, toluene and xylene (BTX), henol, aniline, nitrobenzene, chlorobenzene, styrene, s, benzaldehyde, phthalic anhydride.		4		
5	olefins such as ethylene and	, Ziegler Natta catalysts, polymerization of simple propylene. Synthetic rubbers, manufacture, general for synthesis, range of synthetic rubbers, PBR, SBR,		2		
6	classification- natural, partiall	ory of waxes and their applications, definitions, y synthetic and fully synthetic wax. Petroleum wax: fin wax), microcrystalline wax, division into product		6		
7		ns, characteristics, production of lube specialities, ing oil: solvent chemicals & hydrogenation method,		6		

	dewaxing, deasphalting etc. Manufacturing of grease, manufacture of specialty oils viz. insulating oil, transformer oil, white oil, etc.	
	List of Textbooks	
	A Text Book on Petrochemicals, B.K.Bhaskara Rao.	
	List of Additional Reading Material / Reference Books	
	1. Fundamentals of Petroleum Chemicals Technology by P.Belov	
	2. Encyclopedia of Chemical Technology, Kirk-Othmer.	
	3. Ulmann's Encyclopedia of Industrial Chemistry	
	4. Dryden's Outlines of Chemical Technology	
	Course Outcomes (students will be able to)	
1	Explain production of chemicals from various feedstock, including C1-C2, C3-C4, and high molecular weight n-paraffin	K2
2	Draw process flow diagrams/process block diagrams for the manufacture of various petrochemicals from process description.	K4
3	Develop the ability to analyze and select appropriate feedstocks based on their chemical compositions for various petrochemical processes	K5, K6
4	Critically evaluate the potential applications and impacts of emerging technologies in petrochemical industries.	K6
5	Develop lubricating oils, study their specifications, and characteristics	K6

Map	ping of Cou	rse Outcomes	(COs) with F	Programme Spec	ific Outcomes (PSOs)
		PSO1	PSO2	PSO3	PSO4	PSO5
		K1	K2, K3	K4	K5, K6	K6
CO1	K2	3	2	1	1	1
CO2	K4	3	2	2	1	1
CO3	K5, K6	3	2	3	1	1
CO4	K6	3	2	3	1	1
CO5	K6	3	2	2	1	1
Course	K4	3	2	2	1	1

Car	urse Code: SPP4351	Course Titles Petroloum lob aretory I	Cr	edits	= 2
	urse Code: SPP4551	Course Title: Petroleum laboratory I	L	Т	P
Sem	nester: V	Total contact hours: 30	0		4
		List of Prerequisite Courses			
	Chemistry I, Introduct	ion to petroleum technology (SPT4351)			
	List	of Courses where this course will be prerequisite			
	Petroleum laboratory	II (SPP4352)			
	Description	n of relevance of this course in the Int. M. Tech. Program	n		
	• To apply various tes	ting methods for assessing various properties of petroleum	produ	icts.	
	C	ourse Contents (Topics and subtopics)	Re	eqd. l	iours
1	Determination of vapo distillation.	rization characteristics of given petroleum product by ASTN	1		
2	Determination of flash	point and fire point.			
3	Determination of dies	el index of given petroleum sample.			
4	Determination of drop	point of given sample.			
5	Determination of visc	osity of given petroleum sample.			
6	Determination of the s	moke point.			
7	Determination of calo	rific value of fuel by Bomb calorimeter.			
8	Designing of atmosph	eric distillation unit (ADU)			
9	Designing of vacuum	distillation unit (VDU)			
		Tota	ıl	6()
		List of Textbooks			
	Modern petroleum ref	ining processes by B.K. Bhaskara Rao.			
	List	of Additional Reading Material / Reference Books			
	1. ASTM Standa	rd Manual			
	2. Handbook of H	Petroleum Analysis by G.G Speight.			
		Course Outcomes (students will be able to)			
1	Conduct standard AST	TM tests for petroleum products.		K1,	K2
2	Assess the quality and	performance characteristics of petroleum products.		K	2
3	Apply quality assuran petroleum testing	ce principles to ensure reliable and reproducible results in		K3,	K4
4	Interpret the signification and industry standards	nce of results in the context of petroleum product quality		K	5

5	Designing of vacuum distillation unit (VDU) and atmospheric distillation unit	
5	(ADU)	

Maj	pping of Cou	rse Outcomes	s (COs) with	Programme Spe	cific Outcomes ((PSOs)
		PSO1	PSO2	PSO3	PSO4	PSO5
		K1	K2, K3	K4	K5	K6
CO1	K1, K2	3	3	2	1	1
CO2	K2	3	3	2	1	1
CO3	K3, K4	3	3	2	1	1
CO4	K5	3	3	3	1	1
CO5	K5	2	2	2	1	1
Course	K4	3	3	2	1	2

Car	unco Codor SDD4252	Course Title: Potroloum laboratory U	Cr	edits	= 2
CO	urse Code: SPP4352	Course Title: Petroleum laboratory-II	m	L T	
Sem	nester: VI	Total contact hours: 30	2		
	1	List of Prerequisite Courses			
	0 1	es (SPT4352), Refinery engineering (SPT4354)),		
		351), Process Simulation Lab – I.			
		rses where this course will be prerequisite	-		
	None.				
	Description of rele	vance of this course in the Int. M. Tech. Program	m		
	• To apply various testing me	thods for assessing various properties of petroleum	n prod	ucts.	
	Course Co	ontents (Topics and subtopics)	Re	eqd. h	our
1	Determination of bromine nur	nber by color indicator method.			
2	1	on index of petroleum sample. Determination of			
	Electrical strength of transform				
3	Determination of water conten	nt by Dean and stark method.			
4	Detection of copper strip corre	osion of petroleum product.			
5	Determination of carbon resid	ue of given petroleum fraction.			
6	Determination of cloud point	and pour point.			
7	Designing of debutanizer colu	mn using ASPEN			
8	Designing of naphtha reforme	r			
9	Designing of FCC unit				
	Total			60	
		List of Textbooks			
	List of Addi	tional Reading Material / Reference Books			
	•	control using Aspen simulation by WL Luben			
		d control using ASPENTM			
	3. ASPEN Manual	n Anglasia ha C.C.S. siste			
		m Analysis by G.G Speight.			
		e Outcomes (students will be able to)			
1	Apply quality assurance princ petroleum testing	iples to ensure reliable and reproducible results in		K3, 1	K4

2	Interpret the significance of results in the context of petroleum product quality and industry standards	K5
3	Design and optimize key refining units (debutanizer column, ADU, VDU, naphtha reformer, FCC unit) using simulation software.	K5, K6
4	Apply simulation tools to analyse and improve petroleum refining processes	K6
5	Design debutanizer column using ASPEN, naphtha reformer, etc.	K6

Maj	pping of Cou	rse Outcome	s (COs) with	Programme Spe	cific Outcomes	(PSOs)
		PSO1	PSO2	PSO3	PSO4	PSO5
		K1	K2, K3	K4	K5, K6	K6
CO1	K3, K4	3	3	2	2	3
CO2	K5	3	3	2	2	3
CO3	K5, K6	3	1	3	3	3
CO4	K6	3	1	3	3	3
CO5	K6	2	2	2	1	1
Course	K5	3	2	3	3	3

K, knowledge level from cognitive domain

SYLLABUS OF THE CURRICULUM

for

MULTIDISCIPLINARY MINOR DEGREE

in

LIPID ENGINEERING

[Under the National Education Policy (NEP 2020)]

2023-2024

Offered by

Institute of Chemical Technology Mumbai

Marathwada Campus, Jalna

(University Under Section-3 of UGC Act, 1956) Elite Status and Center for Excellence Government of Maharashtra

BT-5/6, Biotechnology Park, Additional MIDC Area, Chhatrapati Sambhajinagar (Aurangabad) Road, Jalna – 431 203.

Preamble

In the pursuit of academic excellence and the advancement of knowledge, we, the faculty and administration of the Institute of Chemical Technology Mumbai, Marathwada Campus Jalna, are thrilled to introduce the Multi-Disciplinary Minor (MDM) degree programme where innovation meets industry demands.

The Lipids and oleochemical industry is an important sector that processes crude edible oil into various products, including refined edible oils and oleochemicals. On the other hand, lipids act as a much greener, sustainable feedstock alternative to petrochemicals and transforms crude edible oil into a diverse range of chemical products, such as surfactants, detergents, cosmetics, biodiesel, lubricants and greases, crucial for functioning and enhancing various aspects of modern life.

Our vision is to cultivate a learning environment that empowers students to become adept, forwardthinking professionals ready to contribute to the sustainable development of society. Through a dynamic curriculum and hands-on experiences, we aim to instil in our students a passion for discovery, problem-solving, and ethical leadership tailored to the diverse challenges posed by these industries. The Mission of this programme is to

1. Provide students with a strong and holistic foundation in Lipids Engineering.

2. Offer specialised knowledge in lipid technology, focusing on the production, analysis, and application of lipids in diverse industrial settings, including cosmetics, detergents, and surfactants.

3. Equip students with the Industry-relevant skills and knowledge demanded by the lipids industry through real-world applications, industry collaborations, and cutting-edge research.

4. Emphasize global perspectives through international collaborations, ensuring that students are prepared for the interconnected nature of the field.

Over three enriching years spread across six dynamic semesters, students will delve deep into the core of lipid science and its applications. Through a meticulously crafted curriculum comprising five theory and two practical courses, participants will gain hands-on experience and theoretical knowledge essential for thriving in these pivotal industries.

From mastering the principles of lipid chemistry to understanding advanced refining techniques, this program enables students to explore the versatile applications of lipids in industries ranging from cosmetics and detergents to pharmaceuticals and nutraceuticals, preparing students for multifaceted roles in lipids and allied sectors. This programme is geared to foster a commitment to ethical practices, sustainability, and social responsibility in applying chemical engineering principles within the context of the lipids industry.

The Multi-Disciplinary Minor (MDM) degree programme in Lipids Technology stands at the forefront of education and research, ready to nurture the next generation of leaders in the complex and interconnected lipids and allied industries. We invite aspiring students to embark on this transformative academic journey, where they will be equipped to make meaningful contributions to industries shaping our everyday lives. Together, let us embark on a path of discovery and innovation that will propel us towards a sustainable and prosperous future in the chemical engineering and allied industries.

Programme Specific Outcomes (PSOs) for Multidisciplinary Minor Degree (Lipid Engineering)

Students will be able to;

PSO1	Demonstrate a comprehensive understanding of fundamental principles and chemistry for lipids and oleochemicals technology. (Factual Knowledge) (K1)
PSO2	Interpret emerging trends in lipids and developing innovative oleochemical products (Conceptual Knowledge) (K2, K3)
PSO3	Develop and carry out experiments using research-based knowledge and methodologies such as analysis, data interpretation, and valid conclusion. (Procedural Knowledge) (K4, K5)
PSO4	Apply the knowledge of science, chemical engineering, and fundamentals of oleochemicals to solve complex problems in core and allied industries. (Metacognitive Knowledge) (K6)
PSO5	Cater to the needs of oil and lipid industries, research organizations and academic institutes. set-up their own ventures and generate employment, promote awareness in society about Lipids Technology profession

- 1. Recommended Batch Size: Recommended10; Maximum 15
- 2. Duration: 6 Semesters
- 3. Eligibility Criteria: Students enrolled for the Integrated M.Tech programmes of the Institute of Chemical Technology at Marathwada campus and have passed the Sem-I and Sem-II examinations are eligible for admission to minor degree in Lipids Technology

4. Pedagogy/Teaching Method:

Lecture/Discussions: These sessions will discuss the subject matters of the course

Experiential Learning: The sessions will involve hands-on training.

Tutorials: Problem solving/case studies / relevant real-life applications/student presentations/home assignments / individual or group projects

6. Evaluation

Theory courses

Continuous Assessment Tests (CATs): Continuous assessment will vary from course to course; the instructor will decide the evaluation mode. Two to three CATs will be conducted throughout the course, usually before and after the midsemester examination. These CATs will carry a total weightage of 20%. Depending on the instructor, class test, assignments, case studies, group

LIPID ENGINEERING

discussions, report submission and seminar/presentation could also form part of the continuous assessment.

Mid-semester: Total 30 Marks (Theory paper)

End-semester: Total 50 Marks (Theory paper)

Practical courses

Continuous assessment: 50 Marks

Performing given experiments as per the instructions, submission of lab journal on time, viva voce, group/ personal discussions, and quizzes can be part of continuous assessment. The course instructor will discuss the composition of marks for these at the beginning of the course.

End Semester: 50 Marks (Lab experiment performance followed by viva-voce examination)

5. Instructors:

Dr. Parag R. Nemade Mr. Bhushan D. Patare

6. Course Structure:

MDM	Subject	Sem	Subject	Credits	Hr	s/W	eek	Mar	ks for	· vario	ous Exams
Code		Credits	L	Т	Р	CA	MS	ES	Total		
MDM1	SOT4351	III	Chemistry of Oils and Fatty Acids	2	2	0	0	20	30	50	100
MDM2	SOT4352	IV	Technology of Oleochemicals and Surfactant	2	2	0	0	20	30	50	100
MDM3	SOP4351	IV	Lipid Laboratory I	2	0	0	4	50	0	50	100
MDM4	SOT4353	V	Lipid Processing Technology I	2	2	0	0	20	30	50	100
MDM5	SOP4352	V	Lipid Laboratory II	2	0	0	4	50	0	50	100
MDM6	SOT4354	VI	Lipid Processing Technology II	2	2	0	0	20	30	50	100
MDM7	SOT4355	VII	Production and Applications of Soaps, Surfactants and Detergents	2	2	0	0	20	30	50	100
			Total	14							

Courses	K-Level	PSO1	PSO2	PSO3	PSO4	PSO5
Chemistry of Oils and Fatty Acids	K4	3	3	2	1	2
Technology of Oleochemicals and Surfactant	K4	3	3	2	1	1
Lipid Laboratory I	K3	1	1	3	2	2
Lipid Processing Technology I	K3	3	2	3	2	3
Lipid Laboratory II	K3	3	2	3	2	3
Lipid Processing Technology II	K3	1	2	3	2	3
Production and Applications of Soaps, Surfactants and Detergents	К3	1	2	3	2	3

Mapping of All Courses of Lipid Engineering with PSOs

Semester III

a	Course Code: SOT4351 Course Title: Chemistry of Oils and Fatty Acids		Cı	edit	s =		
Course	Code: SOT4351	Course Title: Chemistry of Oils and Fatty Acids	L	T	P		
Semest	er: III	Total contact hours:30	1	1	0		
		List of Prerequisite Courses		·			
ISC (Sc	ience), Organic Ch	emistry I, Organic Chemistry II					
	L	ist of Courses where this course will be prerequisite					
SOT43	54 - Lipid Processi	of Oleochemicals and Surfactant, SOT4353- Lipid Processing Tech ng Technology II, SOT4355 - Production and Applications of Soaps, S -Lipids Laboratory I, SOP4352 -Lipids Laboratory II		U .			
	Descript	ion of relevance of this course in the Int. M. Tech. Program					
• This	course will provide a	a comprehensive understanding of the industrial chemistry of oils and fatty a	cid	s, ba	sic		
		constituents, physical and chemical properties of oils and fatty acid	s, v	varic	ous		
deri	vatisation pathway	s and related analytical tools.					
Sr. No.		Course Contents (Topics and Subtopics)		Reqa Hou			
	General introdu	action to oils, fats, and waxes: Chemical structure, sources, and					
	composition. Classification of oils and fats by source type, fatty acid composition and						
1.	drying properties. Statistics of Indian as well as world production of commercial oil seeds/ oil bearing materials, oils and fats, importance as feedstock for food and chemical industries.						
	Physical charact	eristics of natural oils and fats: Oiliness and viscosity, density and					
2.		rmal properties, smoke, fire and flash points, solubility and miscibility, and molecular refraction, adsorption spectra, electrical properties,	3				
3.	polyunsaturated fa their esters. Polyn	Nomenclature and classification; saturated, monounsaturated, atty acid and essential fatty acids. Physical properties of fatty acids and norphism and crystal structure, solubility, refractivity, optical activity, perties.		3			
4.Important minor/ non-triglyceride constituents of natural oils and fats: Phospholipids, galactolipids, sphingolipids, diacylglycerols, monoacylglycerols, sulfolipids, waxes, sterols, triterpene alcohols, and their esters, tocopherols/ tocotrienols, lipid-soluble vitamins, hydrocarbons, pigments, phenolic compounds etc.							
5.	÷	isolation of fatty acids : Distillation, crystallisation, and counter- on. Methods of structure determination.	- 3				
6.	oils/fats, fat-splitt	esterification: Acid-, base-catalyzed and enzymatic hydrolysis of ing process. Neutralisation, saponification, and formation of metallic esterification, inter-esterification, trans-esterification.		4			

7.	Chemical reactions of oils/fats and fatty acids: Estolide synthesis. Hydrogenation, halogenation, epoxidation, hydroxylation, ozonolysis, metathesis. Thermal and oxidative polymerisation, Diels-Alder reaction, Stereomutation, double bond migration and cyclisation.	10			
	Total	30			
	List of Textbooks				
1.	1.The Chemistry of Oils and Fats: Sources, Composition, Properties and Uses, Frank D. Gunstone Blackwell Publishing Ltd, UK (2004).				
2.	 Bailey's Industrial Oil and Fat Products, Sixth Edition Vol. 1: Edible Oil and Fat Products: Chemistry, Properties, and Health Effects, Ed. Fereidoon Shahidi, John Wiley & Sons, Inc., Wiley Interscience Publication (2005). 				
	List of additional reading material/Reference Books				
1.	1. Fatty Acids in Industry, R. W. Johnson, and E. Fritz, eds., Marcel Dekker, Inc., New York, (1989).				
2.	Oils and Fats Manual, Eds. A. Karleskind and JP. Wolff, Vols. I and II, Intercept Ltd., Andover, U.K. (1996).				
3.	Fatty Acid and Lipid Chemistry, F. D. Gunstone, Blackie Academic and Professional, London, U.K. (1996).				

Course Outcomes (Students will be able to....)

CO1	Understand and explain the constitution of oils and fats and their importance as feedstock for food and chemical industries.	K1, K2
CO2	Analyse and illustrate the physical, chemical and stability characteristics of oils and fats/ fatty acids.	K4
CO3	Understand the technical importance of the minor constituents of natural oils and fats.	K2
CO4	Implement different modes of derivatisation of oils/ fatty acids.	K3
CO5	Identify and interpret the tools for chemical analysis of oils and fats.	K3

Mapping of Course Outcomes (COs) with Programme Specific Outcomes (PSOs)								
		PSO1	PSO2	PSO3	PSO4	PSO5		
		K1	K2+K3	K4	K5	K6		
CO1	K2	3	2	1	1	2		
CO2	K4	2	3	2	2	2		
CO3	K2	3	2	1	1	1		
CO4	K3	3	3	2	2	2		
CO5	K3	3	3	2	2	2		
Course	K4	3	3	2	1	2		

3, Strong Contribution; 2, Moderate Contribution; 1, Low Contribution; - No Contribution

K, knowledge level from cognitive domain

LIPID ENGINEERING

Semester IV

		Course Title: Technology of Oleochemicals and	Cr	edits	= 2				
Course	Code: SOT4352	Surfactants	L	Т	Р				
Semest	er: IV	Total Contact Hours: 30	1	1	0				
List of Prerequisite Courses									
SOT43	51 - Chemistry of O	ils and Fatty Acids							
	List	of Courses where this course will be prerequisite							
		ng Technology I, SOT4354 - Lipid Processing Technology I as of Soaps, Surfactants and Detergents	II, SO	DT43	55 -				
	Description	n of relevance of this course in the Int. M. Tech. Program							
The o	bjective is to prov	understanding of the industrial chemistry of Surfactants and C ide training and knowledge of synthesis techniques of oleo aviour, interfacial phenomenon, and related analytical tools.							
Sr. No.		Course Contents (Topics and subtopics)		equir Hour					
1.		d Surfactant raw materials and their derivatives as mical Industries, Worldwide Statistics of Oleochemical lustries		04					
2.	and Fatty Alcohol	Different techniques of synthesis of Fatty Acid Methyl Esters (FAME), Glycerol and Fatty Alcohols, Fatty Amines, Amides, and Nitriles and their physical and chemical characteristics							
3.	Definition and c	e nature of colloidal solutions, Surface Tension and Energy, lassification of surfactants, Hydrophilic and hydrophobic alance, Theory of Surface Actions.		03					
4.	and reverse mic	Self-assembly and packing features of surfactants (bi and multilayers, direct and reverse micelles, vesicles, Microemulsions). Thermodynamics of Adsorption and Micellization, structure of micelles							
5.	foaming & and de Prediction of emu	e activity phenomena: Emulsification, de-emulsification, efoaming, Solubilisation, Dispersion, Wetting, Detergency alsion type from packing geometry, general phase behaviour emperature Relationship for Surfactants, phase inversion, point	03						
6.	(FAMES, AOS, L Alcohol ether sulp	is, and applications of Anionic surfactants: Sulphonates ABS, Paraffin S., Ester & Amide S.), Sulphates (Alcohol & bhates, TRO, Sulphated MG, Sulphated Alkanolamides), N-ids, Alkyl Phosphates, Sulphosuccinates etc.		05					
7.	ethers, Alcohol Po	is, and applications of Non-ionic Surfactants: Fatty Alcohol olyglycol Ethers, Alkyl phenol ethers, Mono and diglycerides, sters (TWIN, SPAN, Sucrose polyester), Alkanolamides etc. emini Surfactants		04					

8.	Synthesis, analysis, and applications of Cationic and Amphoteric Surfactants: Alkoxylated amines, Amine oxide, 2-Alkyl imidazoline, N-alkyl-β-Alanine, Quaternary Ammonium Compounds, Betains, Sulphobetains etc. Speciality Fluorocarbon and Silicone Surfactants	04				
	Total	30				
	List of Textbooks					
1.	Synthetic Detergents, Davidson, A. S.; Milwidsky, B. 7 th Ed. John Wiley and Sor York, (1987).	is, New				
2.	Handbook of Surfactants, Porter, M. R., Springer Science and Business Media (19	993).				
	List of additional reading material/Reference Books					
1.	Surfactants in Consumer Products: Theory, Technology and Applications, Ed. J. J. Springer-Verlag, Berlin (1987).	Falbe,				
2.						
3.	3. Richard M.; Marilyn E. K.; Pashley. Applied Colloid and Surface Chemistry, <i>John Wiley and Sons Ltd</i> , Chichester, UK (2004).					
	Course Outcomes (Students will be able to)					
CO1	Understand the technical significance of Oleochemical and Surfactant Industries.	K2				
CO2	Conceptualise and develop the different modes of derivatisation of oleochemical and surfactants and their applications.					
CO3	Analyse and illustrate the HLB, diverse interfacial phenomenon, molecular aggregations and phase behaviour of surfactants.	K4				
CO4	Ability to identify and interpret the role of surfactants as specialty and high- performance chemicals.					
CO5	Synthesize and analyze cationic and amphoteric Surfactants: Alkoxylated amines, Amine oxide, etc.	K5				

Mapping of Course Outcomes (COs) with Programme Specific Outcomes (PSOs)								
		PSO1	PSO2	PSO3	PSO4	PSO5		
		K1	K2+K3	K4	K5+K6	K6		
CO1	K2	3	2	1	1	2		
CO2	K4	3	3	3	3	3		
CO3	K2	3	3	2	2	2		
CO4	K5	3	3	2	2	2		
CO5	K5	2	3	2	2	3		
Course	K4	2	3	2	1	1		

Cours	Codor SOT4252	Course Titles Lipid Laboratory L	Cre	dits	s = 2
Cours	se Code: SOT4353	Course Title: Lipid Laboratory I	L	Т	P
Semes	ster: IV	Total contact hours: 60	0	0	4
		List of Prerequisite Courses			L
HSC (S		mistry Lab, SOT4351 - Chemistry of Oils and Fatty Acids,			
	List	t of Courses where this course will be prerequisite			
SOP43	52 - Lipid Laboratory	II			
	Description	n of relevance of this course in the Int. M. Tech. Program			
•	This course will introc lipid transformations,	duce the student to analytical techniques for lipid characterization, soaps, detergent synthesis, etc.	com	mon	l
Sr. No.	(I ANFSE L'ANTENTS I L'ANICS AND SUNTANICS	Req Hou		
1.	Analysis of Oils and Fats: Acid value, Iodine value, Saponification value, Hydroxyl value, Peroxide value, anisidine value, Soap stock analysis/unsnap matter, Ash content				
2.	,	ysical and chemical characteristics of Vanaspati, margarine,]	12	
3.		and soyabean oil mixture using TLC, Detection of entification of Oils in mixture	()8	
4.	Acid Oil analysis: F.	AME-GC analysis	1	12	
5.	Analysis of Butter: S	Salt content, TFM, MP	()8	
		Total	(50	
		List of Textbooks			
1.	•	Oil and Fat Products, Sixth Edition Vol. 1: Edible Oil and Faes, and Health Effects, Ed. Fereidoon Shahidi, John Wiley & Sons,			
2.	Manual of methods	of analysis of foods (oils & fats) -FSSAI Handbook (2015)			
		st of additional reading material/Reference Books			
<u>1.</u> 2.	Fatty Acids by Robe	ert Johnson book by Bockisch Michael			
3.		ils and Fats: Sources, Composition, Properties and Uses – Frank D	. Gi	instc	me,
		Course Outcomes (Students will be able to)			
CO	Analyse and eval refractive index,	luate the physical characteristics of oils, like specific gravity, colour, viscosity, etc.		K	4
	Evaluate properti	ies of oils, fatty acids and oleochemicals like acid value, sap value	,	K	Λ
CO2		dation, crystallisation, oxirane value, and amine value.			4

CO4	Detect castor oil and soyabean oil mixture using TLC	K4
CO5	Analyze Butter, Salt content, TFM, MP	K5

	Mapping of Course Outcomes (COs) with Programme Specific Outcomes (PSOs)								
		PSO1	PSO2	PSO3	PSO4	PSO5			
		K1	K2+K3	K4	K5	K6			
CO1	K2	1	1	3	2	2			
CO2	K4	2	1	3	2	2			
CO3	K2	3	2	3	1	1			
CO4	K5	3	3	2	2	2			
CO5	K5	3	2	2	2	3			
Course	K3	2	2	3	2	2			

Semester V

	C. L. COT4252		Cr	edits	= 2				
Cour	se Code: SOT4353	Course Title: Lipid Processing Technology I	L	T	Р				
Seme	ester: V	Total contact hours: 30	2	0	0				
List of Prerequisite Courses									
HSC (Science), Organic Chemistry Lab, SOT4351 - Chemistry of Oils and Fatty Acids,									
	Lis	t of Courses where this course will be prerequisite							
	354 - Lipid Processing etergents, SOP4352 - I	Technology II, SOT4355 - Production and Applications of So Lipid Laboratory II	aps, S	Surfa	ctants				
	Descriptio	n of relevance of this course in the Int. M. Tech. Program							
•		e an overview of applications of technology and engineering p stry and a practical exercise of the same.	rincip	ples i	n				
Sr. No.		Course Contents (Topics and subtopics)		Reqd. Hours					
1.	Storage, sampling, g	ading, cleaning, crushing, and heat treatment of oilseeds		06	1				
2.	Mechanical expression, solvent extraction, rendering and other methods of recovering oils and fats. Economic aspects of these processes.								
3.	Specific methods for the production of palm oil, palm kernel oil and rice bran oil.								
4.	Technical refining of oils for industrial uses, detoxification and technical products from oil cakes, edible products from oil meals, and synthetic fatty material.								
5.	Anti-nutritional constituents of oilseeds. General methods of upgrading and utilisation of oils, oil cakes and other products, Protein concentrates and isolates from oil meal								
б.	1	ipment employed for refining, bleaching, deodorisation interisation of oils or edible purposes	ı,	02					
7.	Newer techniques fo	r refining oils and fats		04					
8.	Composition and proprotection against au	perties of these spoilage during storage of fats and fat product to-oxidation	8,	08					
		Tota	l	30					
		List of Textbooks							
1.	M.M Chakrabarty. C Delhi	hemistry and Technology of Oils and Fats. Allied Publishers	Pvt.	Ltd.]	New				
2.	Bailey's Industrial Oil and Fat Products Sixth Edition Vol. 6: Industrial and Nonedible Products								
	Li	st of additional reading material/Reference Books							
1.	Hydrogenation of Oi	l & Fat Edited by H.B.W. Patterson Applied Science Publisher	(198	33)					
2.	-	cal guide to vegetable oil processing. AOCS Press, 2008 Urban							
3.	Fats and oils, Formul	ating and Processing for Applications, 3rd Edition, 2009, Richa	rd D	.O. B	rien.				
4.	Fats and Oils Handbe	ook, Michael Bockisch, 1st Edition, 1998, AOCS Press							

	Treatise on fats, fatty acids and oleochemicals by O. P. Narula, Industrial Consultants (India), Vo.
э.	I & II (1994)

Course Outcomes (Students will be able to....)

CO1	Understand and explain the technology of oilseed processing and crude edible oil refining.	K2
CO2	Apply the knowledge of, science, chemical engineering and fundamentals, of lipid processing technology to solve complex problems in core as wells as allied industries.	К3
CO3	Identify and interpret the tools for chemical analysis required for and during the processing of edible oils.	К3
CO4	Learn newer techniques for refining oils and fats	K4
CO5	Understand spoilage during storage of fats and fat products	K5

	Mapping of Course Outcomes (COs) with Programme Specific Outcomes (PSOs)								
		PSO1	PSO2	PSO3	PSO4	PSO5			
		K1	K2+K3	K4	K5	K6			
CO1	K2	3	2	2	2	2			
CO2	K4	2	3	2	2	2			
CO3	K2	3	1	3	2	2			
CO4	K4	2	2	3	3	2			
CO5	K5	2	2	2	3	3			
Course	K3	2	2	3	2	2			

3, Strong Contribution; 2, Moderate Contribution; 1, Low Contribution; – No Contribution

K, knowledge level from cognitive domain

Semester V

Course	e Code: SOT4353	Course Title: Lipid Laboratory II	Cr	edits	s = 2
Course	e Coue. 5014555	Course The. Lipid Laboratory II	L	T	Р
Semes	ter: V	Total contact hours: 60	0	0	4
		List of Prerequisite Courses			
SOP435	51 - Lipid Lab I, SOT	4353 - Lipid Processing Technology I			
	Li	st of Courses where this course will be prerequisite			
None					
	Description	on of relevance of this course in the Int. M. Tech. Program			
• This	s course will introduc	ce the student to techniques used for extracting oils from natur	al sou	rces,	
pro	cessing byproducts of	f the lipid refining industry, and analysis of soaps, surfactants and o	leterge	ents.	
Sr. No.		Course Contents (Topics and subtopics)	Rec Hou	-	
1.	Solvent Extraction:	oil extraction from oil seeds	(08	
2.	Aqueous Extraction:	oil extraction from oil seeds	(04	
3.	Hydraulic Expelling	: oil extraction from oil seeds)8	
4.	Refining Of Crude E	Edible Oil: physical/chemical refining of oils	(08	
5.	Double Solvent Extr	action: oil extraction from oil seeds	(04	
6.	Wax processing and	analysis: Crystallization process, oil content		04	
7.	Splitting of Purified	Wax		04	
8.	Analysis of Deterger	nts: Foaming, wetting test, surface tension, active matter		04	
9.	Analysis of Soap: Th	FM, Glycerol Content)8	
10.	Splitting of vegetabl	e oils to get MAG, DAG FA and the analysis using HPLC)8	
		Total	•	60	
		List of Textbooks			
1.	-	il and Fat Products, Sixth Edition Vol. 1: Edible Oil and Fat Produc th Effects, Ed. Fereidoon Shahidi, John Wiley & Sons, Inc., Wiley			•
2.	Handbook of Surfac	tants, Porter, M. R., Springer Science and Business Media (1993).			
		Reference Books			
1.	Fatty Acids by Robe	ert Johnson			
2.	Fats and Oils Handb	ook by Bockisch Michael			
3.	The Chemistry of O Blackwell Publishin	vils and Fats: Sources, Composition, Properties and Uses – Frank g Ltd.	D. Gı	instc	one,

Course Outcomes (Students will be able to....)

6	201	Understand the methods and chemical engineering principles of oil extraction from	K/
	.01	oilseeds and execute the same on laboratory scales.	K 4

CO2	Apply the analytical information in sound reasoning to solve problems in lipid and allied industries.	K5
CO3	Interpret and utilise the analytical information in oils, surfactants, detergents, and cosmetics.	K4
CO4	Carry out analysis of Soap: TFM, Glycerol Content	K4
CO5	Perform splitting of vegetable oils to get MAG, DAG	K5

Mapping of Course Outcomes (COs) with Programme Specific Outcomes (PSOs)								
		PSO1	PSO2	PSO3	PSO4	PSO5		
		K1	K2+K3	K4	K5+K6	K6		
CO1	K2	1	1	3	2	2		
CO2	K4	2	1	3	2	2		
CO3	K2	3	2	3	1	2		
CO4	K4	3	3	3	3	2		
CO5	K5	2	2	3	3	3		
Course	K3	3	2	3	2	3		

3, Strong Contribution; 2, Moderate Contribution; 1, Low Contribution; - No Contribution

K, knowledge level from cognitive domain

Semester VI

Course	Code: SOT4354	Course Title: Lipid Processing Technology II	edits =	= 2		
Course	Coue. 5014554		Т	Р		
Semest	er: VI	Total contact hours: 302	0	0		
		List of Prerequisite Courses				
	 Chemistry of Oil Lipid Processing 	ls and Fatty Acids, SOT4352 - Technology of Oleochemicals and S Fechnology I	Surfac	tant,		
	Lis	t of Courses where this course will be prerequisite				
SOT435	5 - Production and Ap	pplications of Soaps, Surfactants and Detergents				
	Descriptio	n of relevance of this course in the Int. M. Tech. Program				
	-	an overview of applications of technology and engineering principles id industry and a practical exercise of the same.	in the			
Sr. No.		Course Contents (Topics and subtopics)	Ree hou	-		
1		lysis of oils and fats; composition of partially split fats; Technology	0	6		
-	of fat splitting; Effect of temperature, pressure, catalyst, and ratio of reactants in hydrolysis of fats; degree of splitting;					
2		tion: distillation, crystallisation, high purity fatty acid product blends,	0	4		
3	kinetics of reaction,	ils: Significance of hydrogenation, Catalysts for hydrogenation, effect of operating parameters on kinetics, selectivity and isomer replacement solutions and technology, worldwide trends &	0	8		
4	Production of fatty	alcohols	0	8		
5	Production of biodic	esel and green diesel	0	4		
		Total	3	0		
	1	List of Textbooks				
1.	M.M Chakrabarty. O Delhi	Chemistry and Technology of Oils and Fats. Allied Publishers Pvt. Ltd	. New	7		
2.	Bailey's Industrial Oil and Fat Products, Sixth Edition Vol. 6: Industrial and Nonedible Products from Oils and Fats, Ed. Fereidoon Shahidi, Wiley Interscience Publication (2005).					
	Li	st of additional reading material/Reference Books				
1.	Hydrogenation of O	il & Fat Edited by H.B.W. Patterson Applied Science Publishers (198	3)			
2.	Gupta, M. K., Pract	ical guide to vegetable oil processing. AOCS Press, 2008 Urbana, Illin	ois.	_		
3.	Fats and oils, Form	lating and Processing for Applications, 3rd Edition, 2009, Richard D.	O. Bri	ien.		
		book, Michael Bockisch, 1st Edition, 1998, AOCS Press				

Course Outcomes (Students will be able to....)

	Course outcomes (Students will be able to)	
CO1	Understand and explain the technology of secondary and tertiary oleochemical production and derivatisation.	K2
CO2	Apply the knowledge of chemical engineering fundamentals and oleochemical	K3
	technology to solve complex problems in core and allied industries.	КЭ
002	Identify and interpret the tools for the chemical analysis required for producing and	W2
CO3	derivating oleochemicals.	K3
CO 4	Design and execute experiments to carry out research for the development of novel	VC
CO4	oleochemical production technology and applications	K6
CO5	Carry out production of biodiesel and green diesel	K6
	5	

	Mapping of Course Outcomes (COs) with Programme Specific Outcomes (PSOs)							
		PSO1	PSO2	PSO3	PSO4	PSO5		
		K1	K2+K3	K4	K5+K6	K6		
CO1	K2	3	2	2	2	2		
CO2	K4	2	3	2	2	2		
CO3	K2	3	1	3	2	3		
CO4	K6	2	3	3	3	3		
CO5	K6	2	3	3	3	3		
Course	K5	1	2	3	2	3		

3, Strong Contribution; 2, Moderate Contribution; 1, Low Contribution; – No Contribution

K, knowledge level from cognitive domain

Semester VII

Course	Code: SOT4355	Course Title: Production and Applications of Soaps,	Cre	dits	= 2		
Course	couc. 5014555	Surfactants and Detergents	L	Τ	Р		
Semeste	r: VII	Total Contact Hours30:	1	1	0		
		List of Prerequisite Courses					
		ils and Fatty Acids, SOT4352 – Technology of Oleoc Processing Technology II, SOP4352 – Lipid Laboratory II		cals	and		
	List of Courses where this course will be prerequisite						
None							
	Description of	relevance of this course in the Int. M. Tech. Program					
	-	a knowledge base about the mechanism, theory, and pand detergents and their application in core and allied indust		e of	the		
Sr. No.	Co	ourse Contents (Topics and subtopics)		quir Iours			
1	materials, properties	the soap industry, classification and selection of raw s of soaps and soap solution. Testing and evaluation, titution methods, essential oils, and other ingredients for		2			
2	-	ling, processes employed in the manufacture of soap, ps and cleaning preparations		2			
3	manufacture of dete	assification, raw materials, processes, and plants for the ergents for domestic and industrial consumption, product Standard Institution Methods, essential oils, and other rgents.		8			
4	Plant and processes cationic, and amphot	for the production of important anionic, non-ionic, teric surfactants.		5			
5		tants, new generation surfactants such as Gemini surfactants and sugar-based surfactants.		5			
6		tants, new generation surfactants such as Gemini surfactants and sugar-based surfactants.		3			
7	11 1	os, surfactants and detergents in food, pharmaceuticals, ace coating, adhesives, and other industries		5			
		Total		30			
	1	List of Textbooks					
1.	Handbook of Surfac	ctants, Porter, M. R., Springer Science and Business Media	ı (199	3).			
	List of	f additional reading material/Reference Books					
1.	Soaps by Prof. J. G.						
2.	Synthetic Detergent York, (1987).	s, Davidson, A. S.; Milwidsky, B. 7th Ed. John Wiley and	Sons,	New	7		

Course Outcomes (Students will be able to.....)

	Course Outcomes (Students will be able to)	
CO1	Understand and explain the production technology and applications of surfactants.	K2
CO2	Apply the knowledge of chemical engineering fundamentals and lipid chemistry to solve complex problems in surfactants, cosmetics, and allied industries.	К3
CO3	Identify and interpret the tools for chemical analysis required for the production and applications of surfactants in cosmetics, detergents and allied industries.	К3
CO4	Able to interpret emerging trends in the surfactants industry and developing innovative products and newer applications by designing and carrying out research through experimentation	K4
CO5	Formulate soaps, surfactants and detergents in food, pharmaceuticals, etc.	K6

Mapping of Course Outcomes (COs) with Programme Specific Outcomes (PSOs)							
		PSO1	PSO2	PSO3	PSO4	PSO5	
		K1	K2+K3	K4	K5+K6	K6	
CO1	K2	3	2	2	2	2	
CO2	K4	2	3	2	2	3	
CO3	K2	3	1	3	2	3	
CO4	K4	2	3	3	3	3	
CO5	K6	2	3	3	3	3	
Course	K3	1	2	3	2	3	

3, Strong Contribution; 2, Moderate Contribution; 1, Low Contribution; – No Contribution

K, knowledge level from cognitive domain

SYLLABUS OF THE CURRICULUM

for

MULTIDISCIPLINARY MINOR DEGREE

in

CHEMICAL SCIENCES

[Under the National Education Policy (NEP 2020)]

2023-2024

Offered by

Institute of Chemical Technology Mumbai

Marathwada Campus, Jalna

(University Under Section-3 of UGC Act, 1956) Elite Status and Center for Excellence Government of Maharashtra

BT-5/6, Biotechnology Park, Additional MIDC Area, Chhatrapati Sambhajinagar (Aurangabad) Road, Jalna – 431 203.

Preamble

Chemistry is known as the 'central science' – a sound understanding of the interactions between molecules is critical in all the technical applications. Understanding the fundamentals of Chemistry is the first step towards designing high throughput synthetic methodologies for fine and bulk chemicals, pharmaceutical components, plastics, etc. The principals of thermodynamics and kinetics are critical for designing energy efficient industrial processes. Applications based on the chemical sciences are bound play an indispensable role in achieving sustainable development goals at a global level. The present module of Multidisciplinary Minor (MDM) on Chemical Sciences is offered by the Institute of Chemical Technology, Mumbai Marathwada Campus, Jalna under the aegis of the National Education Policy (NEP 2020). The aim of the Chemical Sciences MDM is to equip Chemical Engineers with a thorough understanding of the concepts and applications of Chemistry. The salient features of the MDM in Chemical Sciences are as follows: Industry relevance: The bulk and fine manufacturing industries rely heavily on their trained experts to bridge the gap between concepts and technology. The MDM aims to equip students for diverse roles in numerous industries such as pharmaceuticals, polymers, dyes and textile industries Innovation and Entrepreneurship: The national objectives of self-reliance are driving the economy towards a setup where entrepreneurial ventures will be more important. With the growth in demand for 2 locally manufactured chemicals and in accordance with the Institute's legacy of producing industrialists and entrepreneurs, students will be able to successfully combine the expertise in Chemistry and technology to address this expanding market. Research and Development: The future of research in interdisciplinary with greater coordination between the scientists and technologists. The students will comprehend and combine both aspects through their training to be competent researchers on a global level. Interdisciplinary Collaboration: In addition to chemical industries, innovations in Chemistry can traverse into other domains such as biological sciences, electronics, automobiles, smart technologies, etc. The students with a thorough understanding of materials can develop solutions in diverse fields and contribute substantially. Sustainable development: The current challenges of pollution and non-renewable feedstocks can only be addressed through well-trained chemical experts. Development of clean technologies and energyefficient transportation can be achieved only through application of chemical knowledge. Chemistry can play a pivotal role in ensuring food security and access to health care – key factors in alleviating poverty.

Course Code	Semester	Subject	Credits	Hrs/Week		Marks for various Exams				
				L	Т	Р	C A	MS	ES	Total
SCT4351	III	Organic Spectroscopy	02	2	0	0	20	30	50	100
SCT4352	IV	Organic Synthesis	02	2	0	0	20	30	50	100
SCP4351	IV	Organic Synthesis Laboratory	02	0	0	4	20	30	50	100
SCT4353	V	Chemical Kinetics	02	2	0	0	20	30	50	100
SCP4352	V	Physical Chemistry Laboratory	02	0	0	4	20	30	50	100
SCT4354	VII	Computational Chemistry	02	2	0	0	20	30	50	100
SCT4355	VIII	Organometallic Chemistry and Catalysis	02	2	0	0	20	30	50	100
Total			14							800

A. List of the open electives (OE) and MDM offered by ICT MARJ:

The students enrolled for Minor Degree in Chemical Science program will not be allowed to take the following Open Elective courses:

- 1. Organic Synthesis
- 2. Organic Spectroscopy
- 3. Computational Chemistry
- 4. Chemical Kinetics
- 5. Organometallic Chemistry and Catalysis

Students are also expected to confirm the **course pre-requisites for each course offered as an open elective** before enrolling.

MDM Courses – Faculty members:

- 1) Organic Spectroscopy Dr. M M Jadhao
- 2) Organic Synthesis Dr. M. B. Gawande
- 3) Organic Synthesis Laboratory Dr. M B Gawande
- 4) Chemical Kinetics Dr. S. Mondal
- 5) Physical Chemistry Laboratory Dr. S Mondal
- 6) Computational Chemistry Dr. M M Jadhao/ Visiting faculty
- 7) Organometallic Chemistry and Catalysis Dr. M. B. Gawande / Visiting faculty

P	Programme Specific Outcomes (PSOs) for Chemical Sciences (MDM)					
PSO1	Foundations of Chemistry: Gain a comprehensive understanding of organic and physical chemistry principles, including hydrocarbons, chemical kinetics, and computational methods, essential for problem-solving in industrial applications.					
PSO2	Catalysis and Advanced Technologies: Explore the broad spectrum of catalysis applications and advancements, facilitating the implementation of cutting-edge chemical technologies at scale.					
PSO3	Research and Problem Solving: Develop skills to investigate and resolve complex real-world challenges by leveraging chemical knowledge and research methodologies, from problem identification to data analysis and solution provision.					
PSO4	Chemistry in Society: Apply reasoning informed by the existing knowledge pool to convert into a quantitative framework, collect relevant information and address various societal issues using chemical tools.					
PSO5	Cater to the needs of chemical and allied industries, research organizations and academic institutes. set-up their own ventures and generate employment, promote awareness in society about Chemical Science profession					

Mapping of All Courses of Chemical Sciences with PSOs

Courses	K-Level	PSO1	PSO2	PSO3	PSO4	PSO5
Organic Spectroscopy	K6	3	3	3	2	1
Organic Synthesis	K6	3	3	3	1	1
Organic Synthesis Laboratory	K6	3	3	3	2	2
Chemical Kinetics	K6	3	3	2	2	2
Physical Chemistry Laboratory	K6	3	3	2	3	3
Computational Chemistry	K6	3	2	2	2	2
Organometallic Chemistry and Catalysis	K6	3	2	2	2	2

Semester III

Course Code: SCT4351 Course Title: Organic Spectroscopy Semester: III Total Contact Hours: 30 List of Prerequisite Courses Applied Chemistry I (CHT4151) List of Courses where this course will be Prerequis Organic Synthesis (SCT4352) Description of relevance of this course in the Int. M. Tech. • This course aims to introduce the students to the concepts of organic spectris designed to familiarize the students with various spectroscopic techniq elucidation of organic molecules. Sr. Course Contents (Topics and subtopics) No. Course Contents (Topics and subtopics) Ultra Violet (U.V.) Spectroscopy: Introduction, spectrophotometer, law, Energy absorption and electronic transitions, Terms used in U (Chromophore, auxochrome, bathochromic shift, hypsochromic shif and hypochromic shift), Woodward – Fieser Rules for dienes, enor compounds Infrared spectroscopy: Vibrational transitions, Selection rule, Moa and bending, FT-IR spectrophotometer. 2 Group frequencies, Factors affecting IR group frequency, NII Applications of vibrational spectroscopy in structural elucidat compounds. 3 NMR Spectroscopy: A. ¹ H NMR Spectroscopy: A. ¹ H NMR Spectroscopy: Basic principle, Nuclear spin states and magnetic moments, Chemic affecting the chemical shift, Shielding mechanism and anisotropic eff B. ¹³ C NMR Spectroscopy: Elementary idea, Chemical shift, Calculation of approximat			
Semester: III Total Contact Hours: 30 List of Prerequisite Courses Applied Chemistry I (CHT4151) List of Courses where this course will be Prerequis Organic Synthesis (SCT4352) Description of relevance of this course in the Int. M. Tech. • This course aims to introduce the students to the concepts of organic spectries designed to familiarize the students with various spectroscopic techniq elucidation of organic molecules. Sr. Course Contents (Topics and subtopics) No. Ultra Violet (U.V.) Spectroscopy: Introduction, spectrophotometer, law, Energy absorption and electronic transitions, Terms used in U (Chromophore, auxochrome, bathochromic shift, hypsochromic shif and hypochromic shift), Woodward – Fieser Rules for dienes, enor compounds Infrared spectroscopy: Vibrational transitions, Selection rule, Movand bending, FT-IR spectrophotometer. 2 Group frequencies, Factors affecting IR group frequency, NII Applications of vibrational spectroscopy in structural elucidat compounds. 3 NMR Spectroscopy: 3 Basic principle, Nuclear spin states and magnetic moments, Chemic affecting the chemical shift, Shielding mechanism and anisotropic eff 3 Basic principle, Nuclear spin states and magnetic moments, Chemic affecting the chemical shift, Calculation of approximate chem Coupling constants, Interpretation of simple CMR spectra, Prot decoupled ¹³ C NMR spectra. 4 Mass Spectrometry: Introduction, Fragm			edits
List of Prerequisite Courses Applied Chemistry I (CHT4151) List of Courses where this course will be Prerequis Organic Synthesis (SCT4352) Description of relevance of this course in the Int. M. Tech. • This course aims to introduce the students to the concepts of organic spectries designed to familiarize the students with various spectroscopic techniq elucidation of organic molecules. Sr. Course Contents (Topics and subtopics) No. Ultra Violet (U.V.) Spectroscopy: Introduction, spectrophotometer, law, Energy absorption and electronic transitions, Terms used in U (Chromophore, auxochrome, bathochromic shift, hypsochromic shift and hypochromic shift), Woodward – Fieser Rules for dienes, enor compounds Infrared spectroscopy: Vibrational transitions, Selection rule, Morand bending, FT-IR spectrophotometer. Group frequencies, Factors affecting IR group frequency, NII Applications of vibrational spectroscopy in structural elucidat compounds. MMR Spectroscopy A. ¹ H NMR Spectroscopy: Basic principle, Nuclear spin states and magnetic moments, Chemic affecting the chemical shift, Shielding mechanism and anisotropic eff B. ¹³ C NMR Spectroscopy: Elementary idea, Chemical shift, Calculation of approximate chem Coupling constants, Interpretation of simple CMR spectra, Prot decoupled ¹³ C NMR spectra. 4 Mass Spectrometry: Introduction, Ion production, Fragment	-	L	T
Applied Chemistry I (CHT4151) List of Courses where this course will be Prerequis Organic Synthesis (SCT4352) Description of relevance of this course in the Int. M. Tech. • This course aims to introduce the students to the concepts of organic spectries designed to familiarize the students with various spectroscopic techniq elucidation of organic molecules. Sr. Course Contents (Topics and subtopics) No. Ultra Violet (U.V.) Spectroscopy: Introduction, spectrophotometer, law, Energy absorption and electronic transitions, Terms used in U (Chromophore, auxochrome, bathochromic shift, hypsochromic shift and hypochromic shift), Woodward – Fieser Rules for dienes, enor compounds Infrared spectroscopy: Vibrational transitions, Selection rule, Mod and bending, FT-IR spectrophotometer. Group frequencies, Factors affecting IR group frequency, NII Applications of vibrational spectroscopy in structural elucidat compounds. NMR Spectroscopy A. ¹ H NMR Spectroscopy: Basic principle, Nuclear spin states and magnetic moments, Chemic affecting the chemical shift, Shielding mechanism and anisotropic eff B. ¹³ C NMR Spectroscopy: Elementary idea, Chemical shift, Calculation of approximate chem Coupling constants, Interpretation of simple CMR spectra, Prot decoupled ¹³ C NMR spectra. 4 Mass Spectrometry: Introduction, Ion production, Fragmentation, Stevenson's rule, Radica site initiated cleavage, Rearrangements, Cleavage associated with cor groups, Molecular ion peak, Met		2	0
List of Courses where this course will be Prerequis Organic Synthesis (SCT4352) Description of relevance of this course in the Int. M. Tech. • This course aims to introduce the students to the concepts of organic spectries designed to familiarize the students with various spectroscopic techniq elucidation of organic molecules. Sr. Course Contents (Topics and subtopics) No. Ultra Violet (U.V.) Spectroscopy: Introduction, spectrophotometer, law, Energy absorption and electronic transitions, Terms used in U (Chromophore, auxochrome, bathochromic shift, hypsochromic shift and hypochromic shift), Woodward – Fieser Rules for dienes, enor compounds Infrared spectroscopy: Vibrational transitions, Selection rule, Mod and bending, FT-IR spectrophotometer. Group frequencies, Factors affecting IR group frequency, NII Applications of vibrational spectroscopy in structural elucidat compounds. NMR Spectroscopy: Basic principle, Nuclear spin states and magnetic moments, Chemic affecting the chemical shift, Shielding mechanism and anisotropic eff B. ¹³ C NMR Spectroscopy: Elementary idea, Chemical shift, Calculation of approximate chem Coupling constants, Interpretation of simple CMR spectra, Prot decoupled ¹³ C NMR spectra. 4 Mass Spectrometry: Introduction, Ion production, Fragmentation, Stevenson's rule, Radica site initiated cleavage, Rearrangements, Cleavage associated with cor groups, Molecular ion peak, Metastable ion peak, Nitrogen rule, LR			
Organic Synthesis (SCT4352) Description of relevance of this course in the Int. M. Tech. • This course aims to introduce the students to the concepts of organic spectrr is designed to familiarize the students with various spectroscopic techniq elucidation of organic molecules. Sr. Course Contents (Topics and subtopics) Voltra Violet (U.V.) Spectroscopy: Introduction, spectrophotometer, law, Energy absorption and electronic transitions, Terms used in U 1 (Chromophore, auxochrome, bathochromic shift, hypsochromic shift and hypochromic shift), Woodward – Fieser Rules for dienes, enor compounds Infrared spectroscopy: Vibrational transitions, Selection rule, Moa and bending, FT-IR spectrophotometer. 2 Group frequencies, Factors affecting IR group frequency, NII Applications of vibrational spectroscopy in structural elucidat compounds. 3 NMR Spectroscopy: Basic principle, Nuclear spin states and magnetic moments, Chemic affecting the chemical shift, Shielding mechanism and anisotropic eff B. ¹³ C NMR Spectroscopy: Elementary idea, Chemical shift, Calculation of approximate chem Coupling constants, Interpretation of simple CMR spectra, Prot decoupled ¹³ C NMR spectra. 4 Mass Spectrometry: Introduction, Fragmentation, Stevenson's rule, Radica site initiated cleavage, Rearrangements, Cleavage associated with cor groups, Molecular ion peak, Metastable ion peak, Nitrogen rule, LR			
Description of relevance of this course in the Int. M. Tech. • This course aims to introduce the students to the concepts of organic spectrr is designed to familiarize the students with various spectroscopic techniq elucidation of organic molecules. Sr. Course Contents (Topics and subtopics) No. Ultra Violet (U.V.) Spectroscopy: Introduction, spectrophotometer, law, Energy absorption and electronic transitions, Terms used in U (Chromophore, auxochrome, bathochromic shift, hypsochromic shift and hypochromic shift), Woodward – Fieser Rules for dienes, enor compounds Infrared spectroscopy: Vibrational transitions, Selection rule, Mod and bending, FT-IR spectrophotometer. Group frequencies, Factors affecting IR group frequency, NII Applications of vibrational spectroscopy in structural elucidat compounds. NMR Spectroscopy A. ¹ H NMR Spectroscopy: Basic principle, Nuclear spin states and magnetic moments, Chemic affecting the chemical shift, Shielding mechanism and anisotropic eff B. ¹³ C NMR Spectroscopy: Elementary idea, Chemical shift, Calculation of approximate chemic Coupling constants, Interpretation of simple CMR spectra, Prot decoupled ¹³ C NMR spectra. 4 Mass Spectrometry: Introduction, Ion production, Fragmentation, Stevenson's rule, Radica site initiated cleavage, Rearrangements, Cleavage associated with corgroups, Molecular ion peak, Metastable ion peak, Nitrogen rule, LR	quisite		
 This course aims to introduce the students to the concepts of organic spectris designed to familiarize the students with various spectroscopic techniq elucidation of organic molecules. Sr. Course Contents (Topics and subtopics) Ultra Violet (U.V.) Spectroscopy: Introduction, spectrophotometer, law, Energy absorption and electronic transitions, Terms used in U (Chromophore, auxochrome, bathochromic shift, hypsochromic shift and hypochromic shift), Woodward – Fieser Rules for dienes, enor compounds Infrared spectroscopy: Vibrational transitions, Selection rule, Mod and bending, FT-IR spectrophotometer. Group frequencies, Factors affecting IR group frequency, NII Applications of vibrational spectroscopy in structural elucidat compounds. NMR Spectroscopy A. ¹H NMR Spectroscopy: Basic principle, Nuclear spin states and magnetic moments, Chemic affecting the chemical shift, Shielding mechanism and anisotropic eff B. ¹³C NMR Spectroscopy: Elementary idea, Chemical shift, Calculation of approximate chemic Coupling constants, Interpretation of simple CMR spectra, Prot decoupled ¹³C NMR spectra. Mass Spectrometry: Introduction, Ion production, Fragmentation, Stevenson's rule, Radica site initiated cleavage, Rearrangements, Cleavage associated with corgroups, Molecular ion peak, Metastable ion peak, Nitrogen rule, LR 			
 is designed to familiarize the students with various spectroscopic techniq elucidation of organic molecules. Sr. No. Course Contents (Topics and subtopics) Ultra Violet (U.V.) Spectroscopy: Introduction, spectrophotometer, law, Energy absorption and electronic transitions, Terms used in U (Chromophore, auxochrome, bathochromic shift, hypsochromic shift and hypochromic shift), Woodward – Fieser Rules for dienes, enor compounds Infrared spectroscopy: Vibrational transitions, Selection rule, Mod and bending, FT-IR spectrophotometer. Group frequencies, Factors affecting IR group frequency, NII Applications of vibrational spectroscopy in structural elucidat compounds. NMR Spectroscopy A. ¹H NMR Spectroscopy: Basic principle, Nuclear spin states and magnetic moments, Chemic affecting the chemical shift, Shielding mechanism and anisotropic eff B. ¹³C NMR Spectroscopy: Elementary idea, Chemical shift, Calculation of approximate chemic Coupling constants, Interpretation of simple CMR spectra, Prot decoupled ¹³C NMR spectra. Mass Spectrometry: Introduction, Ion production, Fragmentation, Stevenson's rule, Radica site initiated cleavage, Rearrangements, Cleavage associated with congroups, Molecular ion peak, Metastable ion peak, Nitrogen rule, LR 	ech. Program		
No.Course Contents (Topics and subtopics)IUltra Violet (U.V.) Spectroscopy: Introduction, spectrophotometer, law, Energy absorption and electronic transitions, Terms used in U (Chromophore, auxochrome, bathochromic shift, hypsochromic shi and hypochromic shift), Woodward – Fieser Rules for dienes, enor compoundsIInfrared spectroscopy: Vibrational transitions, Selection rule, Mod and bending, FT-IR spectrophotometer.Group frequencies, Factors affecting IR group frequency, NII Applications of vibrational spectroscopy in structural elucidat compounds.MR Spectroscopy Basic principle, Nuclear spin states and magnetic moments, Chemic affecting the chemical shift, Shielding mechanism and anisotropic eff B. ¹³ C NMR Spectroscopy: Elementary idea, Chemical shift, Calculation of approximate chem Coupling constants, Interpretation of simple CMR spectra, Prot decoupled ¹³ C NMR spectra.Mass Spectrometry: Introduction, Ion production, Fragmentation, Stevenson's rule, Radica site initiated cleavage, Rearrangements, Cleavage associated with con groups, Molecular ion peak, Metastable ion peak, Nitrogen rule, LR			
 law, Energy absorption and electronic transitions, Terms used in U (Chromophore, auxochrome, bathochromic shift, hypsochromic shift and hypochromic shift), Woodward – Fieser Rules for dienes, enor compounds Infrared spectroscopy: Vibrational transitions, Selection rule, Mod and bending, FT-IR spectrophotometer. Group frequencies, Factors affecting IR group frequency, NII Applications of vibrational spectroscopy in structural elucidat compounds. NMR Spectroscopy A. ¹H NMR Spectroscopy: Basic principle, Nuclear spin states and magnetic moments, Chemic affecting the chemical shift, Shielding mechanism and anisotropic eff B. ¹³C NMR Spectroscopy: Elementary idea, Chemical shift, Calculation of approximate chem Coupling constants, Interpretation of simple CMR spectra, Prot decoupled ¹³C NMR spectra. Mass Spectrometry: Introduction, Ion production, Fragmentation, Stevenson's rule, Radica site initiated cleavage, Rearrangements, Cleavage associated with con groups, Molecular ion peak, Metastable ion peak, Nitrogen rule, LR 			qd. ours
 and bending, FT-IR spectrophotometer. Group frequencies, Factors affecting IR group frequency, NII Applications of vibrational spectroscopy in structural elucidat compounds. NMR Spectroscopy A. ¹H NMR Spectroscopy: Basic principle, Nuclear spin states and magnetic moments, Chemic affecting the chemical shift, Shielding mechanism and anisotropic effecting the chemical shift, Calculation of approximate chemic Coupling constants, Interpretation of simple CMR spectra, Prot decoupled ¹³C NMR spectra. Mass Spectrometry: Introduction, Ion production, Fragmentation, Stevenson's rule, Radical site initiated cleavage, Rearrangements, Cleavage associated with congroups, Molecular ion peak, Metastable ion peak, Nitrogen rule, LR 	in U.V. spectroscopy c shift, hyperchromic		6
 A. ¹H NMR Spectroscopy: Basic principle, Nuclear spin states and magnetic moments, Chemic affecting the chemical shift, Shielding mechanism and anisotropic eff B. ¹³C NMR Spectroscopy: Elementary idea, Chemical shift, Calculation of approximate chemic Coupling constants, Interpretation of simple CMR spectra, Prote decoupled ¹³C NMR spectra. Mass Spectrometry: Introduction, Ion production, Fragmentation, Stevenson's rule, Radical site initiated cleavage, Rearrangements, Cleavage associated with con- groups, Molecular ion peak, Metastable ion peak, Nitrogen rule, LR 	NIR spectroscopy,	(6
 Introduction, Ion production, Fragmentation, Stevenson's rule, Radica site initiated cleavage, Rearrangements, Cleavage associated with congroups, Molecular ion peak, Metastable ion peak, Nitrogen rule, LR 	ic effects. chemical shift values,	1	0
Isotopic abundance and Interpretation of mass spectra.	h common functional		8

	List of Text Books/ Reference Books					
1	1 Introduction to Spectroscopy, D.L. Pavia, G.M. Lampman, G.S. Kriz, J.R. Vyvyan, Cengage Learning India Pvt Ltd					
2	Spectrometric Identification of Organic Compounds, Robert M. Silverstein, Francis X. Webster, Wiley					
3	Organic Spectroscopy: William Kemp, Palgrave					
4	4 Principles of NMR in one and Two Dimensions: R.R. Ernst, G. Bodenhausen, A. Wokaun Oxford Science Publication					
	Course Outcomes (Students will be able to)					
CO1	Understand the general principles of various spectroscopic techniques used for characterization of organic molecules	K1, K2				
CO2	Assign the spectroscopic data to particular structural features of molecules	K3				
CO3	Understand the theory of Nuclear Magnetic Resonance spectroscopy and its applications to structural problems	K2, K3				
CO4	Predict the fragmentation of alkanes, alkyl aromatics, alcohols, ketones using the principle of Mclafferty rearrangement, and mass spectrometry	K4, K5				
CO5	Solve problems based on UV, IR, NMR & MS Spectroscopy for interpretation of the structure.	K5, K6				
CO6	Choose the optimum spectroscopic technique/s for identification and structure elucidation of a given compound	K6				

Mapping of Course Outcomes (COs) with Programme Specific Outcomes (PSOs)							
		PSO1	PSO2	PSO3	PSO4	PSO5	
		K1 + K2	K3	K4 + K5	K5	K5	
CO1	K1, K2	3	3	2	1	-	
CO2	K3	3	3	2	1	-	
CO3	K2, K3	3	3	3	1	-	
CO4	K4, K5	3	3	2	1	-	
CO5	K5, K6	3	3	2	1	1	
CO6	K6	3	3	2	1	1	
Course	K6	3	3	3	2	1	

3, Strong Contribution; 2, Moderate Contribution; 1, Low Contribution; 0, No Contribution K, Knowledge level from cognitive domain; A, Affective domain; P, Psychomotor domain.

	Commo Codos SCT4252 Commo Titles Organio Santhonia			Cr	edits	= 2		
List of Prerequisite Courses Applied Chemistry 1 (CHT4151) List of Courses where this course will be prerequisite Organic Chemistry Laboratory (CHP4151), Organometallic Chemistry and Catalysis (SCT4355) Description of relevance of this course in the Int. M. Tech. Program • This course will also useful for the firth year IntM. Tech students during their master's thesis t understand the organic transformations and chemical engineering reactions such as flow chemistry, batc reactions, photochemical reactions and others. • Importantly, students will be familiar with concepts related to fundamentals of Organic Chemistry including reaction mechanism, organic transformations, types of reactions, selectivity of chemicat transformations, stereochemical implications of organic reactions, functional group identification an reactions so thatthey are perfectly aligned to apply the same for future courses and in their professiona career. Course Contents (Topics and subtopics) Reqd. Hours 1 related condensation, Michael reactions. Enolate chemistry, Aldol and related condensation, Michael reactions. Rohison annulation, Claisen condensation, Dieckmann condensation, Mannich reaction. 5 2 Haloalkanes: General reactions. Mechanisms of nucleophilic substitutions reactions (SN1 & SN2) and elimination reactions. 5 2	Course	Course Code: SCT4352 Course Title: Organic Synthesis		L	Т	P		
List of Courses where this course will be prerequisite Organic Chemistry Laboratory (CHP4151), Organometallic Chemistry and Catalysis (SCT4355) Description of relevance of this course in the Int. M. Tech. Program This course will require for getting minors in Chemistry in for 4 years B. Tech (Chemical engineering). This course will also useful for the firth year IntM. Tech students during their master's thesis t understand the organic transformations and chemical engineering reactions such as flow chemistry, bate reactions, photochemical reactions and others. Importantly, students will be familiar with concepts related to fundamentals of Organic Chemistry including reaction mechanism, organic transformations, types of reactions, selectivity of chemicat transformations, stereochemical implications of organic reactions, functional group identification an reactors so thatthey are perfectly aligned to apply the same for future courses and in their professional career. Course Contents (Topics and subtopics) Reqd. Hours 1 Concept of acidity and tautomerism of carbonyl compounds, General methods of preparation and Nucleophilic Addition reactions. Robinson annulation, Claisen condensation, Dieckmann condensation, Mannich reaction. 5 2 Haloalkanes: General reactions. Mechanisms of nucleophilic substitutions reactions (SN1 & SN2) and elimination reactions. 5 3 of electronic and structural properties to benzenoid compounds, Reactivity and synthetis routes Pyrrole, Furan, Thiophene, Pyridine.	Se	emester: IV	Total contact hours: 30	2	1	0		
List of Courses where this course will be prerequisite Organic Chemistry Laboratory (CHP4151), Organometallic Chemistry and Catalysis (SCT4355) Description of relevance of this course in the Int. M. Tech. Program • This course will require for getting minors in Chemistry in for 4 years B. Tech (Chemical engineering and 5 years IntM. Tech (Chemical engineering). • This course will also useful for the firth year IntM. Tech students during their master's thesis t understand the organic transformations and chemical engineering reactions such as flow chemistry, bate reactions, photochemical reactions and others. • Importantly, students will be familiar with concepts related to fundamentals of Organic Chemistr including reaction mechanism, organic transformations, types of reactions, selectivity of chemicat transformations, stereochemical implications of organic reactions, functional group identification an reactions so thatthey are perfectly aligned to apply the same for future courses and in their professiona career. 1 Chemistry of Carbonyl Compounds Reqd. Hours 1 Concept of acidity and tautomerism of carbonyl compounds, General methods of preparation and Nucleophilic Addition reactions. 5 2 Haloalkanes: General reactions. Mechanisms of nucleophilic substitutions reactions (SN1 & SN2) and elimination reactions. 5 3 of electronic and structural properties to benzenoid compounds, Reactivity and synthetic routes Pyrrole, Furan, Thiophene, Pyridine. 5 4 Named Organic Reactions (Paran, Thio			List of Prerequisite Courses					
Organic Chemistry Laboratory (CHP4151), Organometallic Chemistry and Catalysis (SCT4355) Description of relevance of this course in the Int. M. Tech. Program This course will require for getting minors in Chemistry in for 4 years B. Tech (Chemical engineering and 5 years IntM. Tech (Chemical engineering). This course will also useful for the firth year IntM. Tech students during their master's thesis t understand the organic transformations and chemical engineering reactions such as flow chemistry, bate reactions, photochemical reactions and others. Importantly, students will be familiar with concepts related to fundamentals of Organic Chemistr including reaction mechanism, organic transformations, types of reactions, selectivity of chemicat transformations, stereochemical implications of organic reactions, functional group identification an reactions so thatthey are perfectly aligned to apply the same for future courses and in their professiona career. Course Contents (Topics and subtopics) Reqd. Hours 1 2 1 2 3 <td colspan="8">Applied Chemistry I (CHT4151)</td>	Applied Chemistry I (CHT4151)							
Description of relevance of this course in the Int. M. Tech. Program • This course will require for getting minors in Chemistry in for 4 years B. Tech (Chemical engineering and 5 years IntM. Tech (Chemical engineering). • This course will also useful for the firth year IntM. Tech students during their master's thesis t understand the organic transformations and chemical engineering reactions such as flow chemistry, batc reactions, photochemical reactions and others. • Importantly, students will be familiar with concepts related to fundamentals of Organic Chemistr including reaction mechanism, organic transformations, types of reactions, selectivity of chemicar transformations, stereochemical implications of organic reactions, functional group identification an reactions so thatthey are perfectly aligned to apply the same for future courses and in their professiona career. Course Contents (Topics and subtopics) Reqd. Hours 1 preparation and Nucleophilic Addition reactions Enolate chemistry, Aldol and related condensation reactions. Michael reaction, Robinson annulation, Claisen condensation, Dieckmann condensation, Mannich reaction. 5 2 Haloalkanes: General reactions. Mechanisms of nucleophilic substitutions for electronic and structural properties to benzenoid compounds, Reactivity and synthetic routes Pyrrole, Furan, Thiophene, Pyridine. 5 3 of electronic (Mauvine synthesis-dyes), Fischer indole synthesis, (dyes), Jacobson Corey epoxide synthesis (Pharmaceutical), Ziegler Natta polymerisation (polymer), Multicomponent reactions, Mailard reaction (foods), Strecker amino acid synthesis (Pharmaceuticals & Food), Wittig reaction		Li	ist of Courses where this course will be prerequisite					
 This course will require for getting minors in Chemistry in for 4 years B. Tech (Chemical engineering and 5 years IntM. Tech (Chemical engineering). This course will also useful for the firth year IntM. Tech students during their master's thesis t understand the organic transformations and chemical engineering reactions such as flow chemistry, batc reactions, photochemical reactions and others. Importantly, students will be familiar with concepts related to fundamentals of Organic Chemistr including reaction mechanism, organic transformations, types of reactions, selectivity of chemicar transformations, stereochemical implications of organic reactions, functional group identification an reactions so thatthey are perfectly aligned to apply the same for future courses and in their professiona career. Course Contents (Topics and subtopics) Reqd. Hours Concept of acidity and tautomerism of carbonyl compounds, General methods of preparation and Nucleophilic Addition reactions. Enolate chemistry, Aldol and related condensation, Dieckmann condensation, Mannich reaction. Haloalkanes: General reactions. Mechanisms of nucleophilic substitutions for eactions (SN1 & SN2) and elimination reactions. Heteroaromatic compounds: Basic structures and common names, comparison of electronic and structural properties to benzenoid compounds, Reactivity and synthetic routes Pyrrole, Furan, Thiophene, Pyridine. Named Organic Reactions Perkin reaction (Mauvine synthesis-dyes), Fischer indole synthesis, (dyes), Jacobson Corey epoxide synthesis (Pharmaceutical), Ziegler Natta polymerisation (polymer), Multicomponent reactions, Mailard reaction (foods), Strecker amino acid synthesis (Pharmaceuticals & Food), Wittig reactions, Prilezhaev reaction 	Organic	Chemistry Labora	tory (CHP4151), Organometallic Chemistry and Catalysis (SCT	4355)				
and 5 years IntM. Tech (Chemical engineering). • This course will also useful for the firth year IntM. Tech students during their master's thesis t understand the organic transformations and chemical engineering reactions such as flow chemistry, bate reactions, photochemical reactions and others. • Importantly, students will be familiar with concepts related to fundamentals of Organic Chemistr including reaction mechanism, organic transformations, types of reactions, selectivity of chemical transformations, stereochemical implications of organic reactions, functional group identification an reactions so thatthey are perfectly aligned to apply the same for future courses and in their professional career. Course Contents (Topics and subtopics) Reqd. Hours 1 Chemistry of Carbonyl Compounds Concept of acidity and tautomerism of carbonyl compounds, General methods of preparation and Nucleophilic Addition reaction. Robinson annulation, Claisen condensation, Dieckmann condensation, Mannich reaction. 5 2 Haloalkanes: General reactions. Mechanisms of nucleophilic substitutions freactions (SN1 & SN2) and elimination reactions. 5 3 of electronic and structural properties to benzenoid compounds, Reactivity and synthetic routes Pyrrole, Furan, Thiophene, Pyridine. 5 4 Named Organic Reactions Fischer indole synthesis, (dyes), Jacobson Corey epoxide synthesis (Pharmaceutical), Ziegler Natta polymerisation (polymer), Multicomponent reactions, Mailard reaction, foods), Strecker amino acid synthesis (Pharmaceuticals & Food), Wittig reactions, Prilezhaev reaction		Descrip	ption of relevance of this course in the Int. M. Tech. Program					
including reaction mechanism, organic transformations, types of reactions, selectivity of chemical transformations, stereochemical implications of organic reactions, functional group identification an reactions so thatthey are perfectly aligned to apply the same for future courses and in their professional career.Course Contents (Topics and subtopics)Reqd. Hours1Chemistry of Carbonyl Compounds Concept of acidity and tautomerism of carbonyl compounds, General methods of preparation and Nucleophilic Addition reactions Enolate chemistry, Aldol and related condensation reactions, Michael reaction, Robinson annulation, Claisen condensation, Dieckmann condensation, Mannich reaction.52Haloalkanes: General reactions. Mechanisms of nucleophilic substitutions reactions (SN1 & SN2) and elimination reactions.53of electronic and structural properties to benzenoid compounds, Reactivity and synthetic routes Pyrrole, Furan, Thiophene, Pyridine.54Named Organic Reactions (polymer), Multicomponent reactions, Mailard reaction (foods), Strecker amino acid synthesis (Pharmaceutical), Ziegler Natta polymerisation acid synthesis (Pharmaceuticals & Food), Wittig reactions, Prilezhaev reaction	 and 5 This c unders reaction 	years IntM. Tech course will also us stand the organic tra ons, photochemical	(Chemical engineering). reful for the firth year IntM. Tech students during their mas ansformations and chemical engineering reactions such as flow ch reactions and others.	ter's temist	thesis ry, ba	s to atch		
Course Contents (Topics and subtopics)HoursHoursHoursChemistry of Carbonyl CompoundsConcept of acidity and tautomerism of carbonyl compounds, General methods of preparation and Nucleophilic Addition reactions Enolate chemistry, Aldol and related condensation reactions, Michael reaction, Robinson annulation, Claisen condensation, Dieckmann condensation, Mannich reaction.5Haloalkanes: General reactions. Mechanisms of nucleophilic substitutions reactions (SN1 & SN2) and elimination reactions.5Heteroaromatic compounds: Basic structures and common names, comparison of electronic and structural properties to benzenoid compounds, Reactivity and synthetic routes Pyrrole, Furan, Thiophene, Pyridine.5Named Organic Reactions Perkin reaction (Mauvine synthesis-dyes), Fischer indole synthesis, (dyes), Jacobson Corey epoxide synthesis (Pharmaceutical), Ziegler Natta polymerisation acid synthesis (Pharmaceuticals & Food), Wittig reactions, Prilezhaev reaction5	includ transfo reactio	ing reaction mech ormations, stereoch ons so thatthey are	anism, organic transformations, types of reactions, selectivity nemical implications of organic reactions, functional group iden	y of c ntifica ir prof	tion tion	ical and onal		
1Concept of acidity and tautomerism of carbonyl compounds, General methods of preparation and Nucleophilic Addition reactions Enolate chemistry, Aldol and related condensation reactions, Michael reaction, Robinson annulation, Claisen condensation, Dieckmann condensation, Mannich reaction.52Haloalkanes: General reactions. Mechanisms of nucleophilic substitutions reactions (SN1 & SN2) and elimination reactions.53Heteroaromatic compounds: Basic structures and common names, comparison of electronic and structural properties to benzenoid compounds, Reactivity and synthetic routes Pyrrole, Furan, Thiophene, Pyridine.54Named Organic Reactions Perkin reaction (Mauvine synthesis-dyes), Fischer indole synthesis, (dyes), Jacobson Corey epoxide synthesis (Pharmaceutical), Ziegler Natta polymerisation (polymer), Multicomponent reactions, Mailard reaction (foods), Strecker amino acid synthesis (Pharmaceuticals & Food), Wittig reactions, Prilezhaev reaction5		Со	urse Contents (Topics and subtopics)		-			
related condensation reactions, Michael reaction, Robinson annulation, Claisen condensation, Dieckmann condensation, Mannich reaction.2Haloalkanes: General reactions. Mechanisms of nucleophilic substitutions reactions (SN1 & SN2) and elimination reactions.3Heteroaromatic compounds: Basic structures and common names, comparison of electronic and structural properties to benzenoid compounds, Reactivity and 		•						
reactions (SN1 & SN2) and elimination reactions.Heteroaromatic compounds: Basic structures and common names, comparison of electronic and structural properties to benzenoid compounds, Reactivity and synthetic routes Pyrrole, Furan, Thiophene, Pyridine.5Named Organic Reactions Perkin reaction (Mauvine synthesis-dyes), Fischer indole synthesis, (dyes), Jacobson Corey epoxide synthesis (Pharmaceutical), Ziegler Natta polymerisation (polymer), Multicomponent reactions, Mailard reaction (foods), Strecker amino acid synthesis (Pharmaceuticals & Food), Wittig reactions, Prilezhaev reaction5	1	related condensat	tion reactions, Michael reaction, Robinson annulation, Claisen		5			
3of electronic and structural properties to benzenoid compounds, Reactivity and synthetic routes Pyrrole, Furan, Thiophene, Pyridine.53Named Organic Reactions Perkin reaction (Mauvine synthesis-dyes), Fischer indole synthesis, (dyes), Jacobson Corey epoxide synthesis (Pharmaceutical), Ziegler Natta polymerisation (polymer), Multicomponent reactions, Mailard reaction (foods), Strecker amino acid synthesis (Pharmaceuticals & Food), Wittig reactions, Prilezhaev reaction5	2		•		5			
synthetic routes Pyrrole, Furan, Thiophene, Pyridine.Named Organic ReactionsPerkin reaction (Mauvine synthesis-dyes), Fischer indole synthesis, (dyes), Jacobson Corey epoxide synthesis (Pharmaceutical), Ziegler Natta polymerisation (polymer), Multicomponent reactions, Mailard reaction (foods), Strecker amino acid synthesis (Pharmaceuticals & Food), Wittig reactions, Prilezhaev reaction		Heteroaromatic	compounds: Basic structures and common names, comparison					
4Perkin reaction (Mauvine synthesis-dyes), Fischer indole synthesis, (dyes), Jacobson Corey epoxide synthesis (Pharmaceutical), Ziegler Natta polymerisation (polymer), Multicomponent reactions, Mailard reaction (foods), Strecker amino acid synthesis (Pharmaceuticals & Food), Wittig reactions, Prilezhaev reaction5	3				5			
4 Jacobson Corey epoxide synthesis (Pharmaceutical), Ziegler Natta polymerisation (polymer), Multicomponent reactions, Mailard reaction (foods), Strecker amino acid synthesis (Pharmaceuticals & Food), Wittig reactions, Prilezhaev reaction		Named Organic	Reactions					
(polymer), Multicomponent reactions, Mailard reaction (foods), Strecker amino acid synthesis (Pharmaceuticals & Food), Wittig reactions, Prilezhaev reaction								
Stereochemistry of Organic Compounds	4	(polymer), Multicomponent reactions, Mailard reaction (foods), Strecker amino						
		Stereochemistry	of Organic Compounds					

Semester IV

_	Containing one and two asymmetric carbon atoms, Stereo descriptors $-R/S$, E/Z ,	
5	erythro and theory, Conformation – Ethane and butane.	6
	Enantiomers and Diastereomers, meso compounds, different representations of	
	stereoisomers – Saw-horse, Newmann, Wedge and dash and Fischer and their	
	interconversions	
6	Chemistry of important natural products: Terpenes, steroids, carotenoids/prostaglandins	4
	Total	30
	List of Textbooks / Reference Books	
	th, M. B.; March's Advanced Organic Chemistry: Reactions, Mechanisms and Struc ey, India (2015)	ture;7th ed.;
	ey F. A., Sundberg, R. J. Advanced Organic Chemistry: Part A: Structure and Mecl Springer (2005)	nanisms; 5th
	ey F. A., Sundberg, R. J.; Advanced Organic Chemistry: Part B: Reaction and Syntheinger (2007)	esis; 5th ed.;
4. Waa	de, L. G.; Simek, J. W.; Singh, M. S. Organic Chemistry; 9th Ed.; Pearson Education	(2019)
5. Elie	l, E. L. Stereochemistry of Carbon Compounds; Mcgraw-Hill (2001)	
6. Bru	ice, Paula, Y. Organic Chemistry; 8th Ed.; Pearson Education (2020)	
	t, S. V., Nagasampagi, B. A., Meenakshi, S. Natural Products Chemistry and Applica lishing house (2009)	tions.Narosa
CO1	Identify structures of organic compounds and write their IUPAC names correctly	K1, K2
CO2	Understand organic chemistry reactions related to aliphatic as well as aromatic compounds as well as decipher the outcome of a given organic transformation	K1, K3
G 02	List the properties and synthetic routes, and decipher outcomes of various	IZ O
CO3	transformations involving heterocycles	K3
CO4	Apply the knowledge obtained through the course to predict the outcome of reactions and devise solutions to unknown problems	K3, K4
COF	Appreciate the stereochemical implications of organic compounds and visualize	T Z 4
CO5	and appreciate the chirality concept	K4
CO6	Interpret and analyze reactions having different functionalities to predictproducts and design synthetic protocols	K5, K6

Integrated Master of Technology in Chemical Engineering and Multi-Disciplinary Minor (MDM) ICT Marathwada Campus, Jalna

Mapping of Course Outcomes (COs) with Programme Specific Outcomes (PSOs)							
		PSO1	PSO2	PSO3	PSO4	PSO5	
		K1 + K2	K3	K4 + K5	K5 + K6	K5	
CO1	K1, K2	3	2	3	-	-	
CO2	K1, K3	2	3	3	-	-	
CO3	K3	2	3	3	-	1	
CO4	K3, K4	3	2	2	-	1	
CO5	K4	3	2	2	1	1	
CO6	K5, K6	3	2	3	1	1	
Course	K6	3	3	3	1	1	

3, Strong Contribution; 2, Moderate Contribution; 1, Low Contribution; 0, No Contribution K, Knowledge level from cognitive domain; A, Affective domain; P, Psychomotor domain.

Semester IV

Course Code: SCP4351		Course Title: Organic Synthesis Laboratory	Cred = 2	
Semester	: IV	Total contact hours: 60		2
		List of Prerequisite Courses		
Applied C	Chemistry I (CHT	4151)		
	Lis	st of Courses where this course will be prerequisite		
-	ional Chemistry EP4473) and IPT ((SCT4354), Organometallic Chemistry and Catalysis (SCT4355) (CEP4473)	, Resea	arch
	Descriptio	n of relevance of this course in the Int. M. Tech. Program		
catalysts method,The isol technique student v	The prepared or preparative TLC, ated pure compou les include meltin will be able to lear	elear idea about different organic synthesis protocol by using cos- ganic compounds will be isolated by several techniques such as crya- and column chromatography. ands will be characterized by analytical and spectroscopic techniq ag point/boiling point, FT-IR spectroscopy, GC and GC-MS. Mor- rn design of cost-effective routes for the organic compounds synth- bouledge of terminology and tools used during the physical chemistr	stalliza ues. Tł reover, esis and	tion nese the
	Co	ourse Contents (Topics and subtopics)	Rea Ho	-
1. O		known organic compounds based on physicochemical properties: s/molecules contain different advanced functional groups which tic reactions.		
	nysical properties so be used in the i	such as solubility and chemical reactivity in known reactions will identification.	60)
3. 0	ne-pot synthesis o	of organic compounds		
4. In	-situ two-step syn	thesis of organic compounds.		
	ydrogenation of onditions	nitro compounds to corresponding amines under ambient		
6. O	ne-pot multicomp	onent approach for the organic synthesis		
7	•	methods using in reactions for the synthesis of pharmaceutical ortance molecules and optimization of reaction conditions.		
8	rogress of the reanalysis.	actions monitoring by thin layer chromatography (TLC) and IR		
9. To	o analyze the obta	ined reaction mixture by Gas Chromatography		
10. T	o determine th	e pure organic compounds by Gas chromatography/mass		

spectr	rometry (GC/MS)						
	List of Textbooks / Reference Books						
1. Advanced	Organic Synthesis a Laboratory Manual, By Dmitry V. Liskin, Penny Chaloner,	2016.					
2. Advanced	l Practical Organic Chemistry, NK Vishnoi						
3. Practical S	Synthetic Organic Chemistry: Reactions, Principles, and Techniques						
4. Editor(s):	Stéphane Caron, Wiley publication						
CO1	Identify and understand structures of organic compounds and their physical properties based on their physicochemical properties	K2, K3					
CO2	Apply the knowledge of organic chemistry basics for the one-pot, two-step and hydrogenation reactions	K3, K4					
CO3	Use the appropriate isolation method or analysis for the prepared organic compounds	K2, K5					
CO4	Interpret and analyse synthesized organic compounds by FT-IR, GC and GC-MS	K6					
CO5	Determine the pure organic compounds	K6					

Mapping of Course Outcomes (COs) with Programme Specific Outcomes (PSOs)									
		PSO1	PSO2	PSO3	PSO4	PSO5			
		K1 + K2	K3	K4 + K5	K5	K5			
CO1	K2, K3	3	2	1	1	1			
CO2	K3, K4	3	3	2	2	1			
CO3	K2, K5	3	3	1	3	1			
CO4	K6	3	3	2	3	1			
CO5	K6	3	2	2	1	1			
Course	K6	3	3	3	2	2			

3, Strong Contribution; 2, Moderate Contribution; 1, Low Contribution; 0, No Contribution

K, Knowledge-level from cognitive domain; A, Affective domain, S, Psychomotor domain

Semester V

Cou	rse Code: SCT4353				
Som	nester: V	Total contact hours: 30	L		Р
Sem	nester: v I otal contact nours: 30		2	0	0
		List of Prerequisite Courses	· · ·		
Std X	II Chemistry, Applied Chemist	ry-II (CHT4152)			
	List of Cour	ses where this course will be prerequisite			
Physic	cal Chemistry Laboratory (SCP	4352)			
	Description of relev	ance of this course in the Int. M. Tech. Pro	ogram		
son sec • Thi affe	ne reactions take years to componds? The course covers the ke is will help to understand how	the production of almost everything in the r plete whilst others are so fast that can be co y concepts of three of the principal topics in fast a reaction can go. Relevance of reaction many situations which are faced by Chen	ompleted in chemical k n rates and	pico/ inetic parar	femto s. neter
	Course	Contents (Topics and subtopics)			kqd. ours
1		tion, concept of reaction rates and order, ex differential and integral methods to form cond order	-		03
2	Complex reactions- parallel molecularity	l, consecutive and reversible reactions,	order and		03
3		ism- steady state and rate determining step N ain reactions, polymerization reactions, bran rme catalysis			04
4	Surface reactions – Adsorption models of surface reactions	n, kinetics of surface reactions- Hishelwood	and Rideal		02
5	Theories of reaction rates and of unimolecular reactions	temperature effects- collision theory and T	ST Theory		04
6	Kinetics of reactions in soluti	ons- solvent effects and effects of ionic stren	igth		04
7	Fast reactions and reactions in	n molecular beams – experimental technique	S		03
8	Kinetics of solid-state reaction	ns			02
9	Applications – food, pharmac	eutical industry, kinetic isotope effect			03
	List of	f Text Books/ Reference Books			
	Introduction to colloid and surfa Surfaces interfaces and colloids	ace chemistry – D.J. shaw, Butterworth publi - Drew Myers- Wiley VCH	ications	1	

3.	Surfactants and interfacial	phenomena- Milton J Rosen – Wiley Interscience
----	-----------------------------	--

- 4. Industrial utilization of surfactants principles and applications M.J. Rosen and M Dahanayake, AOCS Press
- 5. Foundations of Colloid science Robert J Hunter Oxford university Press

Course Outcomes (Students will be able to)	
CO1 : Understand the concept of rate of change associated with chemical change and its measurements.	K2, K3
CO2 : Be able to identify the reaction order for a chemical change.	
CO3: Understand the concept of pseudo-first order kinetics and when they apply.	K2, K3
CO4 : To obtain the concentration of chemical species during a reaction of different orders by applying integrated rate equations.	K3, K4
CO5 : Understand the concept of mechanism and factors, such as concentration, temperature, medium and the presence of a catalyst, affect the reaction rate.	K2, K3
CO6 : Interpret a reaction coordinate diagram/potential energy diagram and determine a single or multistep mechanism.	K3, K4
CO7 : Understand the concept of activation energy in the context of the transition state and	
calculate the activation from some real experiments.	K2, K5
CO8 : Apply the concept of kinetic isotope effect in the applications of food, pharmaceutical	
industry.	K4, K6

Mapping of Course Outcomes (COs) with Programme Specific Outcomes (PSOs)									
		PSO1	PSO2	PSO3	PSO4	PSO5			
		K1 + K2	K3	K4 + K5	K5	K5			
CO1	K2, K3	3	2	1	1	1			
CO2	K3, K4	3	3	1	2	2			
CO3	K2, K3	3	2	1	1	1			
CO4	K3, K4	3	3	2	1	1			
CO5	K2, K3	3	2	1	1	1			
CO6	K3, K4	3	3	3	3	3			
CO7	K2, K5	3	3	3	3	3			
CO8	K4, K6	3	3	3	3	3			
Course	K6	3	3	2	2	2			

3, Strong Contribution; 2, Moderate Contribution; 1, Low Contribution; 0, No Contribution K, Knowledge-level from cognitive domain; A, Affective domain, S, Psychomotor domain

Semester V

Cours	se Code: SCP4352	Course Title: Physical Chemistry Laboratory	Cre	edits	= 2
Semes	ster: V	Total contact hours: 60	L 0	Т 0	P 2
		List of Prerequisite Courses		Ū	
A	Applied Chemistry I (CHT4151)			
Ι	List of Courses wher	e this course will be prerequisite			
(Chemical Engineering	g Electives (CETxxxx)			
	Description o	f relevance of this course in the Int. M. Tech. Program			
p d N	preparation, concentra liagram of the experi Moreover, the student	re a clear idea about different analytical techniques, solu ation measurements, different kinds of spectroscopy. Graph ment will give a statistical description of experimental meth t will be able to develop working knowledge of terminology physical chemistry lab.	and ods.	4hr/	' lab
1 S	Study of viscosity of u	unknown liquid (glycerol, sugar) with respect to water.			
2 I	Determination of surfa	ace tension by drop count method			
3 S	Study of the kinetics of	of Hydrolysis of Methyl Acetate			
4 I	Determination of Criti	ical Micelle Concentration (CMC) of a Surfactant.			
	Study of the Adsorption	on of acetic acid on Charcoal-verification of Freundlich's			
	-	lecomposition of H ₂ O ₂ .		6	0
		bert's Law of a colored solution			
8 I	•	KIn Value of an Acid-Base Indicator by Spectrophotometric			
9 I	Determination of Iso-	Electric Point of an Amino acid.			
10 T	To determine the disso	ociation constants of a polybasic acid using pH meter			
		List of Text Books/ Reference Books			
Advan	ced Physical Chemis	try Experiments: by Gurtu & Gurtu			
Selecte	ed experiments in Phy	ysical Chemistry by N. G. Mukherjee			
An Ad	lvanced Course in Pra	actical Chemistry by Ghoshal, Mahapatra, and Nad			
	(Course Outcomes (Students will be able to)			
CO1 : '	To learn basic analyti	ical techniques useful for engineering applications.		K2,	K3
CO2: technic		tion concentration and kinetics using advanced spectrosco	opic	K3,	K4
CO3 : '	To learn different phy	ysical parameters and understanding of Graph and diagram of	the		
experi	ment.			K2,	K5
CO4 :	Applications of spect	roscopic measurements.		K6	
CO5 : 1	Determine the dissoc	iation constants of a polybasic acid.		K6	

Integrated Master of Technology in Chemical Engineering and Multi-Disciplinary Minor (MDM) ICT Marathwada Campus, Jalna

Mapping of Course Outcomes (COs) with Programme Specific Outcomes (PSOs)								
		PSO1	PSO2	PSO3	PSO4	PSO5		
		K1 + K2	К3	K4 + K5	K5 + K6	K5		
CO1	K2, K3	3	2	2	2	2		
CO2	K3, K4	3	3	2	2	3		
CO3	K2, K5	3	3	3	3	3		
CO4	K6	3	3	3	3	3		
CO5	K6	3	3	3	3	3		
Course	K6	3	3	2	3	3		

3, Strong Contribution; 2, Moderate Contribution; 1, Low Contribution; 0, No Contribution K, Knowledge-level from cognitive domain; A, Affective domain, S, Psychomotor domain

Semester VI

Course C	Code: SCT4354	Course Title: Computational Chemistry	Credi	ts 2		
Semester	:: VI	Total contact hours: 30	Т	Р		
	Total contact nours: 50		0	0		
		List of Prerequisite Courses				
Standard (SCT435		ics (Calculus and Matrix Algebra), Chemistry I, II, Organ	ic Sy	ynthesis		
	Lis	st of Courses where this course will be prerequisite				
and 5 yea	rs IntM. Tech (or getting minors in Chemistry in for 4 years B. Tech (Chemical Chemical engineering). This course will also useful for the fifth master's thesis for running quantum chemical calculations.	-	-		
	Descriptio	on of relevance of this course in the Int. M. Tech. Program				
prope studyi	rties of moderated ng the supramo	y gives the molecular level understanding of the chemical react d sized isolated molecules. While the molecular mechanics can be plecular and ensembles. The course will provide the mol us processes/reactions.	usec	l for the		
		Course Contents (Topics and subtopics)		Reqd. hours		
1	Introduction to	Computational Chemistry, Basic concepts		2		
2	wave particle of	ckground of quantum mechanics - failure of classical theory, duality, uncertainty principle, Postulates of Quantum mechanics, nterpretation of wave function, Schrodinger wave equation, Eiger erators.		4		
	Applications of	of Schrodinger equation – particle in a box, harmonic oscillator				
3		atoms - two particle problem, Schrodinger equation in spherical epresentation of orbitals, radial and angular plots, probability		4		
	Chemical bon	ding- Born-Oppenheimer approximation, LCAO and MO theory	7	4		
4	Electronic structure - methods: SCF Theory, Energy of Slater Determinant, Basis Set Approximation, Basis Sets, Hartree-Fock Approximation					
4				6		
	Basis Set App			6 4		

8	Applications in Drug Designing, QSAR, and Catalysis.	2				
	List of Text Books/ Reference Books	•				
1.	Alan Hinchliffe, Molecular Modelling for Beginners, 2nd Ed. Wiley & Sons, 2008.	•				
2.	Frank Jensen, Introduction to Computational Chemistry, Wiley & Sons, 1999.					
3.	Christopher J. Cramer, Essentials of Computational Chemistry: Theories and Mo	dels, 2nd				
	Ed. Wiley & Sons, New York.					
4.	Daan Frenkel & Berend Smit, Understanding Molecular Simulation, AP, NY, 2002	2.				
5.	Andrew R. Leach, Molecular Modelling: Principles and Applications, 2nd Ed., Pren	tice Hall,				
	2001.					
6.	James E. House, Fundamental of Quantum Chemistry, 2nd Ed. Academic Press, 20	004.				
	Course Outcomes (Students will be able to)	-				
CO1	Define the computational techniques currently used to predict the structure and	K1, K2				
COI	properties of molecules	K 1, K 2				
	Apply semi-empirical / ab initio techniques to model structure and properties of	17.0				
CO2	molecules	K3				
	Apply molecular dynamics techniques for modelling larger systems and elucidate					
CO3	their properties	K3, K4				
CO4	Compare the output of the various computational methods to explain the	K5				
	experimental observations					
CO5	Choose the optimum level of theory for computing properties of the systems	K5, K6				
<u> </u>	Design the computational protocol for predicting the outputs of chemical	VC				
CO6	reactions and processes	K6				

Mapping of Course Outcomes (COs) with Programme Specific Outcomes (PSOs)									
		PSO1	PSO2	PSO3	PSO4	PSO5			
		K1+K2	K3	K3+K4	K5	K5			
CO1	K1, K2	3	0	2	1	1			
CO2	K3	3	1	2	1	2			
CO3	K3, K4	3	1	2	2	2			
CO4	K5	3	1	2	2	2			
CO5	K5, K6	3	2	2	2	2			
CO6	K6	3	2	2	2	2			
Course	K6	3	2	2	2	2			

3, Strong Contribution; 2, Moderate Contribution; 1, Low Contribution; 0, No Contribution K, Knowledge level from cognitive domain; A, Affective domain; P, Psychomotor domain.

Semester VII

Course	Code:SCT4355	Cour	se Title: C	ranoma	tallic C	homist	w ord	atolygic	C	redit	ts = 2
				J		nemist	ry and		L	Т	Р
Semester:	VII	Total	contact h						2	0	0
				Prerequisi							
Applied C	Chemistry-I (CH	IT4151)	Applied C	Chemistry-	-II (CHT	(4152)					
	List	t of Co	irses when	re this cou	urse will	l be pro	erequisi	te			
engineerii	se will require for ng) and 5 years 1 IntM. Tech stud	IntM.	Tech (Ch	emical eng	gineerin	g). Thi	s course				
	Descripti	tion of re	elevance of	this course	e in the	Int. M.	Tech. Pi	ogram			
firth yearorganicCO₂ utilImporta	ering) and 5 years ar IntM. Tech a transformations lization and depo- antly, to acquaint	student s and ch oolymerint the stu	s during the mical engineering the second se	neir master gineering 1	er's thesi reaction	is to un s such a	derstand as Envir	l the adva onment re	emec	d cata liatio	alytic on for basis
				vn in aca							allow
	s to appreciate t	the scie	nce behind	l how cata	alytic pro	ocesses				is.	
	s to appreciate t	the scie urse Co rties of (ctron co	nce behind ntents (To Drganomet inting in re	l how cata opics and stallic Com eactions, B	llytic pro subtopi nplexes: Bridged o	ocesses cs) 18- ele	help exp	bedite syn			urs
students	s to appreciate t Cou General Propert limitation, Elect	the scie urse Co rties of 0 ctron con ive-Diss π -Boun nd alkyn ene com	nce behind ntents (To Organomet Inting in re occiative m d Ligands ne interact plexes. Zie	how cata pics and tallic Com eactions, B echanisms : Backbon ions. Alke egler-Natta	subtopi subtopi nplexes: Bridged o s nding co ene and a Polym	ocesses cs) 18- ele comple: oncept Alkyne	help exp ctron ru xes, Me for exp	le and its tal-metal laining exes allyl		is. Hot	urs 6
students	s to appreciate t Cou General Propert limitation, Elect bond. Associativ Complexes of a metal-alkene an complexes, Dier Higher OlefinPr Carbonyls Com interactions. Ma Associative me Formylation (Ma	the scie urse Co tries of 0 ive-Diss π -Boun nd alkyn ene com Process), nplexes: Aetal co echanism	nce behind ntents (To Organomet Inting in re occiative m d Ligands ne interact plexes. Zie Catalytic Backbond mplexes on	I how cata pics and stallic Com- eactions, B- eactions, B- echanisms Backbor ions. Alke egler-Natta Hydrogen ling conce of CO lig- ution read	subtopi subtopi nplexes: Bridged of s nding co ene and a Polym nation ept for e gands, I ctions c	ocesses cs) 18- ele comple: oncept Alkyne erizatic xplainin Dissocia	help exp ctron ru xes, Me for exp comple on, SHO ng meta ative su al-CO c	le and its tal-metal laining exes allyl P (Shell l-carbony bstitution omplexes	Il .	is. Hou 6	urs 6 0
students 1 2 3	s to appreciate t Cou General Propert limitation, Elect bond. Associativ Complexes of a metal-alkene an complexes, Dier Higher OlefinPr Carbonyls Com interactions. Ma Associative me Formylation (Ma Roelen Process)	the scie urse Co rties of 0 ctron con ive-Diss π -Boun nd alkyn ene com Process). nplexes: Metal co echanism Monsant	nce behind ntents (To Organomet anting in re- cociative m d Ligands ne interact plexes. Zie Catalytic Backbond mplexes on n. Substit o Acetic	I how cata pics and stallic Com eactions, B echanisms : Backbon ions. Alke egler-Natta Hydrogen ling conce of CO lig ution reac Acid Syn	alytic pro subtopi aplexes: Bridged of s anding co ene and a Polym hation ept for e gands, I ctions co athesis),	ocesses cs) 18- ele comple oncept Alkyne erizatio xplainin Dissocia of Meta Hydro	help exp ctron ru xes, Me for exp comple on, SHO ng meta ative su al-CO c formyla	bedite syn le and its tal-metal laining exes allyl P (Shell l-carbony bstitution omplexes tion (Otto		is. Hou 6	urs 6 0
1 2	s to appreciate t Cou General Propert limitation, Elect bond. Associativ Complexes of a metal-alkene an complexes, Dier Higher OlefinPr Carbonyls Com interactions. Ma Associative me Formylation (Ma	the scie urse Co rties of 0 ctron con ive-Diss π -Boun nd alkynene com Process). nplexes: Monsant c chemin	nce behind ntents (To Organomet inting in re- ociative m d Ligands he interact plexes. Zie Catalytic Backbond mplexes on n. Substit o Acetic	I how cata pics and stallic Com eactions, B eachanisms : Backbon ions. Alke egler-Natta Hydrogen ling conce of CO lig ution reac Acid Syn meeting fu	subtopi subtopi aplexes: Bridged of s anding co ene and a Polym ation ept for e gands, I ctions co athesis),	ocesses cs) 18- ele comple oncept Alkyne erizatio xplainin Dissocia of Meta Hydro: halleng	help exp ctron ru xes, Me for exp comple on, SHO ng meta ative su al-CO c formyla	bedite syn le and its tal-metal laining exes allyl P (Shell l-carbony bstitution omplexes tion (Otto		is. Hou 6	urs 6 0
1 2 3	s to appreciate t Cou General Propert limitation, Elect bond. Associativ Complexes of a metal-alkene an complexes, Dier Higher OlefinPr Carbonyls Com interactions. Ma Associative me Formylation (Ma Roelen Process) Organometallic	the scie urse Co rties of 0 ctron con ive-Diss π -Boun nd alkynene com Process). nplexes: Monsant c chemin	nce behind ntents (To Organomet inting in re- ociative m d Ligands he interact plexes. Zie Catalytic Backbond mplexes on n. Substit o Acetic	I how cata pics and stallic Com eactions, B eachanisms : Backbon ions. Alke egler-Natta Hydrogen ling conce of CO lig ution reac Acid Syn meeting fu	subtopi subtopi aplexes: Bridged of s anding co ene and a Polym ation ept for e gands, I ctions co athesis),	ocesses cs) 18- ele comple oncept Alkyne erizatio xplainin Dissocia of Meta Hydro: halleng	help exp ctron ru xes, Me for exp comple on, SHO ng meta ative su al-CO c formyla	bedite syn le and its tal-metal laining exes allyl P (Shell l-carbony bstitution omplexes tion (Otto		is. Hou 6	urs 6 0 0

1	The organometallic chemistry of the transition metals, Robert H. Crabtree, John	Wiley &
	Sons	
2	Organometallic Chemistry of Transition elements: F. P. Pruchnik: Springer	
3	Organometallic reagents in Organic Synthesis: Paul R. Jenkins: Oxford Science I	Publication
	Course Outcomes (students will be able to)	
CO1	Learn the basic concepts of how catalysis works	K1, K2
CO2	Understand the basic properties for organometallic compounds	K1, K2
CO3	Explain the observed properties on the basis of structure and bonding in organometallics	K3, K4
CO4	Explain the experimental observations by proposing plausible mechanisms for catalytic reactions	K3, K4
CO5	Select the suitable organometallic compounds for applications as catalysts in organic transformations	K5
CO6	Develop synthesis and characterization protocols for organometallics based on the desired structure and applications	K6

Mapping of Course Outcomes (COs) with Programme Specific Outcomes (PSOs)									
		PSO1	PSO2	PSO3	PSO4	PSO5			
	-	K1+K2	K3	K3+K4	K5	K5			
CO1	K1, K2	3	3	2	1	1			
CO2	K1, K2	3	2	2	1	2			
CO3	K3, K4	2	1	3	2	2			
CO4	K3, K4	2	3	2	2	2			
CO5	K5	3	3	2	1	1			
CO6	K6	3	2	3	2	2			
Course	K6	3	2	2	2	2			

3, Strong Contribution; 2, Moderate Contribution; 1, Low Contribution; 0, No Contribution

K, Knowledge level from cognitive domain; A, Affective domain; S, Psychomotor domain

SYLLABUS OF THE CURRICULUM

for

MULTIDISCIPLINARY MINOR DEGREE

in

MATERIALS PHYSICS

[Under the National Education Policy (NEP 2020)]

2023-2024

Offer by

Institute of Chemical Technology Mumbai

Marathwada Campus, Jalna

(University Under Section-3 of UGC Act, 1956) Elite Status and Center for Excellence Government of Maharashtra

BT-5/6, Biotechnology Park, Additional MIDC Area, Chhatrapati Sambhajinagar (Aurangabad) Road, Jalna – 431 203.

Preamble

The interdisciplinary field of materials science has become crucial to many emerging areas for advancing technology and their applications. For example, materials science is extensively used in the semiconductor industry, Polymer industry, renewable energy, automotive and aerospace industry to name a few.

The courses offered in this Minor program in materials science will allow interested students to gain an understanding of the fundamental processes that govern materials behaviour and their pivotal role in modern technology. The students shall understand various materials properties, materials processing techniques, characterization methods and selection criterion in implementing engineering solutions, and thereby enhance their core competence as an engineer/technologist.

To summarize, the students will have the opportunity of combining knowledge of their major with the knowledge of materials, improve their marketability to employers, and consider higher studies in materials related fields.

Program specific Outcomes (PSOs) for Minor degree in Materials Science

Students will be able to;

PSO1	Understand the fundamentals of materials science required in addressing complex real- world problems related to use of materials in technological applications. Develop a sound understanding of materials properties from the Physico-chemical perspective and their dependence on various parameters. (Factual Knowledge) (K1)
PSO2	Comprehend knowledge and familiarity with optimization of experimental conditions required for a desired performance. Acquaintance about materials economy and geographical distribution of minerals/resources. (Conceptual Knowledge) (K2, K3)
PSO3	Select, design, synthesize , process, characterize, and thoroughly investigate materials from a functional viewpoint. Expertise in techniques of advanced experimental measurement, and analysis of results to determine physical quantities. (Procedural Knowledge) (K4, K5)
PSO4	Apply the skills for combining knowledge of their major with the knowledge of materials to improve their marketability, aware of the importance of sustainability and environmental impact in the context of using materials for technological applications, strictly adhere and commit to follow ethical principles and norms of the practice of physical and material sciences in all verticals of industry and society. (Metacognitive Knowledge) (K6)
PSO5	Cater to the needs of research organizations and academic institutes. Set-up their own ventures and generate employment, promote awareness in society

Intake capacity of the program:

To run the program, the minimum number of students enrolled should be 10, and the maximum limit enrollment is restricted to 25. In the event the number is less than the minimum capacity, the candidate shall be offered a seat in the next available minor degree programme.

Eligibility criteria for minor in Materials science:

Should have cleared (i) Applied Physics and (ii) Physics laboratory courses in First year Int M Tech.

Structure of Minor in <u>Materials Science</u>

		Struct	ure of Mino	r in Mater	ials S	cien	ce						
Sr	Course	Course	Semester	Credits	Но	ırs/w	veek	Μ	Marks distribu			arks distribution	ition
No	Code				L	Т	Р	CA	MS	ES	Total		
1.	SYT4351	Solid State Physics	III	2	2	-	-	20	30	50	100		
2.	SYT4352	Engineering	IV	2	2	-	-	20	30	50	100		
		Properties of											
		Materials											
3.	SYP4351	Basics Materials	IV	2	-	-	4	25	-	25	50		
		Laboratory											
4.	SYT4353	Electrical	V	2	3	-		20	30	50	100		
		properties of											
		polymers											
5.	SYT4354	Polymer	V	2	2	-	-	20	30	50	100		
		Nanocomposite											
6.	SYP4352	Materials	VI	2	-	-	4	25	-	25	50		
		Characterization											
		Laboratory											
7.	SYT4355	Introduction to	VII	2	2	-	-	20	30	50	100		
		Nanophysics and											
		Applications											

L= lecture; T= tutorial; P= Practical; CA = continuous assessment; MS: Mid-semester exam; ES= End-semester exam.

Pedagogy/Teaching methods:

I) Lecture/discussion:

These sessions will discuss the subject matters of the course

II) Experimental/Practical learning:

The sessions will involve practical exercises.

Evaluation:

Evaluation for the courses will be according to revised document of R.9 credit system and mode of evaluation; the link is provided below or visit the website (ictmumbai.edu.in) for the details. **Link:** https://www.ictmumbai.edu.in/uploaded_files/R_9(Revised)_Credit_system.pdf

A general evaluation process for theory and lab courses is given below

A. Theory Courses

- a. **Continuous Assessment Test (CAT):** Continuous assessment will vary from course to course; the instructor will decide the evaluation mode. Two to three CATs (Continuous Assessment Tests) will be conducted throughout the course, usually before and after the midsemester examination. These CATs will carry a total weightage of 20%. Depending on the instructor, assignments, case studies, group discussions, and seminars could also form part of the continuous assessment, additional creative assignment, and technical charts.
- b. Mid-semester exam: Total 30 Marks (theory paper)
- c. End-semester exam: Total 50 Marks (theory paper)

B. Practical Courses (Laboratory)

a. Continuous assessment: 50 Marks

Performing given experiments as per the instructions, submission of lab journal on time, viva voce, group/personal discussions, and quizzes can be part of continuous assessment. The course instructor will discuss the composition of marks for these at the beginning of the course.

b. End Semester: 50 Marks (Lab experiment performance followed by viva-voce examination)

Semester	Course Code	Subjects	Faculty
III	SYT4351	Solid State Physics	GMJ
IV	SYP4351	Basics Materials Laboratory	NPM
IV	SYT4352	Engineering Properties of Materials	GMJ/NPM
V	SYT4353	Electrical properties of polymers	GMJ
V	SYP4352	Materials Characterisation Laboratory	NPM
VI	SYT4354	Polymer nanocomposite	GMJ
VII	SYT4355	Introduction to Nanophysics and Applications	GMJ/NPM

Instructors (Tentative)

GJ: Prof. Girish Joshi, NM: Dr. Nagsen Meshram

Courses	K-Level	PSO1	PSO2	PSO3	PSO4	PSO5
Solid State Physics	K4	3	2	2	3	3
Basics Materials Laboratory	K4	3	2	1	1	1
Engineering Properties of Materials	K4	3	2	1	-	2
Electrical properties of polymers	K3	3	2	1	-	-
Materials Characterisation Laboratory	K4	1	1	2	3	3
Polymer nanocomposite	K4	3	2	1	-	2
Introduction to Nanophysics and Applications	K4	-	1	2	3	3

Mapping of All Courses of Materials Physics with PSOs

Semester III

Cours	e Code: SYT4351	Course Title: Solid State Physics		edits	
		-	L	Т	Р
Semest	ter: III	Total contact hours: 30	2	-	-
		List of Prerequisite Courses			
	d Physics-I (BST 4102), En natics-II (BST 4104)	gineering Physics (PST 4251), Mathematics-I (BST 4103	5),		
	Cour	rses where this course will be Prerequisite			
U	0 1	lls (SYT4352), Basics of Materials, Laboratory (SYP432), Introduction to Nanophysics and Applications (SYT4355)	51),	Mate	erial
	Description of r	elevance of this course in the Int. M. Tech. Program			
prope	erties of materials, which unde	Master of Technology program is crucial for understanding the rpins advancements in electronics, nanotechnology, and mater crystal structures, electronic band theory, and semiconductor .	ials s	cienc	e.
		se Contents (Topics and subtopics)		Reqo hour	
	Binding in solids				
1		, origin of attractive and repulsive interactions, types of on of Madelung constant for solids.		4	
	Crystal structure of solid	s: diffraction from periodic structures			
2	•	structures, introduction to reciprocal space and elastic as, atomic form factor, structure factor, experimental		1 0	
	Electronic structure of so	lids: band theory of solids			
3	of free electron models, E	metal: Drude's and Sommerfeld's models, inadequacies lectrons in a periodic potential: Schrodinger's equation Penny model, conduction in semiconductors.		1 0	
	Elastic and Thermal pro	perties of solids			
4	•	s of specific heat, Introduction to lattice vibrations and ves in a solid, Introduction to the concept of phonons, ductivity in solids.		0 6	
		Total		30	
		List of Reference Books			
1	Elementory Calid State Di				
1	Elementary Solid-State Pl	nysics: Principles and Applications, M. Ali Omar.			

2	The Oxford Solid State Basics, Steven H. Simon, Oxford Publishers							
3	Principles of Solid-state Physics, R.A. Levy, Academic Publishers							
4	Solid State Physics, N. Ashcroft and D. Mermin, Cengage, 1st edition							
5	Solid State Physics, A. J. Dekker, Prentice Hall.							
6	Electronic Properties of Materials, Rolf Hummel, 3 rd Ed. Springer.	Electronic Properties of Materials, Rolf Hummel, 3rd Ed. Springer.						
7	Introductory Solid-State Physics, H. P. Myers, Viva Publishers							
	Course Outcomes (students will be able to)							
CO1	Understand bonding in solids in the context of interaction potentials.	K2, K3						
CO2	Map periodic crystal structures in real space onto reciprocal space, and thereby understand the phenomenon diffraction in crystals.	K3, K4						
CO3	Describe the behavior of electrons based on the band theory of solids, and thereby understand conduction in metals and semiconductors.	K3, K4						
CO4	Correlate the elastic and thermal properties of solids to the concept of phonons	K4						
CO5	Understand the terminology encountered in research publications, presentations and advanced courses on solid state and material science topics	K2, K3, K4						

Mapping of course outcome (CO) to the program-specific outcome (PSO)									
		PSO1	PSO2	PSO3	PSO4	PSO5			
		K1+K2	К3	K3+K4	K5	K5			
CO1	K2	3	3	-	-	-			
CO2	K2	2	2	-	-	-			
CO3	K2	2	2	2	-	-			
CO4	K2	2	3	2	-	-			
CO5	K3	3	2	2	-	3			
Course	K4	3	2	2	3	3			

3, Strong Contribution; 2, Moderate Contribution; 1, Low Contribution; 0, No Contribution K, Knowledge level from cognitive domain; A, Affective domain; P, Psychomotor domain.

Semester IV

Course Code: SYP 4351		Course Title: Basic Materials Lab	Cree	dits =	- 2
		Course Thie, Dasie Materiais Lab	L	Τ	P
Semes	ter: III	Total contact hours: 30	-	-	04
		List of Prerequisite Courses			
	Applied Physics-I (BST	7 4102), Engineering Physics (PST 4251), Solid state			
	Physics (SYT4351), Eng	ineering Properties of Materials (SYT4352)			
	Cou	urses where this course will be Prerequisite			
	Electrical properties	of polymers (SYT4353), Materials Characterization			
	=	ntroduction to Nanophysics and Applications (SYT4355),			
	Engineering Properties o	f Materials (SYT4352)			
	Description of	relevance of this course in the Int. M. Tech. Program			
The Ba	asic Materials Lab course	e is crucial in a Master of Technology program as it pro	ovides	hand	s-or
experie	ence with material characte	erization techniques, essential for understanding material I	properti	ies.	
	Cour	rse Contents (Topics and subtopics)	Reqd	l. ho	urs
1	Young's Modulus -to d	letermine the young's modulus of given metal wire as a			
1	function different load.				
2	Dielectric Constant m	easurement- to determine the dielectric constant of			
2	materials as a function of	f thickness			
3		nt- determination of band gap of given semiconductor			
5	materials using four prob				
4		t- Determine the characteristics of PN junction diode with			
		d determine the band gap of semiconductor.	60	OHrs	
5	_	nent - determine the contact angle by sessile drop method,			
6	•	ermine the energy loss of ferromagnetic materials by BH			
	curve analysis	to determine the thermal conductivity of given materials			
7	using Lee's disc method	to determine the mermar conductivity of given materials			
8.		- study the solar cell characteristics			
9.	LDR study - study the cl				
		Total		60	
		List of Reference Books			
1.	Elementary Solid-State	Physics: Principles and Applications, M. Ali Omar.			
1.	publisher, 2017				
2.	The Oxford Solid State E	Basics, Steven H. Simon, Oxford Publishers, 2013			
3.	Materials Science and En	gineering: An Introduction by William Callister & David			
5.	Rethwisch., Wiley, 2013				
4.	Solid State Physics, N. A	shcroft and D. Mermin, Cengage Publishers, 2013			

5.	Solid State Physics, A. J. Dekker, Prentice Hall, 2000	
6.	Electronic Properties of Materials, Rolf Hummel, 3 rd Ed. Springer, 2013	
7.	Introductory Solid-State Physics, H. P. Myers, CRC press, 1997	
	Course Outcomes (students will be able to)	
CO1	Elastic, plastic, stress stain properties of materials explore practically to deploy for engineering application	K2, K3
CO2	Identify the dielectric materials to deploy for capacitor	К3
CO3	Distinguish between hydrophilic and hydrophobic nature of materials which are useful for various coating. Able to measure thermal conductivity of given solid materials.	K2, K3
CO4	Understood soft and hard magnetic properties of materials, useful for various domestic and industrial application	K2, K3, K4
CO5	Determine the photo-resistance of materials for sensor application. Student able to measure band gap of semiconductor also able to Evaluate the solar cell materials useful energy application	K2, K3, K4

Mapping of course outcome (CO) to the program-specific outcome (PSO)									
		PSO1	PSO2	PSO3	PSO4	PSO5			
		K1+K2	К3	K3+K4	K5	K5			
CO1	K2	3	2	-	-	-			
CO2	K2	2	2	-	-	-			
CO3	K2	2	2	2	-	-			
CO4	K2	2	3	2	-	-			
CO5	K3	2	2	-	-	1			
Course	K4	3	2	1	1	1			

3, Strong Contribution; 2, Moderate Contribution; 1, Low Contribution; 0, No Contribution K, Knowledge level from cognitive domain; A, Affective domain; P, Psychomotor domain.

Semester IV

Course Code: SYT4352		Course Title: Engineering Properties of Materials	Credi	its =	: 2		
Course					ł		
Semest	er: IV	Total contact hours: 30	02				
		List of Prerequisite Courses					
Applied	Physics-I (BST 4102), Eng	gineering Physics (PST 4251), Solid state Physics (SYT43	51)				
	Cours	es where this course will be Prerequisite					
	• •	(P4351), Materials Characterization Laboratory (SYP435 Introduction to Nanophysics and Applications (SYT4355		ctrio	cal		
	Description of re	levance of this course in the Int. M. Tech. Program					
• The co	ourse "Engineering Propert	ies of Materials" is crucial in a Master of Technology	progran	n as	i		
equip	s students with an in-dept	h understanding of the mechanical, thermal, electrical, a	and ma	gne	tic		
prope	erties of materials, essential	for advanced engineering applications.					
	Cour	se Contents (Topics and subtopics)	Reqd	•			
			hours	1			
1	Introduction, mechanics of	f time dependent properties of materials, Mechanical and					
	Electrical Properties of I	Materials: stress-strain behavior, Tensile, Flexural and		7			
	Impact properties, true str	ress and true strain, brittle and ductile materials, stress-					
	strain curve of single crys	stal, hardness, creep, fatigue, mechanism to improve the					
	mechanical properties and	fracture properties. Wear measurements.					
2	Electrical properties, cor	ductivity, dielectric properties, Impedance technique,	(5			
	Electromagnetic wave aba	sorption, transmission, and reflection -Vector analyzer,					
	Electro kinetics and zeta p	otential.					
3	Thermal properties of mate	erials, glass transition temperature, melting, crystallization					
		n temperature, thermal conductivity of materials, sample		7			
		on, softening temperature, dilatometer, study of					
	1 1	nd differential calorimeter.					
4	-	rials: Young' surface energy equation, affinity of liquids					
		erent techniques to calculate contact angle, goniometer,					
	sessile drop, dynamic mode. Surface characterization XPS, microscopy, AFM, etc.						
5.	Optical properties of mater	ials Exactions and defects, Refractive index, Dispersion,	4	4			
	Transmittance and Fluores	_					
		al bistability, Photosensitivity					
	Total		3	0			
	1	List of Reference Books	I				

	1) Engineering physics by V Rajendran, TMH	
	2) Materials science by V Rajendran TMH	
	3) Materials science by V Rangarajan, TMH	
	4) Surface Energy by M Aliokahazraei, Intech open	
	5) Surface wetting by KYeelaw and Hong Zhao, Springer	
	6) Materials Science and Engineering: An Introduction by William Callister &	
	David Rethwisch., Wiley, 2013	
	Course Outcomes (students will be able to)	
CO1	Understand the various mechanical and electrical properties of materials	K2
CO2	Students understand surface properties and characterization of materials.	K2
CO3	Students understand and apply logic of optical properties of materials and devices	K3
CO4	Students understand and apply thermal properties of materials for engineering	K3, K4
	applications.	
CO5	Students apply logic of mechanics of time dependent materials for various engineering properties.	K2

]	Mapping of c	course outcome ((CO) to the pro	ogram-specific	outcome (PSC))
		PSO1	PSO2	PSO3	PSO4	PSO5
		K1+K2	K3	K3+K4	K5	K5
CO1	K2	3	2	-	-	-
CO2	K2	2	2	-	-	-
CO3	K2	2	2	2	-	-
CO4	K2	2	3	2	-	-
CO5	K3	2	2	-	-	2
Course	K4	3	2	2	2	2

3, Strong Contribution; 2, Moderate Contribution; 1, Low Contribution; 0, No Contribution K, Knowledge level from cognitive domain; A, Affective domain; P, Psychomotor domain.

Semester V

Course Co	de: SYT4353 Course Title: Electrical properties of polymers	Cree	lits =	: 02
Course Co	Course The: Electrical properties of polymers	L	Τ	P
Semester:	V Total contact hours: 60	3	-	-
	List of Prerequisite Courses			
Applied Phy	ysics-I (BST 4102), Engineering Physics (PST 4251), Engineering Properties	of N	Mater	rial
(SYT4352),	Chemistry-I (BST4101)			
	Courses where this course will be useful			
	Polymer synthesis and Polymer Nanocomposite (SYT4354)			
	Description of relevance of this course in the Int. M. Tech. Program			
	is designed to provide students with a comprehensive understanding of the electric, focusing on fundamental concepts, characterization methods, and practical approximately and practical approximately approximatel	-	-	
	Course Contents (Topics and subtopics)	H	ours	;
	(Statistical theory of Design of Experiments)			
1	Introduction to polymers and electrical properties: Overview of polymers and		15	
1	their classifications, Influence of polymer structure on electrical properties,			
	Factors affecting electrical properties of polymers, Introduction to dielectric			
	materials, dielectric polarization mechanism, electrical conductivity of polymers,			
	charge carriers in polymers			
	Strategies to improve electrical properties of polymers: Blending strategies for		15	
	tailored electrical behavior, Impact of fillers on electrical properties, Role of			
	nanoparticles in enhancing electrical properties of polymers, Case studies and applications			
	Electronic conduction in polymers: Band theory of conduction, properties of		15	
_	semiconductors, hopping conduction, band theory applied to polymers,		15	
	measurement of electrical properties: Impedance spectroscopy, electrochemical			
	workstation, Vector network analyzer, Molecular Structure and Electrical			
]	Behavior: Relationship between polymer structure and electrical properties,			
]	Influence of side groups, chain length, and branching			
	Applications of polymers based on electrical properties: Polymer-based		15	
	electronic devices, Flexible electronics and organic semiconductors, Emerging			
1	trends in polymer electronics, Conductive polymer applications as capacitors			
	Total		60	
	List of Textbooks/ Reference Books			
	"Electrical Properties of Polymers" by John A. Manson and Leslie H. Sperling			
	Electrical properties of polymers edited by Donald A. Seanor			
3	Electrical properties of polymers by Tony Blethy and David bloor			

4	Physical properties of polymers prediction and control by Andrey A. Askadskill	
5	Dielectric polymer nanocomposites by J keith Nelson	
6	Electrical properties of polymers by Evaristo Riande, Ricardo Diaz-Calleja	
	Course Outcomes (students will be able to)	
CO1	Students understand the basic electrical properties of polymers and plastics	K1
CO2	Student understood the various strategies for the improvement of electrical properties of polymers	K2-K3
CO3	Students select actual techniques and model for the measurement of electrical properties and its significances	K4
CO4	Students identify the device properties of capacitor, electrodes, sensor	K3-K4
CO5	Student able to apply the knowledge for various characterization of electrical properties of polymers and plastics	K5-K6

]	Mapping of c	course outcome ((CO) to the pro	ogram-specific	outcome (PSC))
		PSO1	PSO2	PSO3	PSO4	PSO5
		K1+K2	К3	K3+K4	K5	K5
CO1	K2	3	2	2	1	1
CO2	K2	2	2	2	1	1
CO3	K2	2	2	2	-	1
CO4	K2	2	3	2	-	-
CO5	K3	2	2	-	-	-
Course	K4	3	2	1	-	-

CourseK4321-3, Strong Contribution; 2, Moderate Contribution; 1, Low Contribution; 0, No Contribution K, Knowledge
level from cognitive domain; A, Affective domain; P, Psychomotor domain.

	Semester VI				
Course Code: SYP 4352	Course Title: Materials Characterization Laboratory	aboratory Cree			
Semester: VII	Total contact hours: 60	L -	T -	P 4	
	List of Prerequisite Courses				
Applied Physics-I (BST 4 Engineering Properties of	4102), Engineering Physics (PST 4251), Solid state Physic	es (S	YT4.	351),	
	Courses where this course shall be useful				
Science and technology for	or deployment of materials, Introduction to material character	izati	on th	eory	
Description	n of relevance of this course in the Int. M. Tech. Program				
	developing innovative materials and improving existing or ry of these techniques ensures graduates are prepared for				
	Course Contents (List of Experiments)	Req	ld. h	ours	
	Structural properties: Exploring the crystal structure of materials using X- ray diffraction techniques				
	ties : Measurement and analysis of absorbance and naterials using UV-Visible spectrophotometer.		8		
3 of materials using	perties : Measurement and analysis of mechanical properties g a Universal testing machine (Tensiometer), Measurement operties of fluids using Rheometer		8		
4 Electrical proper concentration usin	rties: Estimation of the type of semiconductor and its Carrier ng Hall effect		8		
~ 1	endent Electrical properties of materials: Measurement of wo probe/four-probe technique.		8		
-	osition studies : Identification of functional group, analysis ons and chemical bonding using Fourier transform infra-red IR)		8		
7 Study of therm colorimetry (DSC	al properties of materials using differential scanning	g 4			
8 Growth of singl techniques.	e crystalline and polycrystalline material using simple		8		
	Total		60		
I	List of Reference Books				
1. Elementary Solid publisher, 2017	-State Physics: Principles and Applications, M. Ali Omar.				

Semester VI

 The Oxford Solid State Basics, Steven H. Simon, Oxford Publishers, 2013 Solid State Physics, N. Ashcroft and D. Mermin, Cengage Publishers, 2013 	
4 Calid State Diamine A. J. Dallan Dragting Hall 2000	
4. Solid State Physics, A. J. Dekker, Prentice Hall, 2000	
5. Electronic Properties of Materials, Rolf Hummel, 3 rd Ed. Springer, 2013	
6. Introductory Solid-State Physics, H. P. Myers, CRC press, 1997	
7. Materials Science and Engineering: An Introduction by William Callister &	
David Rethwisch., Wiley, 2013	
Course Outcomes (students will be able to)	
CO1 Configure, handle, and use advanced, research-grade experimental setups	K)
CO1 Used in the characterization of various properties of materials.	KZ
CO2 Choose appropriate analytical techniques needed to investigate different	
CO2 consister appropriate analytical techniques needed to investigate different K3	
Understand how various advanced characterization instruments are fully	V A
CO3 Controlled and operated using computers K3,	κ4
Use data analysis techniques to obtain relevant quantities using raw	<i>V5</i>
CO4 experimental data. K4,	NЭ
Understand the infrastructural requirements and the safety protocols required	V A
CO5 to house advanced characterization facilities in a research lab/industry. K3,	Λ4

Mapping of course outcome (CO) to the program-specific outcome (PSO)							
		PSO1	PSO2	PSO3	PSO4	PSO5	
		K1+K2	K3	K3+K4	K5	K5	
CO1	K2	-	-	2	3	3	
CO2	K2	-	-	2	3	3	
CO3	K2	-	-	2	3	3	
CO4	K2	-	1	2	3	3	
CO5	K3	-	1	2	2	3	
Course	K4	1	1	2	3	3	

3, Strong Contribution; 2, Moderate Contribution; 1, Low Contribution; 0, No Contribution K, Knowledge level from cognitive domain; A, Affective domain; P, Psychomotor domain

Semester V

Course	Course Code: SYT4354 Course Title: Polymer Nanocomposite	Credit		
Semester: VI Total contact hours: 30 List of Prerequisite Courses	Code: 51 14354 Course The: Polymer Nanocomposite		L	T
Semester	er: VI Total contact hours: 30		2	
	List of Prerequisite Courses			
Applied P	Physics-I (BST 4102), Engineering Physics (PST 4251), Solid state Physics (S	SYT4351), I	Engin	eerin
Propert	ties of Materials (SYT4352), Chemistry-I (BST4101), Electrical properties of	polymer (S	YT43	353)
	List of Courses where this course will be prerequisite			
This cours	se may be useful for the students who aim to explore in the material domain			
	Description of relevance of this course in the B. Tech. Program	n		
This is an	elective course which will give the interested students an exposure to gain	insights int	o the	uniq
properties	and behaviors of polymer nanocomposites, exploring the influence of nanofille	ers on polyn	ner ma	atrice
Processing	g of nano composites. Application of nanocomposites in real life.			
	Course Contents (Topics and subtopics)		Но	urs
1	Introduction to polymer nanocomposites: What is Nanotechnology, m	neaning of		
	nano, uniqueness of nano structured materials, classification of nanomaterials	als, Types		
	of nanocomposites, Polymer Matrix Nanocomposites, Ceramic	Matrix		7
	Nanocomposites, Metal Matrix Nanocomposites fillers and their propertie	-		
	scenario of nanocomposites, Challenges, and opportunities in polymer nano	composite		
	research			
2	Polymer nanocomposite processing techniques: aggregation, aggle			
	dispersion, sonication techniques used in nanocomposites, Solution Inte			
	Melt Intercalation: Thermoplastic nanocomposites, Elastomer Nanocompo			8
	Milling, Emulsion polymerization, In-Situ polymerization, Melt			0
	Electrospinning, Sol-gel methods Intercalation method, Direct Mixing of po	lymer and		
	Nanofillers			
3	Characterization of polymer nanomaterials: Mechanical properties,	2		
	mechanical analysis, tensile properties, flexural properties, heat			
	temperature, thermal stability, fire retardant properties, gas barrier p	-		-
	conductivity, optical transparency, biodegradability of biodegradable polym			7
	nanocomposites. Crystallization behavior and morphology of nanoco	-		
	Rheology, melt rheology and structure–property relationship). Interfacial i	nteraction		
1	in polymer nanocomposite Applications of polymer papersenters. High temperature applications	ong fing		
4	Applications of polymer nanocomposites: High temperature applications			
	retardant, flame-retardant nanocomposite applications, Thermoset nanoc for rocket ablative materials, carbon-carbon composites, Nanocomposites f	_		8
	fiber reinforced polymer matrix composites, Engineering applications of			

	nanocomposites, Current Trends and Future Prospects: Emerging research areas,					
	Future directions in polymer nanocomposite research					
	Total	30				
	List of Textbooks/ Reference books					
1	POLYMER NANOCOMPOSITES ": Processing, Characterization, and applications by	Joseph H.				
	Koo [publisher: Mcgraw Hill]					
2	Polymer Science - V. R Gowarikar, Wiley Eastern Ltd. New Delhi. John Wiley &sons.	+1986				
3	Polymer nanocomposite towards multi-functionality by Arvind Dasral, Zhoog Zhen Yu					
4	Fundaments of Polymer Science and Engineering - Anil Kumar & S.K. Gupta, Tata					
	Mc Graw Hill, New Delhi. 1978.					
5	Recent Advances in Polymer Nanocomposites; Editors: S. Thomas, G.E. Zaikov and S.V. Valsaraj,					
	CRC Press, 2009					
6	Progress in Polymers Nanocomposites Research Editors: Sabu Thomas, Gennady E. Zai	ikov Seeweb				
	site address: Novapublishers, 2009					
	Course Outcomes (students will be able to)					
CO1	Students will learn the basic concept of polymer nanocomposites.	K1-K2				
CO2	Students will be able to know the possible routes for the preparation of polymer nanocomposites.	K3				
CO3	Students understand the actual confirmation of polymer nanocomposites by various techniques	K4				
CO4	Students apply polymer NANO composites for real life deployable emerging applications.	K4, K5				
CO5	Understand the study of methods of polymerization reaction and their properties, advantages, disadvantages, modifications, and applications	K2, K3, K4				

Mapping of course outcome (CO) to the program-specific outcome (PSO)							
		PSO1	PSO2	PSO3	PSO4	PSO5	
		K1+K2	К3	K3+K4	K5	K5	
CO1	K2	1	-	2	3	3	
CO2	K2	1	2	2	3	3	
CO3	K2	-	2	2	2	2	
CO4	K2	-	2	2	2	2	
CO5	K3	-	2	2	2	2	
Course	K4	3	2	1	-	2	

3, Strong Contribution; 2, Moderate Contribution; 1, Low Contribution; 0, No Contribution K, Knowledge level from cognitive domain; A, Affective domain; P, Psychomotor domain.

Semester VII

	odo: SVT/255	Course Title: Introduction to Nanophysics and	Cr	edits	s 0 <mark>2</mark>	
Course C	oue: 5114355	Applications	L	Т	P	
Semester	: VII	Total contact hours: 30	02	-	-	
		List of Prerequisite Courses			<u> </u>	
	Applied Physics-I (BST 4102), Engineering Physics (PST 4251), Solid state				
	Physics (SYT4351),	Engineering Properties of Materials (SYT4352)				
	<u> </u> (Courses where this course will be useful				
	Materials Characteri	zation Laboratory (SYP 4352), Thin film and nanomaterials				
	synthesis processes					
	Description of	relevance of this course in the Int. M. Tech. Program				
• It brid	ges theoretical conce	pts with practical applications in various industries, fosterin	g inı	nova	tio	
and i	nterdisciplinary skills	s. This course is essential for those aiming to contribute	to a	dvar	icea	
techn	ological development	ts and research in nanotechnology.				
	C	ourse Contents (Topics and subtopics)	Hrs	s./W	eek	
	Introduction: Metal	l Nanoclusters, magic Numbers, modeling of nanoparticles,				
1	bulk to nano transitions; the effect of size reduction on the physical and chemical					
1	properties of mater	rials; properties of nanomaterials. Quantum Nature of	nical 6 e of phy: melt tion, 6 nods,			
	Nanoworld: dots, wi	res, well.				
	Physics based expe	erimental approaches to Nanofabrication: Lithography:				
	Patterning, Masks ar	nd Photolithography; High energy mechanical milling, melt				
	mixing; Evaporation	n-condensation method, ionized cluster beam deposition,		6		
	sputter deposition, A	LD, PVD, Chemical Vapor Deposition, pulse laser methods,				
	Chemical Reduction	Method, microemulsion, sol-gel method,				
	Characterization of	f Nanomaterials: Structural and chemical characterization:				
3	XRD, UV-visible, n	ear-infrared, SEM (Scanning Electron Microscope), TEM,		6		
Physic Physic Physic Physic Mater synthe I I I I I I I I I I I I I	STM and AFM mid	croscopy, photoluminescence, XPS, EXAFS, ESR, NMR				
	(Nuclear Magnetic R					
	-	ials: One-, two- and three-dimensional Nanomaterials, Band				
		variation, Carbon nanostructures: fullerenes, carbon				
4		anostructured materials, solid disordered nanostructures,		6		
		tilayers, metal nanoclusters, composite glasses, porous				
	silicon.					
		nomaterials: Nanofabrication, Nanoelectronics, quantum				
	-	vell devices, plasmon waveguides (optical devices), Energy		6		
5	sector, automobiles, Nanomaterials	space, defense, sports, and cosmetics. Commercial Status of				
		Total		30		
	<u> </u>	List of Reference Books	I			

1.	Introduction to Nanotechnology – C. P. Poole, Jr., and F.J. Owens, Wiley, 2003						
2.	Nanotechnology: Principles and Practices – S. K. Kulkarni, Springer, 2015						
3.	Nanostructures and Nanomaterials – G. Cao, Imperial College Press, 2004						
4.	Nanomaterials – A. S. Edelstein, R. C. Cammaratra, Institute of Physics, 1998						
5.	Nanostructures: Theory and Modelling – C. J. Delerue and M. Lannoo, Springer, 2010						
6.	Nanophysics and Nanotechnology- Edward L. Wolf, Wiley, 2006						
7.	Materials Science and Engineering: An Introduction by William Callister & David						
	Rethwisch., Wiley, 2013						
Course Outcomes (students will be able to)							
1.	Understand the importance of nanoscience and property variation with size.	K2					
2.	Know the different methods of synthesis based on requirements.	K3					
3.	Characterize the materials by understand the Working Principle and utilization						
	of characterization techniques						
4.	Know the properties of Special Nanomaterials and reason behind them						
5.	Understand the Applicability of Nanomaterials for commercial usage						

Mapping of course outcome (CO) to the program-specific outcome (PSO)								
		PSO1	PSO2	PSO3	PSO4	PSO5		
		K1+K2	К3	K3+K4	K5	K5		
CO1	K2	-	-	2	3	3		
CO2	K2	-	-	2	3	3		
CO3	K2	-	-	2	3	3		
CO4	K2	-	1	2	3	3		
CO5	K3	-	1	2	2	3		
Course	K4	-	1	2	3	3		

3, Strong Contribution; 2, Moderate Contribution; 1, Low Contribution; 0, No Contribution K, Knowledge level from cognitive domain; A, Affective domain; P, Psychomotor domain