Syllabus for Open Electives (OE) in

Integrated Master of Technology (Int. M. Tech.)
Major: Chemical Engineering
and Multidisciplinary Minor (MDM)

(Under the National Education Policy 2020)
(NEP 2020)
in
(2023-2024)

Offered by

INSTITUTE OF CHEMICAL TECHNOLOGY MUMBAI MARATHWADA CAMPUS, JALNA

(University Under Section-3 of UGC Act, 1956)

Elite Status and Center for Excellence Government of Maharashtra

BT-5/6, Biotechnology Park, Additional MIDC Area, Chhatrapati Sambhajinagar (Aurangabad) Road, Jalna: 431 203 (INDIA)

www.ictmumbai.edu.in, www.marj.ictmumbai.edu.in

Tel: (91-22) 3361 1111, Fax: 2414 5614

Syllabus for Open Electives (OE)

Under the New Education Policy (NEP 2020)

in

Biological Sciences

Offered by

INSTITUTE OF CHEMICAL TECHNOLOGY

(University Under Section-3 of UGC Act, 1956)
Elite Status and Center for Excellence

Government of Maharashtra

Nathalal Parekh Marg, Matunga, Mumbai 400 019 (INDIA)

www.ictmumbai.edu.in, Tel: (91-22) 3361 1111, Fax: 2414 5614

A. List of Open Electives offered by ICT MARJ on Biology

Subject Code	Semester	Subject	Credit	Hours/ Week		Marks for various Exams					
				L	T	P	CA	MS	ES	Total	
BST4251	III	Introduction to Biological Science	2	2	0	0	20	30	50	100	
BST4252	IV	Fundamentals of Biochemistry & Microbiology	2	2	0	0	20	30	50	100	

B. List of Faculty members who will be engaged in teaching elective courses

Dr. Joyita Sarkar (JS)

C. Faculty members associated with each elective

Sr No	Semester	Course Credits	Name of the course	Faculty
1	III	2	Introduction to Biological Science	JS
2	IV	2	Fundamentals of Biochemistry &	JS
			Microbiology	

D. Evaluation

Theory Courses

Continuous Assessment Test (CAT): Total 20

Flexible (Instructor specific); including but not limiting to Assignments, Quiz, problem statement, written test, presentation, short project, end of the class problem.

Mid semester: Total 30 Marks (Theory paper) End semester: Total 50 Marks (Theory paper)

	Course Code:	Course Title:	Cı	redits	2
	BST4251	Introduction to Biological Sciences	L	Т	P
	Semester: III	Total contact hours: 30	2	0	0
	Semester III	List of prerequisite courses		•	
	Fundamentals of R	iochemistry & Microbiology, Biochemical Engineering			
	Tundamentals of D.				
	T	List of courses where this course will be prerequisite			
	NA				
		Description of relevance of this course in the Int. M. Tech. Program			
Γo int	roduce the students to	o the principles of Biological Sciences and its application.			
		Course contents (topics and subtopics)	Requ	d. hou	ırs
1	Basic principle	s and microscopy prokaryotes, Cell architecture and organelles of microscopy, Light microscope (bright field, phase contrast, differential attrast, dark field, fluorescent, confocal, Electron microscope (scanning and		8	
	transmission) • Chemical Compother lipids, The	ponents of the cell, An outline of some of the types of sugar, Fatty acids and the 20 amino acids found in proteins, A survey of the nucleotides to of weak noncovalent bonds			
2	Protein Structure an			4	
	Primary, secon	dary, tertiary and quaternary structure of protein			
	Cell breakage a	and initial fractionation of cell extracts			
	Protein separati	ion by chromatography			
	Protein analysis by	electrophoresis			
3	DNA and Chromos	omes		6	
	• Structure of DN	NA, RNA and chromosomes			
		on, repair and recombination			
	• From DNA to I	Protein: Transcription and Translation			
	Control of Gene Ex	pression			
4	Cellular Energetics			4	
		Metabolism, Redox potentials			
		citric acid cycle			
		in Mitochondria and Chloroplasts			
5	Cell Division			4	
	_	Cell division and mitosis			
	 Meiosis 				
	Sex and Genetics				
6	Cell communities			4	
	Extracellular m	natrix			
	 Tissues 				
	• Stem cells				
	Cancer				
		Total		30	
		List of Textbooks/ Reference Books			
1		nis Bray, Karen Hopkin, Alexander D. Johnson, Julian Lewis, Martin Raff, Peter Walter. Essential Cell Biology, 2019			
2	Eduardo D.P.De Ro	obertis, E.M.P.De Robertis. Cell and Molecular Biology, 2017			
	1	Course Outcomes (students will be able to)			
CO1	Learn structural and and working of a ce	d functional aspects of cell; the basic unit of life, and its different organelles		K1	
		re and functional aspects of macromolecules of cells	-	K2	

Biological Sciences

CO3	Understand different types of cell metabolism, their regulation and correlate with cellular energetics	K2					
CO4	Learn the fundamental of cell division and cell communities	K1					
CO5	Understand the application of biological science in industry, social, etc.	K1					
K1: R	K1: Remembering, K2: Understanding, K3: Applying, K4: Analyzing, K5: Evaluating, K6: Creating						

	Introduction to Biological Sciences: BST4251 Mapping of Course Outcomes (COs) with Programme Outcomes (POs)											
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	2	2	1	1	2	1	1	2	1	1
CO2	3	2	2	2	1	1	2	1	1	1	1	-
CO3	3	2	2	2	1	1	2	1	1	1	-	-
CO4	3	2	2	2	1	1	2	1	1	1	1	1
CO5	3	2	2	2	1	1	2	1	1	1	-	-
	3	S-Strong	Contribu	tion; 2-M	Ioderate (Contribut	ion; 1-L	ow Contr	ibution;			

Mapping	Introduction to Biological Sciences: BST4251 Mapping of Course Outcomes (COs) with Programme Specific Outcomes (PSOs)										
	PSO1	PSO2	PSO3	PSO4	PSO5						
CO1	3	2	1	1	-						
CO2	2	1	2	1	-						
CO3	1	2	3	2	1						
CO4	2	2	3	2	1						
CO5	3	2	2	1	-						
3-5	3-Strong Contribution; 2-Moderate Contribution; 1-Low Contribution;										

	Course Code:	Semester IV Course Title:	C	redits	• •
	BST4252	Fundamentals of Biochemistry & Microbiology	L	T	P
	Semester: IV	Total contact hours: 30	2	0	0
	Semioscort 1	List of prerequisite courses		<u> </u>	
	Introduction to Biolog	gical Sciences (BST4251)			
	Introduction to Biolog	List of courses where this course will be prerequisite			
	Food Additives and T	Coxicology, Food Preservation & Packaging, Food Analysis Lab,			
	Biochemical Engineer	ring			
		scription of relevance of this course in the Int. M. Tech. Program			
Γo int	roduce the students to the	he Fundamentals of Biochemistry & Microbiology.			
		Course contents (topics and subtopics)	Req	d. hou	ırs
1		concepts of biochemistry and microbiology, Applications of biochemistry odd and pharmaceutical industries		2	
2	specificityEnzyme kinetics a	on, structure, function, nomenclature, classification. mechanism of action, and inhibition (competitive, non-competitive) latory strategies of enzymes		6	
3	Metabolic pathways			8	
	Glycolysis and phosphorylationFatty acid metabo	Citric acid cycle, Gluconeogenesis, Glycogen Metabolism, Oxidative olism, Lipid biosynthesis and amino acid catabolism, amino acid synthesis sis			
4	Inborn errors in metal	bolism; Hormones and its roles		2	
5	Introduction to Microl	biology		6	
	and fimbrae, FlageNutrient requirement	icrobial cell: Cell wall, Inclusion bodies, Capsule, slime layer & S-layer, Pili			
6	Microbial growth			6	
	Influence of envir Temperature, OxControl of microl	e, measurement of cell numbers and cell mass ronmental factors on growth: Extremophiles (Solute and water activity, pH, ygen concentration, Pressure) bial growth, physical and chemical antimicrobial agents therapy, Different types of antibiotics, Determining level of antimicrobial zone of inhibition.			
		Total		30	
	T	List of Textbooks/ Reference Books			
1	Prescott's Microbiolog McGraw-Hill Educati	gy 11th Edition, Joanne Willey, Kathleen Sandman, Dorothy Wood; ion (2019)			
2		M. Berg , Lubert Stryer , John Tymoczko , Gregory Gatto; WH Freeman;			
		Course Outcomes (students will be able to)			
CO1	Acquire basic and app	plied understanding of biochemistry and microbiology		K1	
CO2	Interpret enzyme kine	etics data and calculate enzyme parameters		K2	
CO3	Correlate metabolic p	athways with disorders		K2	
CO4	Auticulate microbiol	growth and its pathways		K1	

	Fundamentals of Biochemistry & Microbiology: BST4252 Mapping of Course Outcomes (COs) with Programme Outcomes (POs)											
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	3	3	2	2	2	3	1	1	1	-	-
CO2	3	3	3	2	2	2	3	1	1	2	1	2
CO3	3	3	3	2	2	2	3	1	1	2	1	2
CO4	3	3	3	2	2	2	3	1	1	1	2	1
	3-Strong Contribution: 2-Moderate Contribution: 1-Low Contribution:											

Fundamentals of Biochemistry & Microbiology: BST4252 Mapping of Course Outcomes (COs) with Programme Specific Outcomes (PSOs)										
	PSO1	PSO2	PSO3	PSO4	PSO5					
CO1	1	1	3	2	1					
CO2	1	1	2	2	-					
CO3	2	3	3	1	2					
CO4	1	3	3	1	-					
3-5	Strong Contribution; 2	-Moderate Contr	ibution; 1-Low Co	ontribution;	•					

......

Syllabus for Open Electives (OE)

Under the New Education Policy (NEP 2020)

in

Chemical Sciences

Offered by INSTITUTE OF CHEMICAL TECHNOLOGY

(University Under Section-3 of UGC Act, 1956) **Elite Status and Center for Excellence**

Nathalal Parekh Marg, Matunga, Mumbai 400 019 (INDIA) www.ictmumbai.edu.in, Tel: (91-22) 3361 1111, Fax: 2414 5614

Government of Maharashtra

Syllabus for Open electives in Chemical Sciences (Under the New Education Policy (NEP 2020)) in (2023-2024)

Chemical Sciences Page 8 of 25

List of Open Electives (Chemical Sciences)

Subject Code	Semester	Course Title	Credits	Hrs/Week			Marks for various Exam			Exams
				L	Т	P	CA	MS	ES	Total
CHT4251	III	Analytical Chemistry	02	2	0	0	20	30	50	100
CHP4251	III	Analytical Chemistry Laboratory	02	0	0	4	20	30	50	100
CHT4252	IV	Advanced Analytical Chemistry	02	2	0	0	20	30	50	100

Open Elective Course – Instructor

> Analytical Chemistry: Dr. M. M. Jadhao

> Analytical Chemistry Lab: Dr. M. M. Jadhao

Advanced Analytical Chemistry: Dr. M. M. Jadhao

Chemical Sciences Page 9 of 25

		Semester III	~	34.	_		
	Course Code:	Course Title:		redits	1		
	CHT4351	Analytical Chemistry	L	Т	P		
	Semester: III	Total contact hours: 30	2	0	0		
		List of prerequisite courses					
	Standard XII Chem	istry					
		List of courses where this course will be prerequisite					
		prerequisite for Advance analytical Course (Sem IV), Design and Analysis of se is also required for In-plant training (IPT).					
		Description of relevance of this course in the Int. M. Tech. Program	1				
measu	rement and quality conte analysis is crucial	ital component of the Int. M. Tech. Program program, imparting essential skills introl. It equips students to excel in industries like pharmaceuticals and petroche for product quality and compliance. This course ensures a seamless integration oplications, preparing students for impactful contributions in chemical engineerin	micals of theo	, whe			
		Course contents (topics and subtopics)	Req	d. hou	ırs		
1	Quantitative Analys	ralytical Chemistry: Concepts: Accuracy, Precision, Qualitative and class, Analytical Perspective and Chemical Concentrations Laboratory Practices		4			
2	mode, variance, star	: Statistical Treatment of Experimental Results (definition of mean, median, ndard deviation, standard error) need for performing replicates/repeats, ssification and sources of errors, error propagation, scientific reporting data , error curves		4			
	Conventional Meth	nods of Analysis: Classical Techniques					
2	Volumetric and Gravimetric Methods						
3	Principle and applic	cations of titration Techniques: Colorimetric, Conductometric, Potentiometric, recipitation titrations	8				
	-	hods: Principles of Spectroscopy, Instrumentation: UV-Vis					
4		Applications: Practical Examples of UV-Vis Spectrophotometry		6			
	Chromatographic	Separation Methods:					
5	General Principle of			4			
	_	Thin Layer, Ion Exchange Chromatography					
	Modern Technique						
6	_	ntation, Applications		4			
	Timespie, instrumen	Total		30			
		List of Textbooks/ Reference Books					
1	Fundamentals of A	nalytical Chemistry by D. A. Skoog, D. M. West, F. James Holler and S. R.					
1	Crouch, Cengage L						
2		mental Analysis by D. A. Skoog, F. James Holler and S. R. Crouch, Cengage					
3	_	ds of analysis, B. Sivasankar, Oxford University Press					
4	Vogel's Textbook o 2009.	f quantitative chemical analysis, J. Mendham, Pearson Education; 6th edition,					
5		ry: A Chemist and Laboratory Technician's Toolkit, Aihui MaHam, Bryan M. ition, 2015.					
6		ds of Chemical Analysis, E.W. Ewing, McGraw Hill.					
	1	Course Outcomes (students will be able to)	1				
CO1	Demonstrate a solic	I understanding of foundational analytical chemistry concepts and principles.		K1			
CO2	Apply Good Labora	atory Practices (GLP) for reliable and reproducible analytical results, and enhancing accuracy.		K4			
	addressing cirors at	ethods for analyzing and interpreting experimental data.	<u> </u>	K4			

Chemical Sciences Page 10 of 25

CO4	Proficiently apply classical and titration techniques for practical analysis.	K4				
CO5	Gain proficiency in both classical and modern chromatographic separation methods, understanding their principles and applications.	K4				
K1. R	K1. Remembering K2. Understanding K3. Applying K4. Applying K5. Evaluating K6. Creating					

	Analytical Chemistry: CHT4351 Mapping of Course Outcomes (COs) with Programme Outcomes (POs)													
	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12													
CO1	CO1 3 2 2 0 1 1 3 1 1 1													
CO2 3 3 2 2 2 2 3 1 1 2 1 2												2		
CO3	1	1	1	0	1	1	3	1	1	2	1	2		
CO4	1	2	2	0	1	1	3	1	1	1	2	1		
CO5	2	2	2	1	3	3	3	1	1	1	1	1		
	3	S-Strong	Contribut	tion; 2-M	Ioderate (Contribut	tion; 1-L	ow Contr	ibution;					

Mapping (Analytof Course Outcomes	tical Chemistry: (COs) with Prog		Outcomes (PSOs)	
	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	2	1	2	2	1
CO2	1	1	1	2	1
CO3	2	2	2	1	2
CO4	3	2	1	1	1
CO5	2	1	2	1	2
3-S	trong Contribution; 2	-Moderate Contr	ibution; 1-Low Co	ontribution;	

Chemical Sciences Page 11 of 25

		Semester III			
	Course Code:	Course Title:	Cı	edits	2
	CHP4351	Analytical Chemistry Laboratory	L	T	P
	Semester: III	Total contact hours: 30	0	0	4
		List of prerequisite courses			
	Standard XII Chem	nistry			
		List of courses where this course will be prerequisite	•		
		prerequisite for Advance analytical Course (Sem IV), Design and Analysis of se is also required for In-plant training (IPT).			
	Γ	Description of relevance of this course in the Int. M. Tech. Program			
and qu analys	ality control. It equip is is crucial for produ	rital component of the Chem. Engg. program, imparting essential skills for precise ps students to excel in industries like pharmaceuticals and petrochemicals, where act quality and compliance. This course ensures a seamless integration of theoretic preparing students for impactful contributions in chemical engineering.	accura cal kn	ate owled	lge
		Course contents (topics and subtopics)	Req	l. hou	ırs
	 Determination To determine To determine Potentiometri mixture of aci Conductometri Determination Use of pH me isoelectric poi UV-Vis spect verification and Separation of Gas Chromato in a suitable s High pressure active ingredi 	ric titration: Determination of total dissolved sulphate in water sample in of critical micelle concentration (cmc) of a surfactant eter- Use of a pH meter to determine dissociation constant of an acid, int of an amino acid. roscopy: i) to find out the absorption maxima, ii) Beers Lambert Law and iii) concentration of a substance from a given sample. organic compounds by Thin layer chromatography. ography: Determination of concentration of a known organic compound olvent. e liquid Chromatography (HPLC) Determining the concentration of an ent in a marketed product, for Example: caffeine (food products), racetamol (pharmaceutical product), and the like.		for eactica	
		Total		30	
1	Instruments!/1	List of Textbooks/ Reference Books			
1		ods of Chemical Analysis, E.W. Ewing, McGraw Hill.			
3		ods of analysis, B. Sivasankar, Oxford University Press of quantitative chemical analysis, J. Mendham, Pearson Education; 6th edition,			
		Course Outcomes (students will be able to)			
CO1	Demonstrate practi	cal expertise in classical titration methods.		К3	
CO2	Apply principles of analysis.	spectroscopic and chromatographic methods for qualitative and quantitative		K4	
CO3	Able to clearly com	nmunicate the results of experimental work in oral and written formats.		K4	
CO4	Modify existing pro- limitations of curre	otocols or evolve robust analytical procedures / protocols to address the nt methods		K4	
K1: Re	emembering, K2: Un	derstanding, K3: Applying, K4: Analyzing, K5: Evaluating, K6: Creating			

Chemical Sciences Page 12 of 25

	Analytical Chemistry Laboratory: CHP4351 Mapping of Course Outcomes (COs) with Programme Outcomes (POs)													
	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12													
CO1	CO1 3 2 2 0 1 1 3 1 1 1													
CO2	CO2 3 3 2 2 2 2 3 1 1 2 1 2													
CO3	1	1	1	0	1	1	3	1	1	2	1	2		
CO4	CO4 1 2 2 0 1 1 3 1 1 1 2 1													
	3-Strong Contribution; 2-Moderate Contribution; 1-Low Contribution;													

Mapping o	Analytical (of Course Outcomes	Chemistry Labor (COs) with Prog	•	Outcomes (PSOs)	
	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	2	1	2	2	1
CO2	1	1	1	2	1
CO3	2	2	2	1	2
CO4	3	2	1	1	1

Chemical Sciences Page 13 of 25

		Semester IV			
	Course Code:	Course Title:	C	redits	2
	CHT4352	Advanced Analytical Chemistry	L	T	P
	Semester: IV	Total contact hours: 30	2	0	0
		List of prerequisite courses	•		
	Analytical Chemistry	7 (CHT4351)			
		List of courses where this course will be prerequisite			
		equisite for subjects such as Material Technology. It proves highly beneficial ents, particularly during their master's thesis, as it equips them with essential aracterizations.			
	L.	scription of relevance of this course in the Int. M. Tech. Program			
	als characterization. The	idents to advanced analytical techniques with a particular focus on techniques r he knowledge gained in the course will have relevance to many industrial and F		to	
		Course contents (topics and subtopics)	Req	d. hou	ırs
1	processes, energy dia	opy: Electronic transition, Jablonski diagrams: radiative and non-radiative agram, internal conversion, Frank Condon principle, Kasha's rule, and solvent ift, fluorescence quenching, lifetime and quantum yield. Application in cal industry.		6	
2	Thermal methods:				
	thermogravimetric ar Scanning Calorimetry	nethods of thermal analysis, Principles and instrumentation of nalysis (TGA), Differential Thermal Analysis (DTA) and Differential y (DSC), Interpretation of data – thermogram and information from affecting, thermogram, applications with examples, thermometric titrations,		8	
3	Structural analysis u	using X-ray diffraction:			
	Sources, Collimation	ray spectral lines, X-ray tube, X-ray emission, Absorptive apparatus: a, sample handling, wavelength dispersive devices, Energy dispersive devices, vice, Principle instrumentation, Bragg's law, crystal lattices, related is structure analysis		8	
4	Surface Analysis / Ir	maging Methods:			
	Electron microscopy,	, scanning electron microscopy (SEM) -solid and liquid sample preparation, e and examples of application for EDS and TEM		8	
	Principle, instrument	ation, and applications of Atomic Force Microscopy (AFM)			
		Total		30	
	<u>, </u>	List of Textbooks/ Reference Books			
1	Instrumental Method Wadsworth Publishir	s of Chemical Analysis by Willard, Dean and Merritte- Sixth edition, ng, USA			
2	<u> </u>	s by R. A. Day and A. L. Underwood, Prentice Hall of India, 2001.			
3	Crouch, Cengage Lea	<u>e</u> ,			
4	microanalysis, DOI:	book of sample preparation for scanning electron microscopy and X-ray 10.1007/978-0-387-85731-2			
5		ry Carter, Transmission electron microscopy, Volume- I, II, II & IV. Springer			
6	Electron microscopy	in the study of material, P. J Grundy, and G. A Jones, Edward Arnold			
	T	Course Outcomes (students will be able to)	Ι		
CO1	characterization	on of molecular emission techniques for biological and material		K3	
CO2		ental concepts related to surface analysis techniques		K1	
CO3		hermal methods for interpretation of data and practical applications		K3	
CO4	Demonstrate proficie	ency in structural analysis using SEM, TEM and X-ray diffraction.		K4	

Chemical Sciences Page 14 of 25

CO5	Analyze the data to identify any potential sources of errors and plausible ways to minimize the same	K4
K1: Re	emembering, K2: Understanding, K3: Applying, K4: Analyzing, K5: Evaluating, K6: Creating	

	Ma	pping of		nced Ana Outcom	•		•		mes (PO	s)					
	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12														
CO1	3	3	3	2	1	2	2	1	1	3	1	1			
CO2	2	1	2	2	1	1	3	2	1	2	2	1			
CO3	2	2	1	1	1	2	2	2	2	1	1	2			
CO4	2	3	2	3	2	3	2	2	1	1	2	2			
CO5	CO5 1 1 1 2 2 2 2 1 2 1 1 1 1														
	3	3-Strong	Contribu	tion; 2-M	Ioderate (Contribu	tion; 1-L	ow Contr	ribution;			-			

Advanced Analytical Chemistry: CHT4352 Mapping of Course Outcomes (COs) with Programme Specific Outcomes (PSOs)											
PSO1	PSO2	PSO3	PSO4	PSO5							
1	2	3	1	1							
3	2	2	3	2							
3	2	2	1	1							
2	2	2	1	1							
2	1	2	1	1							
	Course Outcomes	Course Outcomes (COs) with Prog	Course Outcomes (COs) with Programme Specific	Course Outcomes (COs) with Programme Specific Outcomes (PSOs)							

Chemical Sciences Page 15 of 25

Syllabus for Open Electives (OE)

Under the New Education Policy (NEP 2020)

in

Applied Mathematics

Offered by

INSTITUTE OF CHEMICAL TECHNOLOGY

(University Under Section-3 of UGC Act, 1956)

Elite Status and Center for Excellence

Government of Maharashtra

Nathalal Parekh Marg, Matunga, Mumbai 400 019 (INDIA) www.ictmumbai.edu.in, Tel: (91-22) 3361 1111, Fax: 2414 5614

Syllabus for Open electives in Chemical Sciences (Under the New Education Policy (NEP 2020)) in (2023-2024)

Open Elective offered by the Department of Mathematics:

Subject Code	Semester	Subject	Credits	Hours/ Week		Marks for various Exams				
				L	T	P	CA	MS	ES	Total
MAT4251	IV	Mathematical Modelling	2	2	0	0	20	30	50	100

Note:

This elective - Mathematical Modelling (MAT4251) is available for all Integrated M Tech students having cleared Mathematics-I, Mathematics-II from first year.

Course Instructor: Dr. Sandeep P Bhairat (SPB)

		Semester IV			
	Course Code:	Course Title:	Cı	redits	s 2
	MAT4251	Mathematical Modelling	L	T	P
	Semester: IV	Total contact hours: 30	2	0	0
		List of prerequisite courses	•	•	
	Mathematics – I (M	IAT4151), Mathematics – II (MAT4252)			
		List of courses where this course will be prerequisite			
	Nil				
	D	Description of relevance of this course in the Int. M. Tech. Program			
		dents to apply the theory of ordinary and partial differential equations to solve resiology, medicine etc.	al life	probl	ems
		Course contents (topics and subtopics)	Req	d. hou	urs
1	qualitative analysis	thematical modelling using linear and nonlinear discrete dynamical systems: of discrete dynamical systems, One dimensional map, two dimensional maps, ts and chaotic attractor, examples from engineering and natural sciences.		8	
2	Canonical forms, E Linearization and H	s of mathematical models governed by differential equations: Planar Systems: ligenvectors defining stable and unstable manifolds, Phase portraits, Hartman's theorem, Construction of phase plane diagram, Lyapunov functions, and engineering sciences		8	
3	and asymptotic stab	or mathematical models: Equilibrium points and their classifications, Lyapunov bility. Limit cycles: Existence and uniqueness of limit cycles in the plane, cles, Poincare- Bendixson theorem, worked examples from chemical kinetics, odels		8	
4		ation theory and applications to analyze mathematical models: diverse types of eir analysis using computational software tools		6	
		Total		30	
		List of Textbooks/ Reference Books			
1	Sandip Banerjee, 20 Edition, CRC Press	022, Mathematical Modelling: Models, Analysis and Applications, Second			
2	Stephen Lynch, 201	14. Dynamical Systems with Applications using MATLAB. Springer.			
3	Yuri A. Kuznetsov,	, 1998. Elements of Applied Bifurcation Theory, Second Edition, Springer.			
4	L. Perko, Differenti	ial Equations and Dynamical Systems, Vol. 7, 2 nd Ed., Springer Verlag.			
5		Sean Bohun, Samantha McCollum, Thea Van Roode, 2005, Mathematical studies approach, American Mathematical Society.			
6	James T Sandefur,	Discrete dynamical systems Theory and applications, Clarendon press.			
7	M W Hirsch and S	Smale - Differential Equations, Dynamical Systems, Academic.			
8		An Introduction to Dynamical Systems Continuous and Discrete, Second Mathematical Society, Rhode Island.			
9	Rudiger Seydel, Pra	actical Bifurcation and Stability analysis. Springer (3rd Ed).			
10	Alligood, Sauer, an Verlag New York.	d Yorke. Chaos: An Introduction to Dynamical Systems. Springer, Springer-			
		Course Outcomes (students will be able to)			
CO1	Construct mathema	tical models for real life problems		К3	
CO2	Analyze the qualita	tive features of mathematical models using techniques from dynamical systems		K5	
CO3	Perform local and g	global stability analysis of the mathematical models		K6	
CO4	Perform local and g	global bifurcation analysis for nonlinear systems.		K6	
CO5	Use symbolic math	ematical software to analyze the mathematical models		K6	

	Mathematical Modelling: MAT4251 Mapping of Course Outcomes (COs) with Programme Outcomes (POs)														
	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12														
CO1	CO1 3 3 3 2 1 2 2 1 1 3 1 1														
CO2 2 1 2 2 1 1 3 2 1 2 2 1															
CO3	2	2	1	1	1	2	2	2	2	1	1	2			
CO4	2	3	2	3	2	3	2	2	1	1	2	2			
CO5	1	1	1	2	2	2	2	1	2	1	1	1			
	3	S-Strong (Contribu	tion; 2-M	loderate (Contribut	tion; 1-Lo	ow Contr	ribution;						

Mapping of (natical Modelling (COs) with Prog	•	Outcomes (PSOs)	
	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	1	2	3	1	1
CO2	3	2	2	3	2
CO3	3	2	2	1	1
CO4	2	2	2	1	1
CO5	2	1	2	1	1
3-Stro	ng Contribution; 2	-Moderate Contri	ibution; 1-Low Co	ontribution;	

Syllabus for Open Electives (OE)

Under the New Education Policy (NEP 2020)

in

Physics

Offered by INSTITUTE OF CHEMICAL TECHNOLOGY

(University Under Section-3 of UGC Act, 1956)
Elite Status and Center for Excellence
Government of Maharashtra

Nathalal Parekh Marg, Matunga, Mumbai 400 019 (INDIA) www.ictmumbai.edu.in, Tel: (91-22) 3361 1111, Fax: 2414 5614

Syllabus for Open electives in Chemical Sciences (Under the New Education Policy (NEP 2020)) in (2023-2024)

Physics Page 20 of 25

<u>The maximum number of students</u> enrolling will be limited to 60 for any open elective offered by the Department of Physics.

Eligibility:

The students enrolled for a minor degree programme in Materials Science will <u>not be</u> <u>allowed</u> to take following open elective courses:

- 1. Applied Physics-II (MAT 1301)
- 2. Introduction to Materials Physics (MAT 1401)

Some of the courses have their **individual eligible criteria**, kindly check before enrolling.

	Open Electives offered by the Physics Department										
Sr. No.	Subject Code	Course	Credits	Semester	L	T	P				
1.	PST4251	Engineering Physics	2	III	2	-	-				
2.	PST4252	Introduction to Materials Physics	2	IV	2	-	-				

L= lecture; T= tutorial; P= Practical;

Physics Page 21 of 25

	Course Code:	Semester III Course Title:	Cı	redits	2
	PST4251	Engineering Physics	L	T	P
	Semester: III	Total contact hours: 30	2	0	0
		List of prerequisite courses			L
	10+2 level Physics,				
	10 · 2 ie · ei i ilysies,	List of courses where this course will be prerequisite			
	Materials Technolo	gy (Sem-VI), Materials Science Minor program courses (Sem-III - VII)			
		escription of relevance of this course in the Int. M. Tech. Program			
This c		dents to apply the knowledge of engineering physics.			
		Course contents (topics and subtopics)	Read	d. hou	ırs
1	photon concept, pho duality, Born's inter principle, Schroding	ics Introduction to quantum physics blackbody radiation, explanation using the otoelectric effect, Compton effect, DE Broglie hypothesis, wave-particle repretation of the wave function, verification of matter waves, uncertainty ger wave equation, particle in box, quantum harmonic oscillator, hydrogen erivation), tunnelling effect and scanning tunnelling microscopy, probe		10	
2	Fluid Mechanics 2 Pascal's law, absolu	.1 Basic concepts of density and pressure in a fluid, ideal and real fluids 2.2 atte pressure, and pressure gauges 2.3 Basic concepts of surface tension and tion of continuity, Bernoulli's equation 2.5 Viscosity, Newton's Law of tonian fluids		5	
3	numerical aperture	duction, optical fibre as a dielectric wave guide: total internal reflection, and various fibre parameters, losses associated with optical fibres, step and application of optical fibres.		4	
4	population inversion	ction to interaction of radiation with matter, principles and working of laser 4.2 n, pumping, various modes, threshold population inversion 4.3 types of lasers: ductor, gas 4.4 Holography and engineering applications		7	
5	transducers 5.2 Proj	troduction, Generation of ultrasound: mechanical, electromechanical pagation of ultrasound, attenuation, velocity of ultrasound and parameters ement of velocity 5.3 Applications of ultrasound		4	
		Total		30	
		List of Textbooks/ Reference Books			
1	Fundamentals of M	odern Physics, Robert Martin Eisberg, 1961, John Wiley.			
2	Fundamentals of Ph	ysics - Halliday, Resnick, Walker - 6th Edition - John Wiley			
3	Sears and Zeemans Education	ky's University Physics - Young and Freedman - 12th Edition - Pearson			
4	A Textbook of English Chand.	ineering Physics, MN Avadhanulu, PG Kshirsagar, TVS Arunmurthy, S.			
5	Engineering Physic	s - V Rajendran - 6th Edition - McGraw Hill Publishers			
		Course Outcomes (students will be able to)			
CO1	Understand basic co	oncepts of Quantum mechanics		K2	
CO2	Understand basic pr	rinciples of Fluid Mechanics.		К3	
CO3	Explain basics of op	ptical fibre analyzed the NA.		К3	
CO4	Understand the prin	ciple of LASER and classify the diverse types of LASERS		К3	
CO5	Understand the met concept for various	hod for generation of ultrasonic wave and its measurement. Understand the applications.		K2	
V 1 · D	_	derstanding, K3: Applying, K4: Analyzing, K5: Evaluating, K6: Creating			

Physics Page 22 of 25

	Engineering Physics: PST4251 Mapping of Course Outcomes (COs) with Programme Outcomes (POs)													
	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12													
CO1	3	3	2	2	2	2	3	2	-	-	2	1		
CO2	3	2	2	2	2	2	3	2	1	2	2	1		
CO3	3	2	2	2	2	3	2	2	-	-	2	2		
CO4	2	3	2	3	2	2	3	2	1	-	2			
CO5	3	2	2	3	2	3	2	2	2	1	1	1		
	3	S-Strong	Contribu	tion; 2-M	Ioderate (Contribut	tion; 1-Lo	ow Contr	ibution;					

Mapping of C		neering Physics: (COs) with Prog		Outcomes (PSOs)	
	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	2	2	2	3	2
CO2	2	2	2	3	2
CO3	2	2	3	2	2
CO4	3	2	2	3	2
CO5	3	2	3	2	2
3-Stroi	ng Contribution; 2	-Moderate Contri	bution; 1-Low Co	ontribution;	

Physics Page 23 of 25

	<u> </u>	Semester IV	ı		
	Course Code:	Course Title:		redits	2
	PST4252	Introduction to Materials Science	L	Т	P
	Semester: IV	Total contact hours: 30	2	0	0
		List of prerequisite courses	T		
	Applied Physics (P.	HT4151), Engineering Properties of Materials			
		List of courses where this course will be prerequisite			
	Introduction to Nan and Technology	ophysics and Applications, Introduction to Polymer Physics, Ceramic Science			
	D	Description of relevance of this course in the Int. M. Tech. Program			
This c	ourse enables the stu	dents to apply the knowledge of material Science.			
		Course contents (topics and subtopics)	Req	d. hou	ırs
1		properties of materials: Classification of materials: metals, intermetallic, unics, polymers, composites, silicates, carbon-based materials.		05	
		property correlations to classify materials. Significant properties of materials: s and their implications to mechanical behavior), physical (electrical, optical, rmal etc.		05	
2		materials and structures: Classification of smart materials, Components of a lications of smart materials.		05	
	•	ezo-resistivity, Electro strictive materials, Electro-rheological fluids, Chromic ve polymer, Shape memory alloys, Shape memory ceramics and polymers.		10	
		etostriction, Magneto rheological fluids, Materials for energy applications: conversion, and energy storage.		05	
		Total		30	
	•	List of Textbooks/ Reference Books	ı		
1	1) Materials Scienc Wiley, 2013	e and Engineering: An Introduction by William Callister & David Rethwisch.,			
2	Smart Structures an	d Materials by Brian Culshaw, Artech House Publishers, 2004			
3	Smart Structures by	Gauenzi, P., Wiley, 2009.			
4	Ultrasonic methods	and application by Jack Blitz., Newnes-Butterworth, 1971			
	•	Course Outcomes (students will be able to)			
CO1	Identify and classify properties.	y distinct types of materials based on their composition, structure, and		K4	
CO2	Understand the und	erlying principles governing the material properties.		K2	
CO3	Gain exposure to va	arious smart materials and their technological applications		K2	
CO4	Analyze correlation	is between properties of materials and their microstructures.		К3	
CO5	Select appropriate s	smart materials for specific applications		K4	
K1: Re	emembering, K2: Un	derstanding, K3: Applying, K4: Analyzing, K5: Evaluating, K6: Creating			

	Introduction to Materials Science: PST4252 Mapping of Course Outcomes (COs) with Programme Outcomes (POs)													
	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12													
CO1	3	3	2	2	2	3	3	3	3	2	2	2		
CO2	2	2	2	2	3	2	2	2	2	2	2	3		
CO3	2	2	3	2	2	2	2	2	2	3	2	2		
CO4	2	3	2	3	2	2	3	2	3	2	3	2		

Physics Page 24 of 25

CO5	3	3	2	3	3	3	3	3	3	2	3	3
	3	-Strong	Contribu	tion; 2-M	loderate (Contribut	ion; 1-Lo	ow Contr	ribution;			

ourse Outcomes	(COs) with Prog	ramme Specific (Outcomes (PSOs)									
PSO1 PSO2 PSO3 PSO4 PSO5												
3	3	2	2	2								
2	2	2	2	3								
2	2	3	2	2								
2	3	2	3	2								
3	3	2	3	3								
	PSO1 3 2 2 2 2 3 g Contribution; 2	PSO1 PSO2 3 3 2 2 2 2 2 2 2 3 3 3	PSO1 PSO2 PSO3 3 3 2 2 2 2 2 2 3 2 3 2 3 3 2	PSO1 PSO2 PSO3 PSO4 3 3 2 2 2 2 2 2 2 2 3 2 2 3 2 3 3 3 2 3								

Physics Page 25 of 25