Syllabus for Integrated Master of Technology (Int. M. Tech.) Major: Chemical Engineering and Multidisciplinary Minor (MDM)

(Under the National Education Policy 2020) (NEP 2020)

in

(2023-2024)

Offered by

INSTITUTE OF CHEMICAL TECHNOLOGY MUMBAI MARATHWADA CAMPUS, JALNA

(University Under Section-3 of UGC Act, 1956)

Elite Status and Center for Excellence Government of Maharashtra

BT-5/6, Biotechnology Park, Additional MIDC Area, Chhatrapati Sambhajinagar (Aurangabad) Road, Jalna: 431 203 (INDIA)

www.ictmumbai.edu.in, www.marj.ictmumbai.edu.in

Tel: (91-22) 3361 1111, Fax: 2414 5614

A. Preamble

The Institute revamped the syllabi of various courses in 2023 as per National Education Policy 2020. All the courses are credit based and the evaluation are grade based. The credit system is a systematic way of describing an educational programme by attaching credits to its components. The definition of credits is based on student workload, learning outcomes and contact hours. It is a student-centric system based on the **student workload** required to achieve the objectives of a programme. Each theory course consists of lectures and tutorials. During tutorial session it is expected that the problem solving, case studies, relevant real-life applications, student presentations, home assignments, or projects (individual or group) are discussed in presence of the teacher. Teacher can have the freedom to interchange lectures / tutorials depending upon the need. Each laboratory course consists of practical hours and/or extra lecture hours depending upon the need. The Institute gives emphasis on continuous evaluation with considerable freedom to the teacher in deciding the mode of evaluation of the students. It is desirable to revise the syllabi of various courses every 5-6 years. Accordingly, the syllabus for Integrated Master of Technology (Int. M. Tech.) program is being revised. The revised syllabus comes into effect for first year students from the academic year 2023-24.

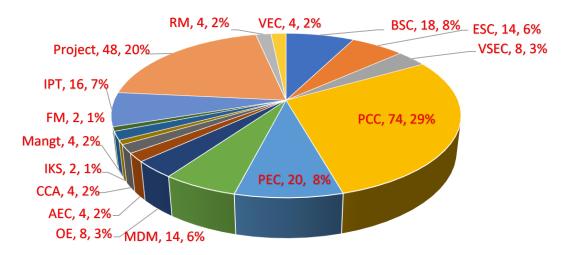


Figure 1. Distribution of various course types (in percentage) for the programme as per the guidelines of NEP 2020. This distribution does not include Honours courses having 18 credits in total.

Detailed discussions were conducted by the joint syllabus revision committee consisting of representative from both ICT Marathwada and ICT-IOC Campuses, and Department of Chemical Engineering, ICT Mumbai, and the following Programme Education Objectives (PEO), Programme Outcomes (PO) and Graduate Attributes (GA) were agreed upon. The revised syllabus is in line with the PEO, PO, and GA as noted below.

B. Programme Education Objectives (PEOs)

PEO1	Create awareness amongst students about the social/industrial demands and role of chemical engineer in the society.
PEO2	Incorporate a culture of research and Innovation by providing students with latest facilities.
PEO3	Provide a platform to the students to interact with leading teachers, scientists, and industry practitioners.
PEO4	Multi-faceted development of students through co-curricular and extra-curricular activities, participation in various events
PEO5	Build technical and managerial capabilities amongst students to meet the needs of society and industry.

C. Programme Outcome (POs)

PO1	Engineering knowledge	Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
PO2	Problem analysis	Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences
PO3	Design/ development of solutions	Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations
PO4	Conduct investigations of complex problems	Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
PO5	Modern tool usage	Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations
PO6	The engineer and society	Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
PO7	Environment and sustainability	Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development
PO8	Ethics	Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice
PO9	Individual and teamwork	Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
PO10	Communication	Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
P011	Project management and finance	Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments
PO12	Life-long learning	Recognize the need for and have the preparation and ability to engage in independent and lifelong learning in the broadest context of technological change.

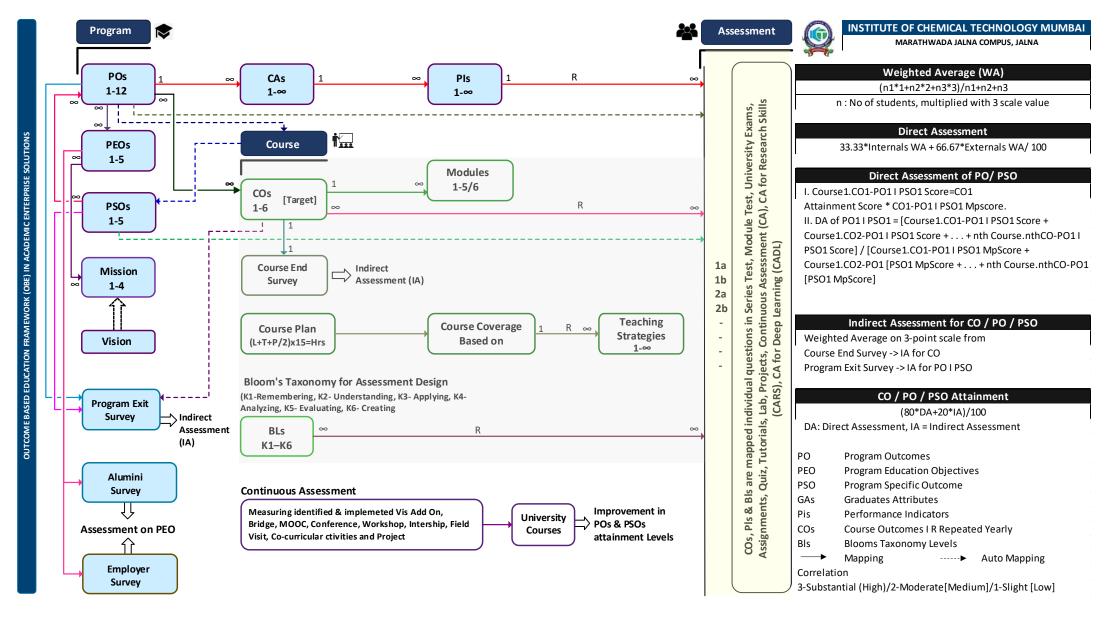
D. Programme Specific Outcome (PSOs)

The graduates will be able to:

PSO1	Factual	Understand terminology, basic concepts of science, mathematics, and
	Knowledge	fundamentals of engineering particularly in Chemical Engineering

PSO2	Conceptual Knowledge	Comprehend theories or models, choose appropriate model, equipment, or process to meet the specified needs considering feasibility, safety, health hazards, societal, economic, environmental or sustainability factors as well as critically analyze relationships between these factors
PSO3	Procedural Knowledge	Investigate, conduct experiments, research, or model as per standards, collect and analyze information based on field visits, analysis, and interpretation of data to prepare the valid technical reports.
PSO4	Metacognitive Knowledge	Apply Chemical Engineering knowledge in various sectors of industry, environment, life, and society, as well as develop solutions to complex problems applying principles and knowledge gained throughout the program or to develop new knowledge or methodologies through research
PSO5	Industrial and Societal Perspective	Cater to the needs of chemical industry, research organizations and academic institutes. set-up their own ventures and generate employment, promote awareness in society about Chemical Engineering profession.

E. Graduate Attributes (GAs)


- 1. Problem analysis and solving skills.
- 2. Familiar with usage of modern tools, techniques
- 3. Communication Skills
- 4. Capacity to analyze new concepts.
- 5. Capacity to analyze and interpret experimental data Capacity to analyze business trends.
- 6. Capacity to design, optimize and operate equipment and plants safely, economically, and effectively.
- 7. Design and Development of solutions to industrial and societal needs.
- 8. Skills related to Project Management and Economics
- 9. Skills to analyze scientific literature including patents.
- 10. Ethics

F. Vision

To be a vibrant educational institute with innovative programs and research culture in the field of chemical and allied sciences.

G. Mission

- 1. Produce trained engineers and problem solver research fellows.
- 2. Develop science and technologies of global standards having relevance to India as well as to local Industry from Marathwada region.
- 3. Develop entrepreneurship and provide incubation centres for encouraging Start-ups in Marathwada region.
- 4. Catalyse the process of generating wealth from knowledge creating bridge among industry, agriculture, environment, and society.

H. Syllabus Structure for Int. M. Tech.

Semester I

Course Code	Subjects	Course Type	Credits	H	Irs/We	ek	Marks for various Exams					
				L	T	P	C. A.	M. S.	E.S.	Total		
CHT4151	Applied Chemistry	BSC	2	2	0	0	20	30	50	100		
CHP4151	Applied Chemistry Lab	BSC	2	0	0	4	0	50	50	100		
MAT4151	Mathematics-I	BSC	4	3	1	0	20	30	50	100		
PHT4151	Applied Physics	BSC	2	2	0	0	20	30	50	100		
PHP4151	Applied Physics Lab	BSC	2	0	0	4	0	50	50	100		
EST4151	Structural Mechanics	ESC	2	2	0	0	20	30	50	100		
ESP4151	Structural Mechanics Lab	ESC	2	0	0	4	0	50	50	100		
ESP4152	Engineering Graphics with Computer Aided Modelling	VSEC	2	0	0	4	0	50	50	100		
HUP4151	Communication Skills- English	AEC	2	2	0	0	0	50	50	100		
HUP4152	OPEN Activity- Sports/ Fine arts/Yoga/ Music/NSS	CCA	2	0	0	4						
	Total		22	11	1	20						

Semester II

Course Code	Subjects	Course Type	Credits	H	Irs/We	ek	Marks for various Exams					
				L	T	P	C. A.	M. S.	E.S.	Total		
CHT4152	Applied Chemistry II	BSC	2	2	0	0	20	30	50	100		
MAT4152	Mathematics: II	BSC	4	3	1		20	30	50	100		
EST4153	Electrical Engineering and Basic Electronics	ESC	2	2	0	0	20	30	50	100		
ESP4153	Electrical Engineering and Basic Electronics Lab	ESC	2	0	0	4	0	50	50	100		
EST4152	Mechanical Engineering	ESC	4	2	1	0	20	30	50	100		
EST4154	Introduction to Chemical Engineering	ESC	2	2	0	0	20	30	50	100		
CEP4151	Material Balance and Energy Balance Calculations	PCC	2	0	0	4	0	50	50	100		
ESP4154	Engineering Applications of Digital computers	VSEC	2	0	0	4	0	50	50	100		
HUT4153	MOOC- Indian Knowledge System	IKS	2	2	0	0	20	30	50	100		
HUP4154	OPEN Activity- Sports/ Fine arts/Yoga/ Music/NSS	CCA	2	0	0	4						
	Total		24	13	2	16						

Note: Universal Human Values (UHV) an audit course to be taken in inter-semester break after Semester-II to be taken as MOOC course.

^{**} Students will undertake these co-curricular activities such as sports / Fine Arts / Yoga / Music / Literature etc administered through various clubs under Technological Association approved by Dean, Students Affairs.

Course Code	Subjects	Course Type	Credits	H	Irs/We	ek	Marks for various Exams					
				L	T	P	C. A.	M. S.	E. S.	Total		
CEP4171	IPT (4-6 months): Only for student opting for exit at certificate Level (Year 1)	IPT	8			40						
	Total		8			40						

Semester III

Course	Subjects	Course	Credits	H	Irs/We	ek	Mar	ks for va	rious E	xams
Code		Type				P	C. A.	M. S.	E. S.	Total
CET4251	Fluid Flow	PCC	2	1	1	0	20	30	50	100
CET4252	Heat Transfer	PCC	2	1	1	0	20	30	50	100
EST4155	Engineering Thermodynamics	PCC	2	1	1	0	20	30	50	100
CET4253	Industrial Chemistry and Reaction Engineering	PCC	4	3	1	0	20	30	50	100
CEP4251	Chemical Engineering Lab-I	PCC	2	0	0	4	0	50	50	100
XXT	From sciences and/or any other Engineering Discipline	MDM	2	2	0	0	20	30	50	100
XXT	From Basic Sciences (Chemistry/ Physics/Biology / Maths)	OE	2	2	0	0	20	30	50	100
XXP	From Basic Sciences (Chemistry/ Physics/Biology / Maths)	OE	2	0	0	4	0	50	50	100
XXT	From Basic Sciences (Chemistry/ Physics/Biology / Maths/ material Science)	OE	2	2	0	0	20	30	50	100
HUP4153	Modern Indian Language (Marathi / Hindi or Any other language will be chosen)	AEC	2	0	0	4	0	50	50	100
HUT4156	Basic Principles of Finance & Economics	Management	2	2	0	0	20	30	50	100
CET4257	Environmental Sciences	VEC	2	2	0	0	20	30	50	100
	Total		26	18	4	8				

Semester IV

Course Code	Subjects	Course Type	Credits	H	Irs/We	ek	Mar	ks for va	rious E	xams
				L	T	P	C. A.	M.S.	E.S.	Total
CET4254	Chemical Engineering Operations	PCC	4	2	2	0	20	30	50	100
CET4255	Process Safety	PCC	2	1	1	0	20	30	50	100
CET4256	Instrumentation and Process Dynamics	PCC	2	1	1	0	20	30	50	100
XXT	From sciences and/or any other Engineering Discipline	MDM	2	2	0	0	20	30	50	100
XXP	From sciences and/or any other Engineering Discipline	MDM	2	0	0	2	0	50	50	100
XXT	From Basic Sciences (Chemistry/ Physics/Biology / Maths/ material Science)	OE	2	2	0	0	20	30	50	100
CEP4252	Chemical Engineering Lab-II	PCC	2	0	0	4	0	50	50	100
HUT4157	Industrial Management	Management	2	2	0	0	20	30	50	100
ESP4157	Digital Computation in Emerging areas (AI/ML/DA)	VEC	2	0	0	4	0	50	50	100
HUP4158	Community Projects	Field Project	2	0	0	4	0	50	50	100
CETxxxx	Chemical Engineering Elective: I	PEC	4	3	1	0	20	30	50	100
	Total		26	13	5	14				

[#] Students will undertake community projects as individual or group related to study of societal technological activities through various organization such as Lions club, Teach India, Marathi Vidnyan Parishad, CSR projects outsourced by various industries, ISR activities administered through Technological Association approved by the Dean, Student Affairs.

Course Code	Subjects	Course Type	Credits	Hrs/Week			Marks for various Exams				
				L	T	P	C. A.	M.S.	E. S.	Total	
CEP4272	IPT (4-6 months): Only for student opting for exit at Diploma Level (Year 2)	IPT	8			40					
	Total		8			40					

Semester V

Course	Subjects	Course	Credits	H	Irs/We	ek	Mar	ks for va	rious E	xams
Code		Type								
			_	L	T	P	C. A.	M. S.	E.S.	Total
CET4351	Chemical Reaction Engineering	PCC	2	1	1	0	20	30	50	100
CET4352	Momentum Transfer	PCC	2	1	1	0	20	30	50	100
CET4353	Chemical Engineering Thermodynamics	PCC	4	3	1	0	20	30	50	100
CEP4253	Chemical Engineering Lab: III	PCC	2	0	0	4	0	50	50	100
CEP4255	Process Simulation Lab: I	PCC	2	0	0	4	0	50	50	100
CETxxxx	Chemical Engineering Elective-II	PEC	4	3	1	0	20	30	50	100
CETxxxx	Chemical Engineering Elective-III	PEC	4	3	1	0	20	30	50	100
XXT	From sciences and/or any other Engineering Discipline	MDM	2	1	1	0	20	30	50	100
XXP	From sciences and/or any other Engineering Discipline	MDM	2	0	0	2	0	50	50	100
CET4361	Honors Course -1/Research-1	PCC	4	3	1	0	20	30	50	100
	Total		28	15	7	10				

Semester VI

Course Code	Subjects	Course Type	Credits	F	Irs/We	ek	Mar	xams		
				L	T	P	C. A.	M.S.	E. S.	Total
CET4362	Honors Course 2/Research-2	PCC	4	3	1	0	20	30	50	100
CET4354	Chemical Process Control	PCC	2	1	1	0	20	30	50	100
CET4356	Separation Processes	PCC	2	1	1	0	20	30	50	100
CET4357	Heat Transfer Equipment design	PCC	2	1	1	0	20	30	50	100
CETxxxx	Chemical Engineering Elective-IV	PEC	4	3	1	0	20	30	50	100
CET4363	Honours Course-3/Research-3	PCC	4	3	1	0	20	30	50	100
XXT	From Sciences and/or any other Engineering Discipline	MDM	2	1	1	0	20	30	50	100
CEP4256	Process Simulation Lab-II	VSEC	2	0	0	4	0	50	50	100
CEP4254	Chemical Engineering Lab-IV	PCC	2	0	0	4	0	50	50	100
CET4358	Chemical Project Economics	PCC	2	2	0	0	20	30	50	100
CET4373	IPT (after Semester VI exams for Eight weeks)	IPT	4	0	0	0				
	Total		30	15	7	8		•		

Semester VII

Course	Subjects	Course	Credits	Н	Irs/We	ek	Mar	ks for va	rious E	xams
Code		Type								
				L	T	P	C. A.	M.S.	E.S.	Total
CET4451	Chemical Process Development and Engineering	PCC	3	2	1	0	20	30	50	100
CET4452	Chemical Industrial Management	PCC	2	2	0	0	20	30	50	100
CETxxxx	Chemical Engineering Elective V	PEC	4	3	1	0	20	30	50	100
CEP4451	Chemical Process Equipment Design and drawing	PCC	2	0	0	4	0	50	50	100
CET4364	Honours Course-4/Research-4	PCC	2	2	0	0	20	30	50	100
CET4365	Honours Course-5/Research-5	PCC	4	3	1	0	20	30	50	100
XXT	From sciences and/or any other Engineering Discipline	MDM	2	2	0	0	20	30	50	100
CEP4452	Literature Review	RM	2	1	0	2	0	50	50	100
CEP4453	Design and Analysis of Experiments	RM	2	1	0	2	0	50	50	100
CEP4461	Design Project - I	Project	4	0	0	8	20	30	50	100
	Total		27	16	3	16				

Semester VIII

Course Code	Subjects	Course Type	Credits	H	Irs/We	ek	Mar	ks for va	rious E	xams
			_	L	T	P	C. A.	M.S.	E.S.	Total
CEP4474	IPT (4-6 months)	IPT	12	0	0	40				
	Total		12			40				

Semester IX

Course Code	Subjects	Course Type	Credits				Mar	ks for va	rious E	xams
				L T P		C. A.	M. S.	E.S.	Total	
CET4551	Advanced Transport Phenomena	PCC	3	2	1	0	20	30	50	100
CET4552	Advanced Separation Processes	PCC	3	2	1	0	20	30	50	100
CET4553	Advanced Reaction Engineering	PCC	3	2	1	0	20	30	50	100
CET4554	Advanced Mass transfer	PCC	3	2	1	0	20	30	50	100
CEP4563	Thesis	Research	10	0	0	40				
	Total		22	8	4	40				

Semester X

Course Code	Subjects	Course Type	Credits	H	Irs/We	ek	Mar	ks for va	rious E	xams
			_	L	T	P	C. A.	M.S.	E.S.	Total
CEP4564	Thesis	Research	22	0	0	40				
	Total		22			40				

BSC: Basic Science Course

ESC: Engineering Science Course
PCC: Program Core Course
PEC: Program Elective Course

MDM: Multi-disciplinary Minor: Different discipline of engineering or different faculty altogether OE: Open Elective: To be chosen Compulsorily from faculty other than major discipline

VSEC: Vocational and Skill Enhancement Course: Hands on training corresponding to major/minor

AEC: Ability Enhancement Course: English 2 credit, Modern Indian Language 2 credit IKS: Indian Knowledge System: Indian Architecture/ Maths/ Medicine/ Technologies

VEC: Value Education Course: e.g. Understanding India, Environmental Science, Education, Digital and Tech solution

RM: Research Methodology

CCA: Co-curricular activities: Health and wellness/ Yoga/ Sports/ Cultural activities/ NSS/ NCC/ Applied visual

performing arts

Bachelor's Eng./ Tech. Honor's Degree

The Bachelor of Chemical Engineering Honours Degree programme with a multi-disciplinary degree Minor degree enables a student to take up five-six additional courses of 18 to 20 credits in the Chemical Engineering and allied disciplines distributed over semesters III to VIII. The decision regarding the distribution of these 18-20 credits over these semesters will be taken by Academic Authorities of University.

Eligibility for Int. M. Tech. with Honors or Research Degree program:

Eligibility for admission to the Bachelor of Chemical Engineering with Double Minor/ Honors /Research shall be a Minimum CGPA of 7.5 after the Fourth semester for Bachelor of Chemical Engineering Degre as per UGC guidelines:

Honors Courses: (ICT Marathwada Campus will recommend Honors courses to be taken by the students. These could typically be the following.

Honors - I: Biochemical Engineering

Honors - II: Multiphase Reaction Engineering

Honors - III: Mathematical Methods & Optimization in Chemical Engineering

Honors - IV: Refinery Science and Engineering Honors - V: Catalytic Science and Engineering

Honors: VI: Statistical Thermodynamics

Bachelor's Eng./ Tech. Honours with Research Degree in Chemical Engineering

Under Bachelor of Technology (Major: Chemical Engineering) with Research Degree in chemical Engineering with a Multidisciplinary Minor degree, the students will work on a research project or dissertation for additional 18 credits in the Third and Fourth years in Chemical Engineering and allied subjects. The decision regarding the distribution of 18 credits for Research Project in Semesters VII and VIII of the Fourth Year will be taken by Academic Authorities of University.

Multidisciplinary Minor Degree will be offered to the Chemical Engineering students in

- (a) Food Technology
- (b) Pharmaceutical Chemistry & Technology
- (c) Lipid Engineering
- (d) Polymer and Materials Engineering
- (e) Energy Technology
- (f) Petroleum and Petrochemicals Technology
- (g) Material Physics
- (h) Chemical Sciences

EXIT Options

Based on the National Education Policy guidelines, the students have an option of exiting at each level of their four-year program. Student will get certificate after 1st year, diploma after second year and BSc (Tech/Eng) after third year.

Sr. No.	Exit Year	Activity to be completed for the option of an exit	Credits	Duration (No. of Weeks)
1	1 st Year (After Semester II)	8 Credit course workshop or chemistry lab (after Semester II)	8	8 weeks
2	2 nd Year (After Semester IV)	Certificate Course in Practice of Chemical Engineering (CCPCE)	8	8 weeks
3	3 rd Year (After Semester VI)	In-plant training	8	8 weeks

The exit paths for the program were discussed and resolved to be as follows:

Exit Option (Semesters)	Nomenclature of Exit Outcome
Year 1 (2 Semesters)	Certificate (Chemical Engineering)
Year 2 (4 Semesters + IPT)	Diploma (Chemical Engineering)
Year 3 (6 Semesters + IPT)	B. Sc. (Chemical Engineering)
Year 4 (8 Semester + IPT)	 B. Tech. (Major: Chemical Engineering, MDM minors) B. Tech. with Honors and Minor (Major: Chemical Engineering, MDM minors) with option for 1 year M. Tech. Degree
Year 5 (10 Semesters)	• M. Tech. (Major: Chemical Engineering, MDM minors), one year [+ B. Tech. with Honors and Minor (Major: Chemical Engineering, MDM minors) with option for 1 year M. Tech. Degree]

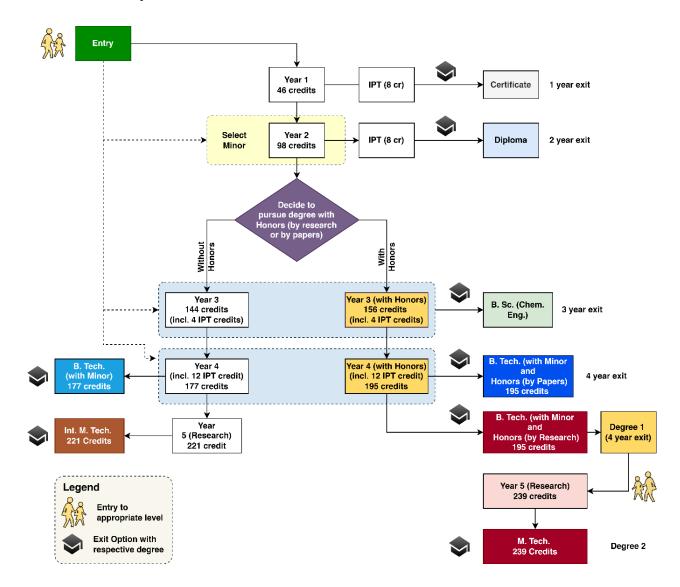


Figure 2. A map of options available for entry to Integrated Master of Technology in Chemical Engineering.

I. Summary of Mapping of Subject Course Outcomes (COs) with Programme Outcomes (POs))

Sem	Course	Course Name	Course		Map	ping of	Course	Outcon	nes (CO	s) with	Progra	mme Oı	itcomes ((POs)	
	Code		Type	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
			Firs	st Year											
I	CHT4151	Applied Chemistry	BSC	3	2	1	1	2	-	-	-	-	1	1	1
	CHP4151	Applied Chemistry Lab	BSC	3	3	1	2	2	1	-	-	-	2	2	1
	MAT4151	Mathematics-I	BSC	3	2	2	2	2	2	2	-	-	2	1	1
	PHT4151	Applied Physics	BSC	3	3	2	1	1	1	-	1	-	1	1	1
	PHP4151	Applied Physics Lab	BSC	3	1	1	2	1	-	-	-	-	1	-	-
	EST4151	Structural Mechanics	ESC	3	2	2	1	1	2	1	-	-	2	-	-
	ESP4151	Structural Mechanics Lab	ESC	3	1	1	-	-	-	-	-	-	1	-	-
	ESP4152	Engineering Graphics with Computer Aided Modelling	VSEC	2	1	1	1	2	-	1	-	-	1	1	1
	HUP4151	Communication Skills- English	AEC	-	-	2	1	1	1	-	-	-	3	1	-
	HUP4152	OPEN Activity- Sports/ Fine arts/Yoga/ Music/NSS	CCA	-	-	-	-	-	-	-	3	3	-	3	-
II	CHT4152	Applied Chemistry II	BSC	3	2	1	1	2	-	-	-	-	2	2	-
	MAT4152	Mathematics: II	BSC	3	2	1	2	2	1	-	-	-	-	1	1
	EST4153	Electrical Engineering and Basic Electronics	ESC	3	2	1	1	1	1	1	-	-	1	1	-
	ESP4153	Electrical Engineering and Basic Electronics Lab	ESC	3	2	1	1	1	1	1	-	-	1	-	-
	EST4152	Mechanical Engineering	ESC	3	2	1	1	1	2	2	-	-	-	-	-
	EST4154	Introduction to Chemical Engineering	ESC	2	2	1	2	1	1	1	1	-	2	1	1
	CEP4151	Material Balance and Energy Balance Calculations	PCC	2	2	1	2	1	1	1	1	-	1	1	1
	ESP4154	Engineering Applications of Digital computers	VSEC	-	2	2	2	2	1	-	1	-	1	-	1
	HUT4153	MOOC- Indian Knowledge System	IKS	-	-	-	-	-	2	1	3	1	3	-	-
	HUP4154	OPEN Activity- Sports/ Fine arts/Yoga/ Music/NSS	CCA	-	-	-	-	-	-	-	3	3	-	3	-
			Seco	nd Year											
III	CET4251	Fluid Flow	PCC	3	3	1	1	1	1	1	1	-	1	2	1

	CET4252	Heat Transfer	PCC	-	3	1	2	2	1	2	1	-	1	1	1
	EST4155	Engineering Thermodynamics	PCC	3	3	-	2	1	1	1	1	-	1	1	-
	CET4253	Industrial Chemistry and Reaction Engineering	PCC	3	2	1	2	2	1	1	-	-	1	1	2
	CEP4251	Chemical Engineering Lab-I	PCC	3	2	2	2	2	1	1	-	-	2	1	1
	XXT	From sciences and/or any other Engineering Discipline	MDM	3	1	-	-	-	2	3	-	1	2	1	1
	CET	From Basic Sciences (Chemistry/ Physics/Biology / Maths)	OE	3	1	-	1	-	2	2	-	2	1	-	-
	XXT	From Basic Sciences (Chemistry/ Physics/Biology / Maths/material Science)	OE	3	1	-	2	-	2	2	-	2	1	-	-
	HUT4155	Communication Skills-Marathi (Any other language will be using MOOCS)	AEC	-	-	-	-	-	-	-	-	-	3	-	-
	HUT4156	Basic Principles of Finance & Economics	Manage ment	-	1	3	2	-	1	1	-	-	1	1	1
	CET4257	Environmental Sciences	VEC	1	1	1	2	1	-	1	-	2	1	1	1
IV	CET4254	Chemical Engineering Operations	PCC	3	3	3	3	-	1	3	-	-	2	2	1
	CET4255	Process Safety	PCC	3	3	3	3	-	1	3	-	-	1	1	-
	CET4256	Instrumentation and Process Dynamics	PCC	3	2	2	2	2	2	1	-	-	2	2	-
	XXT	From sciences and/or any other Engineering Discipline	MDM	3	2	1	2	1	3	2	1	2	1	2	2
	XXP	From sciences and/or any other Engineering Discipline	MDM	3	1	2	1	2	3	3	2	2	1	2	2
	XXT	From Basic Sciences (Chemistry/ Physics/Biology / Maths/material Science)	OE	3	1	-	2	-	2	2	-	2	1	-	-
	CEP4252	Chemical Engineering Lab-II	PCC	3	2	2	2	2	1	1	-	-	2	1	1
	HUT4157	Industrial Management	Manage ment	2	3	3	2	2	1	-	-	2	1	3	1
	ESP4157	Digital Computation in Emerging areas (AI/ML/DA)	VEC	-	-	-	-	-	3	-	1	-	2	2	-
	HUP4158	Community Projects	Field Project	-	2	1	1	2	1	-	-	1	2	3	3
	CETxxxx	Chemical Engineering Elective: I	PEC	2	3	3	2	2	1	1	-	-	1	1	1
			Thire	l Year											

V	CET4351	Chemical Reaction Engineering	PCC	3	2	2	1	2	2	3	-	-	1	1	-
	CET4352	Momentum Transfer	PCC	3	2	2	2	1	2	2	-	-	1	1	-
	CET4353	Chemical Engineering Thermodynamics	PCC	3	2	1	2	1	2	1	-	-	-	2	-
	CEP4253	Chemical Engineering Lab: III	PCC	3	2	2	2	2	1	1	-	-	2	1	1
	CEP4255	Process Simulation Lab: I	PCC	2	2	2	1	1	1	-	2	-	-	2	-
	CETxxxx	Chemical Engineering Elective-II	PEC	3	2	1	1	2	2	1	1	3	-	2	-
	CETxxxx	Chemical Engineering Elective-III	PEC	3	2	1	1	2	2	1	1	3	-	2	-
	XXT	From sciences and/or any other Engineering Discipline	MDM	3	1	2	1	2	3	3	2	2	1	2	2
	XXP	From sciences and/or any other Engineering Discipline	MDM	3	1	2	1	2	3	3	2	2	1	2	2
	CET4361	Honors Course -1/Research-1	PCC	3	2	3	2	2	1	3	-	-	2	2	-
VI	CET4362	Honors Course 2/Research-2	PCC	3	2	1	2	2	2	2	-	-	2	2	-
	CET4354	Chemical Process Control	PCC	3	2	2	1	2	2	1	-	1	-	3	-
	CET4356	Separation Processes	PCC	3	2	2	1	2	2	2	-	-	1	2	-
	CET4357	Heat Transfer Equipment design	PCC	3	2	2	1	2	2	2	-	-	1	1	-
	CETxxxx	Chemical Engineering Elective-IV	PEC	3	2	1	1	2	2	1	1	3	-	2	-
	CET4363	Honours Course-3/Research-3	PCC	3	2	2	2	2	1	2	-	-	1	2	-
	XXT	From Sciences and/or any other Engineering Discipline	MDM	3	2	3	2	1	2	2	3	3	3	3	2
	CEP4256	Process Simulation Lab-II	VSEC	2	2	2	1	1	1	-	2	-	-	2	-
	CEP4254	Chemical Engineering Lab-IV	PCC	3	2	2	2	2	1	1	-	-	2	1	1
	CET4358	Chemical Project Economics	PCC	3	1	2	1	2	3	2	-	-	1	2	1
	CET4373	IPT (after Semester VI exams for Eight weeks)	IPT	3	2	2	2	1	2	2	1	2	1	3	2
			Four	th Year											
VII	CET4451	Chemical Process Development and Engineering	PCC	3	1	2	1	2	1	2	-	-	3	2	1
	CET4452	Chemical Industrial Management	PCC	-	-	2	1	-	1	-	3	1	2	2	2
	CETxxxx	Chemical Engineering Elective V	PEC	3	2	1	1	2	2	1	1	3	-	2	-
	CEP4451	Chemical Process Equipment Design and drawing	PCC	3	1	1	1	2	3	3	-	-	2	2	2

	GETT 10 11		200		_	_	_	_	_					_	
	CET4364	Honours Course-4/Research-4	PCC	1	2	3	2	2	3	3	1	1	1	2	-
	CET4365	Honours Course-5/Research-5	PCC	2	3	2	2	3	2	3	-	-	1	2	-
	XXT	From sciences and/or any other Engineering Discipline	MDM	2	1	1	2	2	3	3	2	2	2	3	3
	CEP4452	Literature Review	RM	2	3	3	2	1	1	2	1	-	3	2	-
	CEP4453	Design and Analysis of Experiments	RM	3	1	1	1	2	2	2	-	-	3	1	-
	CEP4461	Design Project - I	Project	3	2	2	2	2	1	2	1	2	3	2	
VIII	CEP4474	IPT (4-6 months)	IPT	3	2	2	2	1	2	2	1	2	1	3	2
			Fifth	Year											
IX	CET4551	Advanced Transport Phenomena	Fifth PCC	Year 3	2	2	2	2	1	1	-	-	2	2	-
IX	CET4551 CET4552	Advanced Transport Phenomena Advanced Separation Processes			2 3	2 2	2 2	2 2	1	1 2	-	-	2	2	-
IX		•	PCC	3		=	_	_	1 1 2	1 2 2	_	- -	2 1 1	2 1 1	
IX	CET4552	Advanced Separation Processes	PCC PCC	3 2	3	2	2	2	1 1 2 2	_	-	- - -	2 1 1 2	2 1 1 1	-
IX	CET4552 CET4553	Advanced Separation Processes Advanced Reaction Engineering	PCC PCC PCC	3 2 3	3 2	2 2	2 2	2 2		2	-	- - - - 2	1	2 1 1 1 3	-

J. Summary of Mapping of Honors Course Outcomes (COs) with Programme Outcomes (POs))

Sem	Course				Maj	pping of	Course	Outcon	nes (CO	s) with	Prograi	nme Ou	itcomes (POs)	
	Code		Type	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
			Hono	rs Syllab	us										
V	Honors	Biochemical Engineering	PCC	3	2	3	2	2	1	3	-	-	2	2	-
VI	Syllabus	Multiphase Reaction Engineering	PCC	3	2	1	2	2	2	2	-	-	2	2	-
VI		Mathematical Methods & Optimization in Chemical Engineering	PCC	3	2	2	2	2	1	2	-	-	1	2	-
VII		Refinery Science and Engineering	PCC	1	2	3	2	2	3	3	1	1	1	2	-
VII		Catalytic Science and Engineering	PCC	2	3	2	2	3	2	3	-	-	1	2	-
VII		Statistical Thermodynamics	PCC	2	1	2	1	2	2	1	-	-	1	1	-

K. Summary of Mapping of Elective Course Outcomes (COs) with Programme Outcomes (POs))

Sem	Course	Course Name	Course		Maj	pping of	Course	Outcon	nes (CO	s) with	Progran	nme Ou	tcomes (POs)	
	Code		Type	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
			Electi	ive Cour	se										
V	CET 2769E	Process Intensification	PEC	2	3	3	2	2	1	1	-	-	1	1	1
V	CET2161	Chemical Safety and Risk Management	PEC	3	2	2	1	-	2	3	1	2	2	-	-

L. Summary of Mapping of Subject Course Outcomes (COs) with Programme Specific Outcomes (PSOs))

Sem	Course Name Code		Course Type		ing of Cou Programn) with
				PSO1	PSO2	PSO3	PSO4	PSO5
		First Year						
I	CHT4151	Applied Chemistry	BSC	2	2	3	2	1
	CHP4151	Applied Chemistry Lab	BSC	3	2	1	1	1
	MAT4151	Mathematics-I	BSC	3	2	3	3	1
	PHT4151	Applied Physics	BSC	2	3	2	2	1
	PHP4151	PHP4151 Applied Physics Lab EST4151 Structural Mechanics ESP4151 Structural Mechanics Lab ESP4152 Engineering Graphics with Computer Aided Modelling	BSC	3	3	2	1	1
	EST4151		ESC	3	2	2	2	1
	ESP4151 Structural Mechanics Lab ESP4152 Engineering Graphics with Computer Aided		ESC	3	2	1	1	-
	ESP4152		VSEC	3	2	1	2	1
	HUP4151	Communication Skills- English	AEC	2	2	3	1	-
	HUP4152	OPEN Activity- Sports/ Fine arts/Yoga/ Music/NSS	CCA	3	-	-	-	-
II	CHT4152	Applied Chemistry II	BSC	2	2	2	1	-
	MAT4152	Mathematics: II	BSC	3	2	2	1	1
	EST4153 Electrical Engineering and Basic Electronics ESP4153 Electrical Engineering and Basic Electronics Lab		ESC	3	2	2	1	1
	ESP4153	Electrical Engineering and Basic Electronics Lab	ESC	2	1	1	1	-
	EST4152	Mechanical Engineering		3	2	1	1	1
	EST4154	Introduction to Chemical Engineering	ESC	3	3	2	2	1
	CEP4151	Material Balance and Energy Balance Calculations	PCC	2	2	2	1	1
	ESP4154	Engineering Applications of Digital computers	VSEC	2	2	1	1	1
	HUT4153	MOOC- Indian Knowledge System	IKS	3	2	-	-	-
	HUP4154	OPEN Activity- Sports/ Fine arts/Yoga/ Music/NSS	CCA	3	-	-	-	-
		Second Year						
III	CET4251	Fluid Flow	PCC	2	2	2	2	1
	CET4252	Heat Transfer	PCC	3	2	3	3	1
	CET4252 Heat Transfer EST4155 Engineering Thermodynamics CET4253 Industrial Chemistry and Reaction Engineering CEP4251 Chemical Engineering Lab-I		PCC	2	3	2	2	1
			PCC	2	3	2	2	1
			PCC	1	2	1	2	2
	XXT	From sciences and/or any other Engineering Discipline	MDM	3	3	3	2	1
	CET	From Basic Sciences (Chemistry/ Physics/Biology / Maths)	OE	3	2	1	-	-
	XXT	From Basic Sciences (Chemistry/ Physics/Biology / Maths/ material Science)	OE	3	2	1	-	-
	HUT4155	Communication Skills-Marathi (Any other language will be using MOOCS)	AEC	2	-	-	-	-
	HUT4156	Basic Principles of Finance & Economics	Managem ent	3	3	2	1	1

	CET4257	Environmental Sciences	VEC	2	3	3	1	-
IV			PCC	3	3	2	1	1
	CET4255	Process Safety	PCC	2	2	2	1	1
	CET4256	Instrumentation and Process Dynamics	PCC	3	2	1	1	1
	XXT	From sciences and/or any other Engineering Discipline	MDM	3	2	1	2	-
	XXP	From sciences and/or any other Engineering Discipline	MDM	3	2	1	2	1
	XXT	From Basic Sciences (Chemistry/ Physics/Biology / Maths/ material Science)	OE	3	2	1	-	-
	CEP4252	Chemical Engineering Lab-II	PCC	1	2	1	2	2
	HUT4157	Industrial Management	Managem ent	2	2	2	1	3
	ESP4157	Digital Computation in Emerging areas (AI/ML/DA)	VEC	2	-	-	-	-
	HUP4158	Community Projects	Field Project	3	2	2	2	3
	CETxxxx	Chemical Engineering Elective: I	PEC	3	2	3	3	2
		Third Year						
V	CET4351	Chemical Reaction Engineering	PCC	2	2	3	3	1
	CET4352	Momentum Transfer	PCC	3	2	2	1	1
	CET4353	Chemical Engineering Thermodynamics	PCC	2	3	2	2	1
	CEP4253	Chemical Engineering Lab: III	PCC	1	2	1	2	2
	CEP4255	Process Simulation Lab: I	PCC	2	2	3	3	1
	CETxxxx	Chemical Engineering Elective-II	PEC	2	3	3	2	1
	CETxxxx	Chemical Engineering Elective-III	PEC	2	3	3	2	1
	XXT	From sciences and/or any other Engineering Discipline	MDM	3	2	1	2	1
	XXP	From sciences and/or any other Engineering Discipline	MDM	3	2	1	2	1
	CET4361	Honors Course -1/Research-1	PCC	2	2	3	3	2
VI	CET4362	Honors Course 2/Research-2	PCC	2	2	3	3	2
	CET4354	Chemical Process Control	PCC	2	2	3	3	1
	CET4356	Separation Processes	PCC	2	2	1	2	1
	CET4357	Heat Transfer Equipment design	PCC	2	1	2	2	1
	CETxxxx	Chemical Engineering Elective-IV	PEC	2	3	3	2	1
	CET4363	Honours Course-3/Research-3	PCC	2	3	3	3	2
	XXT	From Sciences and/or any other Engineering Discipline	MDM	3	2	1	2	1
	CEP4256	Process Simulation Lab-II	VSEC	1	2	3	3	1
	CEP4254	Chemical Engineering Lab-IV	PCC	2	1	2	2	2
	CET4358	Chemical Project Economics	PCC	2	2	3	1	1
	CET4373	IPT (after Semester VI exams for Eight weeks)	IPT	3	2	2	3	3
		Fourth Year						
VII	CET4451	Chemical Process Development and Engineering	PCC	2	2	3	3	2

	CET4452	Chemical Industrial Management	PCC	2	3	2	1	1
	CETxxxx	Chemical Engineering Elective V	PEC	2	3	3	2	1
	CEP4451	Chemical Process Equipment Design and drawing	PCC	3	2	3	2	2
	CET4364	Honours Course-4/Research-4	PCC	2	2	2	2	1
	CET4365	Honours Course-5/Research-5	PCC	3	1	2	2	1
	XXT	From sciences and/or any other Engineering Discipline	MDM	2	1	2	2	3
	CEP4452	Literature Review	RM	3	2	2	2	1
	CEP4453	Design and Analysis of Experiments	RM	3	2	2	2	-
	CEP4461	Design Project - I	Project	2	2	2	3	2
VIII	CEP4474	IPT (4-6 months)	IPT	2	2	3	3	2
		Fifth Year						
IX	CET4551	Advanced Transport Phenomena	PCC	1	2	3	3	1
	CET4552	Advanced Separation Processes	PCC	2	3	3	2	2
	CET4553	Advanced Reaction Engineering	PCC	2	3	3	2	1
	CET4554	Advanced Mass transfer	PCC	2	3	3	2	1
	CEP4563	Thesis	Research	2	3	3	3	3
X	CEP4564	Thesis	Research	2	3	3	3	3

M. Summary of Mapping of Honors Course Outcomes (COs) with Programme Specific Outcomes (PSOs))

Sem	Course Code	Course Name	Course Type	Mapping of Course Outcomes (COs) with Programme Outcomes (POs)					
				PSO1	PSO2	PSO3	PSO4	PSO5	
		Honors Syllabus							
V	Honors	Biochemical Engineering	PCC	2	2	3	3	2	
VI	Syllabus	Multiphase Reaction Engineering	PCC	2	2	3	3	2	
VI		Mathematical Methods & Optimization in Chemical Engineering	PCC	2	3	3	3	2	
VII		Refinery Science and Engineering	PCC	2	2	2	2	1	
VII		Catalytic Science and Engineering	PCC	3	1	2	2	1	
VII		Statistical Thermodynamics	PCC	3	2	3	2	2	

N. Summary of Mapping of Elective Course Outcomes (COs) with Programme Specific Outcomes (PSOs))

Sem	Course Code	Course Name	Course Type		ng of Cou Programm) with	
				PSO1	PSO2	PSO3	PSO4	PSO5
		Elective Course						
V	CET 2769E	Process Intensification	PEC	3	2	3	3	2
V	CET2161	Chemical Safety and Risk Management	PEC	3	2	2	1	1

First Year

Semester-I

Semester-I Page 23 of 185

CHT4151 Applied Chemistry L	dite	2.
Standard XII (Chemistry) List of perequisite courses		т —
Standard XII (Chemistry) List of courses where this course will be prerequisite	0	<u> </u>
List of courses where this course will be prerequisite Material Balance and Energy Calculations (CEP4151); Industrial Chemistry and Reaction Engineering (CET4253), Chemical Engineering Operation (CET4254), Instrumentation and Process Dynamics (CET4256), Chemical Engineering (CET4351), Chemical Process Development and Engineering (CET4451), Catalytic Science and Engineering (Hon.) Description of relevance of this course in the Int. M. Tech. Program To introduce the students to the principles of analytical chemistry and physical chemistry Describe the fundamental concepts related to Basic instrumentation and chromatographic analysis. To the Thermodynamics of surfaces and kinetics of the chemical reactions To study the role of heterogeneous catalysis in chemical reactions Course contents (topics and subtopics) Reqd Structure activity relationship in organic molecules: Use of bond length and bond energies to explain the reactivity of functional groups. Acidity & basicity values for organic molecules such as alkynes, alcohols, acids, ketones, amines Aromatic electrophilic substitution: Activating and deactivating functional groups on aromatic compounds, resonating structures, reactions such as Halogenation, Nitration, Friedel Crafts alkylation, and acylation, sulfonation, Diazotization and important reacts of arene diazonium salts. Dyes: Chromophore and auxochrome concept, Azo dyes Aromatic compounds: Problems associated with SNAr reactions and how to overcome them. Mechanism for aromatic nucleophilic substitutions. Spectroscopic methods: general principles, UV-visible spectroscopy, fluorescence spectroscopy Chromatographic methods: general principles, Basic instrumentation, and typical applications of GC, HPLC Total List of Textbooks/ Reference Books Organic Chemistry, L.G. Wade Jr, Pearson Education Graphic Chemistry, Paula Y, Bruice, Pearson Education Fundamentals of Analytical Chemistry by D. A. Skoog, D. M. West, F. James Holler and S. R. Crouch, Cengage Learning, 2007 Course Outcomes (student	Total contact hours: 30 Total contact hours:	
Material Balance and Energy Calculations (CEP4151); Industrial Chemistry and Reaction Engineering (CET4253), Chemical Engineering Operation (CET4254), Instrumentation and Process Dynamics (CET4256), Chemical Engineering (CET4351), Chemical Process Dynamics (CET4256), Chemical Reaction Engineering (CET4351), Chemical Process Development and Engineering (CET4451), Catalytic Science and Engineering (Hon.) Description of relevance of this course in the Int. M. Tech. Program For introduce the students to the principles of analytical chemistry and physical chemistry Describe the fundamental concepts related to Basic instrumentation and chromatographic analysis. The the Thermodynamics of surfaces and kinetics of the Chemical reactions Course contents (topics and subtopics) Read Structure activity relationship in organic molecules: Use of bond length and bond energies to explain the reactivity of functional groups. Acidity & basicity values for organic molecules such as alkynes, alcohols, acids, ketones, amines Aromatic electrophilic substitution: Activating and deactivating functional groups on aromatic compounds, resonating structures, reactions such as Halogenation, Nitration, Friedel Crafts alkylation, and acylation, sulfonation, Diazotization and important reacts of arene diazonium salts. Dyes: Chromophore and auxochrome concept, Azo dyes Aromatic compounds: Problems associated with SNAr reactions and how to overcome them. Mechanism for aromatic nucleophilic substitutions. Spectroscopic methods: general principles, UV-visible spectroscopy, fluorescence spectroscopy Chromatographic methods: general principles, Basic instrumentation, and typical applications of GC, HPLC Total List of Textbooks/ Reference Books Organic Chemistry, L.G. Wade Jr., Pearson Education Organic Chemistry, Paula Y. Bruice, Pearson Education Organic Chemistry, Paula Y. Bruice, Pearson Education Fundamentals of Analytical Chemistry by D. A. Skoog, D. M. West, F. James Holler and S. R. Crouch, Cengage Learning, 2007 Course Outcom		
Engineering (CET4253), Chemical Engineering Operation (CET4254), Instrumentation and Process Dynamics (CET4256), Chemical Reaction Engineering (CET4351), Chemical Process Development and Engineering (CET4451), Catalytic Science and Engineering (CET4451). Description of relevance of this course in the Int. M. Tech. Program To introduce the students to the principles of analytical chemistry and physical chemistry Describe the fundamental concepts related to Basic instrumentation and chromatographic analysis. To the Thermodynamics of surfaces and kinetics of the chemical reactions Course contents (topics and subtopics) Reqd Structure activity relationship in organic molecules: Use of bond length and bond energies to explain the reactivity of functional groups. Acidity & basicity values for organic molecules such as alkynes, alcohols, acids, ketones, amines Aromatic electrophilic substitution: Activating and deactivating functional groups on aromatic compounds, resonating structures, reactions such as Halogenation, Nitration, Friedel Crafts alkylation, and acylation, sulfonation, Diazotization and important reacts of arene diazonium salts. Dyes: Chromophore and auxochrome concept, Azo dyes Aromatic compounds: Problems associated with SNAr reactions and how to overcome them. Mechanism for aromatic nucleophilic substitutions. Spectroscopic methods: general principles, UV-visible spectroscopy, fluorescence spectroscopy Chromatographic methods: general principles, Basic instrumentation, and typical applications of GC, HPLC Total List of Textbooks/ Reference Books Organic Chemistry, Paula Y, Bruice, Pearson Education Organic Chemistry, Paula Y, Bruice, Pearson Education Organic Chemistry, Paula Y, Bruice, Pearson Education Principles of Instrumental Analysis by D. A. Skoog, D. M. West, F. James Holler and S. R. Crouch, Cengage Learning, 2004. Principles of Instrumental Analysis by D. A. Skoog, F. James Holler and S. R. Crouch, Cengage Learning, 2007 Course Outcomes (students will be able to) Studen		
To introduce the students to the principles of analytical chemistry and physical chemistry Describe the fundamental concepts related to Basic instrumentation and chromatographic analysis. To the Thermodynamics of surfaces and kinetics of the chemical reactions To study the role of heterogeneous catalysis in chemical reactions Course contents (topics and subtopics) Reqd Structure activity relationship in organic molecules: Use of bond length and bond energies to explain the reactivity of functional groups. Acidity & basicity values for organic molecules such as alkynes, alcohols, acids, ketones, amines Aromatic electrophilic substitution: Activating and deactivating functional groups on aromatic compounds, resonating structures, reactions such as Halogenation, Nitration, Friedel Crafts alkylation, and acylation, sulfonation, Diazotization and important reacts of arene diazonium salts. Dyes: Chromophore and auxochrome concept, Azo dyes Aromatic compounds: Problems associated with SNAr reactions and how to overcome them. Mechanism for aromatic nucleophilic substitutions. Spectroscopic methods: general principles, UV-visible spectroscopy, fluorescence spectroscopy Chromatographic methods: general principles, Basic instrumentation, and typical applications of GC, HPLC Total List of Textbooks/ Reference Books Organic Chemistry, L.G. Wade Jr, Pearson Education Organic Chemistry, Paula Y. Bruice, Pearson Education Fundamentals of Analytical Chemistry by D. A. Skoog, D. M. West, F. James Holler and S. R. Crouch, Cengage Learning, 2014. Principles of Instrumental Analysis by D. A. Skoog, F. James Holler and S. R. Crouch, Cengage Learning, 2007 Course Outcomes (students will be able to) Students will learn basic principles of applied chemistry Student will be able to select apply the knowledge of applied chemistry.		
Describe the fundamental concepts related to Basic instrumentation and chromatographic analysis. To the Thermodynamics of surfaces and kinetics of the chemical reactions To study the role of heterogeneous catalysis in chemical reactions Course contents (topics and subtopics) Reqd		
Course contents (topics and subtopics) Reqd		
Structure activity relationship in organic molecules: Use of bond length and bond energies to explain the reactivity of functional groups. Acidity & basicity values for organic molecules such as alkynes, alcohols, acids, ketones, amines Aromatic electrophilic substitution: Activating and deactivating functional groups on aromatic compounds, resonating structures, reactions such as Halogenation, Nitration, Friedel Crafts alkylation, and acylation, sulfonation, Diazotization and important reacts of arene diazonium salts. Dyes: Chromophore and auxochrome concept, Azo dyes Aromatic compounds: Problems associated with SNAr reactions and how to overcome them. Mechanism for aromatic nucleophilic substitutions. Spectroscopic methods: general principles, UV-visible spectroscopy, fluorescence spectroscopy Chromatographic methods: general principles, Basic instrumentation, and typical applications of GC, HPLC Total List of Textbooks/ Reference Books Organic Chemistry, L.G. Wade Jr, Pearson Education Organic Chemistry, Paula Y. Bruice, Pearson Education Fundamentals of Analytical Chemistry by D. A. Skoog, D. M. West, F. James Holler and S. R. Crouch, Cengage Learning, 2014. Principles of Instrumental Analysis by D. A. Skoog, F. James Holler and S. R. Crouch, Cengage Learning, 2007 Course Outcomes (students will be able to) Students will learn basic principles of applied chemistry Student will learn concept of organometallic chemistry and its application in organic transformation	hou	ırs
compounds, resonating structures, reactions such as Halogenation, Nitration, Friedel Crafts alkylation, and acylation, sulfonation, Diazotization and important reacts of arene diazonium salts. Dyes: Chromophore and auxochrome concept, Azo dyes Aromatic compounds: Problems associated with SNAr reactions and how to overcome them. Mechanism for aromatic nucleophilic substitutions. Spectroscopic methods: general principles, UV-visible spectroscopy, fluorescence spectroscopy Chromatographic methods: general principles, Basic instrumentation, and typical applications of GC, HPLC Total List of Textbooks/ Reference Books Organic Chemistry, L.G. Wade Jr, Pearson Education Organic Chemistry, Paula Y. Bruice, Pearson Education Fundamentals of Analytical Chemistry by D. A. Skoog, D. M. West, F. James Holler and S. R. Crouch, Cengage Learning, 2014. Principles of Instrumental Analysis by D. A. Skoog, F. James Holler and S. R. Crouch, Cengage Learning, 2007 Course Outcomes (students will be able to) CO1 Students will learn basic principles of applied chemistry CO2 Student will be able to select apply the knowledge of applied chemistry. CO3 Student will learn concept of organometallic chemistry and its application in organic transformation		
Mechanism for aromatic nucleophilic substitutions. 4 Spectroscopic methods: general principles, UV-visible spectroscopy, fluorescence spectroscopy 5 Chromatographic methods: general principles, Basic instrumentation, and typical applications of GC, HPLC Total List of Textbooks/ Reference Books 1 Organic Chemistry, L.G. Wade Jr, Pearson Education 2 Organic Chemistry, Paula Y. Bruice, Pearson Education 3 Fundamentals of Analytical Chemistry by D. A. Skoog, D. M. West, F. James Holler and S. R. Crouch, Cengage Learning, 2014. 4 Principles of Instrumental Analysis by D. A. Skoog, F. James Holler and S. R. Crouch, Cengage Learning, 2007 Course Outcomes (students will be able to) CO1 Students will learn basic principles of applied chemistry CO2 Student will be able to select apply the knowledge of applied chemistry. CO3 Student will learn concept of organometallic chemistry and its application in organic transformation	12	
Chromatographic methods: general principles, Basic instrumentation, and typical applications of GC, HPLC List of Textbooks/ Reference Books 1 Organic Chemistry, L.G. Wade Jr, Pearson Education 2 Organic Chemistry, Paula Y. Bruice, Pearson Education 3 Fundamentals of Analytical Chemistry by D. A. Skoog, D. M. West, F. James Holler and S. R. Crouch, Cengage Learning, 2014. 4 Principles of Instrumental Analysis by D. A. Skoog, F. James Holler and S. R. Crouch, Cengage Learning, 2007 Course Outcomes (students will be able to) CO1 Students will learn basic principles of applied chemistry CO2 Student will be able to select apply the knowledge of applied chemistry. CO3 Student will learn concept of organometallic chemistry and its application in organic transformation	4	
CO2 Student will learn concept of organometallic chemistry and its application in organic transformation List of Textbooks/ Reference Books List of Textbooks/ Reference Books List of Textbooks/ Reference Books Crouch Cemistry, L.G. Wade Jr, Pearson Education Organic Chemistry, Paula Y. Bruice, Pearson Education Fundamentals of Analytical Chemistry by D. A. Skoog, D. M. West, F. James Holler and S. R. Crouch, Cengage Learning, 2014. Principles of Instrumental Analysis by D. A. Skoog, F. James Holler and S. R. Crouch, Cengage Learning, 2007 Course Outcomes (students will be able to) Student will learn basic principles of applied chemistry Student will learn concept of organometallic chemistry and its application in organic transformation	4	
List of Textbooks/ Reference Books Organic Chemistry, L.G. Wade Jr, Pearson Education Organic Chemistry, Paula Y. Bruice, Pearson Education Fundamentals of Analytical Chemistry by D. A. Skoog, D. M. West, F. James Holler and S. R. Crouch, Cengage Learning, 2014. Principles of Instrumental Analysis by D. A. Skoog, F. James Holler and S. R. Crouch, Cengage Learning, 2007 Course Outcomes (students will be able to) Students will learn basic principles of applied chemistry Student will be able to select apply the knowledge of applied chemistry. Student will learn concept of organometallic chemistry and its application in organic transformation	6	
Organic Chemistry, L.G. Wade Jr, Pearson Education Organic Chemistry, Paula Y. Bruice, Pearson Education Fundamentals of Analytical Chemistry by D. A. Skoog, D. M. West, F. James Holler and S. R. Crouch, Cengage Learning, 2014. Principles of Instrumental Analysis by D. A. Skoog, F. James Holler and S. R. Crouch, Cengage Learning, 2007 Course Outcomes (students will be able to) Students will learn basic principles of applied chemistry Student will be able to select apply the knowledge of applied chemistry. Student will learn concept of organometallic chemistry and its application in organic transformation	30	
Organic Chemistry, Paula Y. Bruice, Pearson Education Fundamentals of Analytical Chemistry by D. A. Skoog, D. M. West, F. James Holler and S. R. Crouch, Cengage Learning, 2014. Principles of Instrumental Analysis by D. A. Skoog, F. James Holler and S. R. Crouch, Cengage Learning, 2007 Course Outcomes (students will be able to) Students will learn basic principles of applied chemistry Student will be able to select apply the knowledge of applied chemistry. Student will learn concept of organometallic chemistry and its application in organic transformation		
Fundamentals of Analytical Chemistry by D. A. Skoog, D. M. West, F. James Holler and S. R. Crouch, Cengage Learning, 2014. Principles of Instrumental Analysis by D. A. Skoog, F. James Holler and S. R. Crouch, Cengage Learning, 2007 Course Outcomes (students will be able to) Students will learn basic principles of applied chemistry Student will be able to select apply the knowledge of applied chemistry. Student will learn concept of organometallic chemistry and its application in organic transformation		
Crouch, Cengage Learning, 2014. 4 Principles of Instrumental Analysis by D. A. Skoog, F. James Holler and S. R. Crouch, Cengage Learning, 2007 Course Outcomes (students will be able to) CO1 Students will learn basic principles of applied chemistry CO2 Student will be able to select apply the knowledge of applied chemistry. CO3 Student will learn concept of organometallic chemistry and its application in organic transformation		
Course Outcomes (students will be able to) Students will learn basic principles of applied chemistry Student will be able to select apply the knowledge of applied chemistry. Student will learn concept of organometallic chemistry and its application in organic transformation		
Students will learn basic principles of applied chemistry Student will be able to select apply the knowledge of applied chemistry. Student will learn concept of organometallic chemistry and its application in organic transformation		
Student will be able to select apply the knowledge of applied chemistry. Student will learn concept of organometallic chemistry and its application in organic transformation		
CO3 Student will learn concept of organometallic chemistry and its application in organic transformation	K2	
	K3	
	K3	
Student will apply the basic concept in solving the engineering and science problem	K3	
CO5 Student will estimate and analyze the fundamental knowledge of basic science	K5	
CO6 Student will be able to create an idea and thought to apply knowledge of applied chemistry	K6	

Semester I Page 24 of 185

	Ma	pping of	Course		Chemis es (COs)	-		e Outco	mes (PO	s)		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	-	-	1	1	-	-	-	-	2	1	1
CO2	-	2	1	1	2	-	-	-	-	1	1	-
CO3	3	2	1	1	-	-	-	-	-	1	-	-
CO4	3	2	1	1	2	-	-	-	-	1	1	1
CO5	3	3	2	2	1	-	-	-	-	1	-	-
CO6	2	2	1	1	2	-	-	-	-	-	-	-
	3	-Strong (Contribu	tion; 2-M	loderate (Contribut	ion; 1-L	ow Contr	ribution;			

Mapping o	Appl of Course Outcomes	lied Chemistry: (COs) with Pro		Outcomes (PSOs)	
	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	2	1	1	-
CO2	2	1	2	1	-
CO3	1	2	3	2	1
CO4	2	2	3	2	1
CO5	3	2	2	1	-
CO6	2	3	2	1	-
3-S	Strong Contribution; 2	2-Moderate Contr	ribution; 1-Low Co	ontribution;	

Semester I Page 25 of 185

		Semester I			
	Course Code:	Course Title:	Cr	edits =	= 2
	CHP4151	Applied Chemistry Laboratory	L	T	P
	Semester: I	Total contact hours: 60	0	0	4
		List of Prerequisite Courses			
	Standard XII Chemistr	y			
		List of Courses where this course will be prerequisite			
	Applied Mathematics:	II (MAT4151)			
	Desc	ription of relevance of this course in the Int. M. Tech. Program			
To lear		lutions and volumetric titration. ative of a sample through different analytical methods			
10 icai	li to concet, conate, and	Course Contents (Topics and subtopics)	Read	l. hour	·s
1	ORGANIC CHEMIST	<u> </u>	21040	20	
•	a) Identification of an constants (M.P and B.F.	organic compound through elemental analysis, group detection, physical P) and derivatization.		20	
	both water soluble,	fication of binary mixtures of the type (1): water soluble-water insoluble,			
	dissociation –extraction	fication of binary mixtures of the type (2): liquid-liquid by distillation, n, crystallization, etc.			
2	PHYSICAL CHEMIST	TRY:		20	
		e dissociation constant of the weak electrolyte using conductometry e redox potential of $Fe(aq)3+Fe(aq)2+/$ system by potentiometric			
	c) Determination of en	ergy of activation of the reaction			
3		YTICAL CHEMSITRY:		20	
		(III) with EDTA by photometric titration			
		e dissociation constant of the given weak polybasic acid by pH-meter			
	c) Detection / quantitat	ive determination of cations / anions in salts. Total		60	
	T tot			00	
1	1	of Textbooks/ Additional Reading Material / Reference Books	I		
1	Practical Organic Chem				
2		mistry: B. Viswanathan and P.S. Raghavan			
3	Practical physical Cher	mistry- Alexander Findlay			
	I a	Course Outcomes (students will be able to)	T		
	Students will be able				
CO1		andardized analytical solutions		K3	
CO2	• •	alytical experiments for analyte determination		K3	
CO3	techniques	tative and quantitative analysis of given sample using chromatographic		K4	
CO4	Able to clearly commu	nicate the results of experimental work in oral and written formats.		K5	
CO5	Able to estimate and ev	valuate the experimental finding of performed experiments		K5	
CO6	Able to prepare the rep	ort and assess the results		K6	
K1: Re	emembering, K2: Unders	standing, K3: Applying, K4: Analyzing, K5: Evaluating, K6: Creating			

Semester I Page 26 of 185

	Ma	pping of			nistry La es (COs)		•		mes (PO	s)		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	-	1	-	2	1	-	-	-	1	2	1
CO2	2	2	1	1	1	-	-	-	-	2	1	-
CO3	3	2	1	2	2	-	-	-	-	-	-	-
CO4	3	3	1	2	2	1	-	-	-	2	2	1
CO5	2	2	2	1	1	-	-	-	-	-	-	-
CO6	3	3	2	-	-	-	-	-	-	-	-	-
	3	S-Strong (Contribu	tion; 2-M	loderate (Contribut	tion; 1-L	ow Contr	ibution;			

Mapping	Applied Cl of Course Outcomes	hemistry Labora (COs) with Prog	•	Outcomes (PSOs)	
	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	1	1	1	-
CO2	2	2	1	-	-
CO3	3	2	1	-	1
CO4	3	2	1	1	1
CO5	2	3	2	-	-
CO6	2	2	2	-	-
3-5	Strong Contribution; 2	2-Moderate Contr	ibution; 1-Low Co	ontribution;	

Semester I Page 27 of 185

	Semester I			
Course Code:	Course Title:	Cro	edits	= 4
MAT4151 Applied Mathematics - I Semester: I Total contact hours: 60			T]
Semester: I Total contact hours: 60				
	List of Prerequisite Courses			
HSC Standard Mathematic	es			
Li	st of Courses where this course will be prerequisite			
Industrial Chemistry and R II, III and IV (CEP4251, Dynamics (CET4256), C (CET4352), Process Simu	(MAT4152); Material and Energy Balance Calculations (CEP4151), Reaction Engineering (CET4253), Chemical Engineering Laboratory I, CEP4252, CEP4253 and CEP4254), Instrumentation and Process Chemical Reaction Engineering (CET4351), Momentum Transfer Ilation Lab - I and II (CEP4255 and CEP4256), Chemical Process ration Processes + Membrane (CET4356), Heat Transfer Equipment			

This is a basic Mathematics course. This knowledge will be required in almost all subjects later. This knowledge is also

required for solving various mathematical equations that need to be solved in several chemical engineering courses such as MEBC, momentum transfer, reaction engineering, separation processes, thermodynamics, etc.

	Course Contents (Topics and subtopics)	Reqd. hours
1	Calculus of one variable: Review of Mean Value theorems, Higher order differentiation and Leibnitz Rule for the derivative, Taylor's and Maclaurin's theorems and applications to error estimates, convexity of functions, Local Maxima/Minima.	8
2	Multivariable calculus: Functions of two or more variables, Limit and continuity, Partial differentiation, Directional derivatives, Total derivatives, Chain Rules of partial derivatives, Taylor's theorem for multivariable functions and its application to error calculations, Local and absolute Maxima/Minima	10
3	Integral Calculus: Beta and Gamma functions, Differentiation under the integral sign, Multiple Integrals, Line and surface integrals and applications to Greens, Gauss-Divergence and Stokes theorem	12
4	Linear Algebra-I: Systems of linear equations, matrices and Gauss elimination, Vectors in \mathbb{R}^n , notion of linear independence and dependence. Vector subspaces of \mathbb{R}^n , basis of a vector subspace., row space, null space, and column space, rank of a matrix. Determinants and rank of matrices. Abstract vector spaces, linear transformations, matrix of a linear transformation, change of basis and similarity, rank-nullity theorem, and its applications	8
5	Linear Algebra-II: Inner product spaces, orthonormal bases, Gram-Schmidt orthogonalization process, Eigenvalues and eigenvectors, characteristic polynomials, eigenvalues of special matrices (orthogonal, unitary, Hermitian, symmetric, skew- symmetric, normal), Orthogonal projection and its application to least methods Diagonalization of matrices and its applications stochastic matrices, Matrix Factorization, Applications such as SVD, PCA etc.	8
6	Ordinary Differential Equations: Review of first and second order ODEs (constant coefficient), Existence and Uniqueness theorems for first order ODEs. Higher order Linear ODE with constant and variable coefficient, Solutions of Initial and Boundary value problems, Solving initial value system of linear ordinary differential equations.	8
7	Ordinary Differential Equations -II: Power series method of solving ODE's and special functions, Legendre Polynomials Bessel functions and applications.	6
	Total	60
	List of Textbooks / Reference Books	
1	G. Strang, Linear Algebra and its Applications (4th Edition), Thomson (2006).	
2	W. Keith Nicholson, Linear Algebra with Applications, Lyryx Learning Inc	
3	Howard Anton, Elementary Linear Algebra, Wiley (2016)	
4	Arnold J. Insel, Lawrence E. Spence, and Stephen H. Friedberg, Linear Algebra, Pearson	

Semester I Page 28 of 185

5	E. Kreyszig, Advanced Engineering Mathematics (8th Edition), John Wiley (1999). (Officially prescribed)	
6	S. R. K. Iyengar, R. K. Jain, Advanced Engineering Mathematics Narosa.	
7	Marsden, J.E., Tromba, Anthony, Weinstein, Alan, Basic Multivariable Calculus.	
	Course Outcomes (students will be able to)	
CO1	Understand the notion of differentiability and apply these concepts to find maxima and minima of functions of one and several variables	K4
CO2	Understand different techniques for evaluating single and multiple integrals and apply them compute surface and volume integrals.	K4
CO3	Demonstrate their understanding on different concepts in vector spaces in solving computational problems related to matrices and determinants, such as solving systems of linear equations, etc.	К3
CO4	Understand the computational and geometrical concepts related to eigenvalues and eigenvectors and apply them to solve computational problems arising from chemical engineering	К3
CO5	Build mathematical models governed by differential equations to formulate chemical engineering problems and solve the equation using appropriate analytical techniques	K6
CO6	Solve ordinary differential equations using power series method and understand the utility and applications of various orthogonal functions in different chemical engineering problems	K5
K1: Re	membering, K2: Understanding, K3: Applying, K4: Analyzing, K5: Evaluating, K6: Creating	

	Applied Mathematics - I: MAT4151 Mapping of Course Outcomes (COs) with Programme Outcomes (POs)											
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	1	1	2	-	-	2	-	-	1	2	1
CO2	3	1	1	1	1	-	2	-	-	2	1	1
CO3	3	1	2	1	1	-	1	-	-	2	-	1
CO4	3	2	1	2	1	-	-	-	-	1	1	1
CO5	3	2	2	2	1	1	-	-	-	1	2	1
CO6	3	1	2	1	2	2	2	-	-	1	1	1
	3	S-Strong	Contribu	tion; 2-M	Ioderate	Contribut	tion; 1-L	ow Contr	ribution;			

Applied Mathematics - I: MAT4151 Mapping of Course Outcomes (COs) with Programme Specific Outcomes (PSOs)									
	PSO1	PSO2	PSO3	PSO4	PSO5				
CO1	3	1	1	1	-				
CO2	3	2	2	1	-				
CO3	2	2	2	1	-				
CO4	2	1	3	3	1				
CO5	1	2	3	3	2				
CO6	1	2	3	3	1				
3-Stro	ong Contribution; 2	-Moderate Contri	ibution; 1-Low Co	ontribution;					

Semester I Page 29 of 185

		Semester I			
	Course Code:	Course Title:	Cre	dits =	= 2
	PHT4151	Applied Physics	L	T	P
	Semester: I	Total contact hours: 30	2	0	0
		List of Prerequisite Courses		ı	.1
	Standard XI and XII Phy	ysics course; Standard XII Chemistry course			
		List of Courses where this course will be prerequisite			
	VI, VII, VIII) (Code); Cand PST4252); Material	tory (PHP 4151); Materials Science Minor program courses (Sem-III, IV, V, Open Elective courses from Physics Department (Sem-II, IV, V) (PST4251 and Energy Balance Calculations (CEP4151), Instrumentation and Process Momentum Transfer (CET4352), Process Simulation Lab - I and II (5)			
	Descr	ription of relevance of this course in the Int. M. Tech. Program			
course	e will provide the students	play a key role in the field of chemical engineering and technology. The a with the necessary fundamentals to develop a broad understanding of variou them with the ability to apply it wherever required in their course of study.			
		Course Contents (Topics and subtopics)	Req	d. ho	ars
		Solid State Physics			
1		ids: A revision of concepts of a lattice, a basis, unit cell, different crystal C, HCP), co-ordination number and packing fractions. Single crystalline, orphous materials.		3	
2		and directions: concept of Miller indices and its determination, examples; ar spacing in terms of Miller indices.		3	
3		al structure using X-rays: Bragg's law of X-ray diffraction, types of an diffraction peaks and calculation of various lattice parameters and		4	
4	function, Intrinsic and	nd classification of solids, the concept of Fermi level and Fermi distribution described extrinsic semiconductors, Transport properties of semiconductors: aductors and its dependence of carrier concentration and mobility.		5	
	•	Electric and Magnetic properties of materials			
1		electrostatics and magnetostatics with illustrative examples. Introduction to and curl operators. The current density vector and the continuity equation.		4	
2	displacement and polariz	t of free and bound charges, polarization, introduction to the electric zation vectors, dielectric constant, and electric susceptibility. Gauss's law in Claussius-Mossotti equation.		6	
3		vin theory of Diamagnetism and Paramagnetism: deriving the magnetic e's law. An introduction to the Weiss theory of paramagnetism and		5	
		Total		30	
		List of Textbooks/Reference books			
1	Fundamentals of Physic	s - Halliday, Resnick, Walker - 6 th Edition - John Wiley			
2	Sears and Zeemansky's	University Physics - Young and Freedman - 12th Edition - Pearson Education	n		
3	A Textbook of Engineer Publishers	ring Physics - M N Avadhanulu, P G Kshirsagar, TVS Arun Murthy - 11th Ed	lition -	S. Cl	nand
4	Solid State Physics - S.	O. Pillai - 10 th Edition - New Age Publishers			
5	Solid State Physics - A.	J. Dekker - MacMillan India			
6	Engineering Physics - V	Rajendran - 6 th Edition - McGraw Hill Publishers			
7	Electricity and Magnetis	sm - Edward Purcell and David Morin - 3 rd Edition - Cambridge University F	ress		
8	Electricity And Magneti	sm - R. Murugeshan - 3 rd Edition - S Chand Publishers			
9	Introduction to Electrod	ynamics - David Griffiths - 3 rd Edition: Pearson Education			

Semester I Page 30 of 185

	Course Outcomes (students will be able to)					
CO1	Understand structures of solids and semiconductors, apply Bragg's law.	K2				
CO2	Apply Bernoulli equation in simple pipe flows.	K3				
CO3	Calculate resolving power of optical instruments.	K5				
CO4	Describe principles of optical fibre communication.	K2				
CO5	Introduced to the principles of lasers, types of lasers and applications.	K2				
CO6	Understand application of acoustic cavitation of Chemical Engineering Processes	K2				
K1: R	emembering, K2: Understanding, K3: Applying, K4: Analyzing, K5: Evaluating, K6: Creating					

	Applied Physics - I: PHT4151 Mapping of Course Outcomes (COs) with Programme Outcomes (POs)											
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	1	1	-	-	-	-	-	2	1	-
CO2	3	2	1	1	1	-	-	-	-	-	-	-
CO3	2	-	-	-	2	-	-	-	-	-	-	-
CO4	1	3	2	2	-	1	-	-	-	1	-	1
CO5	3	2	2	1	1	-	-	-	-	1	1	-
CO6	3	2	2	1	1	-	-	1	-	1	1	1
	3	3-Strong	Contribu	tion; 2-M	Ioderate (Contribut	ion; 1-L	ow Contr	ribution;			

Applied Physics - I: PHT4151 Mapping of Course Outcomes (COs) with Programme Specific Outcomes (PSOs)									
	PSO1	PSO2	PSO3	PSO4	PSO5				
CO1	3	2	1	-	-				
CO2	3	2	2	1	-				
CO3	1	2	3	2	1				
CO4	2	3	3	3	-				
CO5	2	3	2	2	-				
CO6	2	3	3	3	-				
3-Stro	ong Contribution; 2	2-Moderate Contr	ibution; 1-Low Co	ontribution;					

Semester I Page 31 of 185

	Course Code:	Course Title:	Cr	edits :	= 2
	PHP4151	Applied Physics Laboratory	L	T	P
	Semester: I	Total contact hours: 60	0	0	4
	•	List of Prerequisite Courses	•		
1	Standard XI and XII	Physics course; Applied Physics (theory) in tandem			
		List of Courses where this course will be prerequisite			
	NA				
	Desc	cription of relevance of this course in the Int. M. Tech. Program			
experin	nental skills related to	ned by the students in the Applied Physics laboratory course will equip o measurement of various important physical quantities. These skills will y and theory courses in their area of specialization.			
		Course Contents (List of Experiments)			
1	Determination of Co	p-efficient of Viscosity by Poiseuille's method		4	
2	Thermistor character	ristics: Determination of Bandgap of a semiconductor		4	
3	Determination of co	mpressibility of liquids using an Ultrasonic Interferometer		4	
4	Measurement of the	rmal conductivity of a solid: Lee's disc method		4	
5	Photoelectric effect:	Determination of h/e		4	
6	Hall effect-I (sample semiconductor	e current variation) Determination of carrier type and concentration in a		8	
7	Hall effect-II (magn semiconductor	etic field variation) Determination of carrier type and concentration in a		4	
8	Newton's rings: Det	ermination of wavelength of light		4	
9	Laser Diffraction: D	etermination of particle size		4	
10	Studying variation of	f compressibility of liquid as function of temperature		8	
11	Estimating resistivit	y of semiconductor using four probe method		8	
12	Determination of ma	agnetic susceptibility of paramagnetic liquid using Quincke's method		4	
		Total		60	
		List of Textbooks/Reference books			
1		ysics - Halliday, Resnick, Walker - 6th Edition - John Wiley			
2		ry's University Physics - Young and Freedman - Pearson Education			
4		s - V Rajendran - 6 th Edition - McGraw Hill Publishers			
5	-	Physics - A. Beiser, McGraw-Hill.			
6		s and Applications - J. Blitz, Butterworth.			
7		k - 7 th Edition - McGraw Hill			
8	-	tics - F. Jenkins and H. White - 4 th Edition McGraw Hill			
9	ICT Physics Labora	tory Manual (supplied to students)			
	T	Course Outcomes (students will be able to)			
	Students will be ab				
CO1		romatic light source and its applications.		K2	
CO2		ring applications of lasers		K2	
CO3	and its applications	nductivity, photoelectric current, effect of magnetic field on electric current		K4	
CO4	•	te the experimental data		K4	
CO5	-	nental value by analyzing the experimental data		K5	
CO6	Prepare and write th	e report		K6	

Semester I Page 32 of 185

	Applied Physics Laboratory: PHP4151 Mapping of Course Outcomes (COs) with Programme Outcomes (POs)											
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	1	1	-	1	-	-	-	-	1	-	-
CO2	3	1	2	-	1	-	-	-	-	1	-	-
CO3	2	1	1	2	1	-	-	-	-	-	-	-
CO4	3	1	1	2	1	-	-	-	-	1	-	-
CO5	3	2	2	-	-	-	-	-	-	-	-	-
CO6	2	1	2	-	-	-	-	-	-	-	-	-
	3	S-Strong (Contribu	tion; 2-M	loderate (Contribut	tion; 1-L	ow Contr	ribution;			

Applied Physics Laboratory: PHP4151 Mapping of Course Outcomes (COs) with Programme Specific Outcomes (PSOs)									
	PSO1	PSO2	PSO3	PSO4	PSO5				
CO1	3	2	2	1	-				
CO2	2	2	1	-	-				
CO3	2	3	2	2	1				
CO4	3	3	2	1	1				
CO5	3	2	1	-	-				
CO6	2	1	2	-	-				
3-8	Strong Contribution; 2	2-Moderate Contr	ribution; 1-Low Co	ontribution;	•				

Semester I Page 33 of 185

	Semester I							
Course Code:	Course Title:	Credits = 2						
EST4151	Structural Mechanics	L	T	P				
Semester: I	Total contact hours: 30	2	0	0				
·	List of Prerequisite Courses							
Engineering Matl	ematics (MAT4151); Materials in Engineering							
·	List of Courses where this course will be prerequisite							
Chemical Process	Chemical Process Equipment Design and Drawing (CEP4451); Material Technology							
<u>.</u>	Description of relevance of this course in the Int. M. Tech. Program	•						

This subject will help students to understand use of basics of Applied Mechanics and Strength of Materials. In engineering equipment and structures, which different types of forces are to be considered and how to quantify them? What are different conditions of equilibrium? How to apply equilibrium condition to analyse the problems? Importance of centre of gravity and moment of Inertia in Engineering Design. Advantages and disadvantages of various geometric sections available for engineering design. Study of different types of stresses and strains occurring in various components of the structure. Understanding and calculating Shear force and Bending moment in the beams with simple and complex loading. Determination of Bending stresses and shear stresses in the beams. Evaluation of slopes and deflections in the beams with simple and complex loading. This is the foundation course for a good Design Engineer.

simple	simple and complex loading. This is the foundation course for a good Design Engineer.						
	Course Contents (Topics and subtopics)	Reqd. hours					
1	Concepts of forces, their types, Resolution of forces, Composition of forces, Steps in Engineering Design, Different types supports and free body diagram.	3					
2	Equilibrium of rigid bodies - Conditions of equilibrium. Determinant and indeterminate structures. Equilibrium of beams, trusses, and frames problems on analysis of beams and truss.	5					
3	Concept of moment of Inertia (Second moment of area) its use. Parallel axis theorem. Problems of finding centroid and moment of Inertia of single figures, composite figures. Perpendicular axis theorem, Polar M.I., Radius of gyration.						
4	Shear Force and Bending Moment - Basic concept, S.F. and B.M. diagram for cantilever, simply supported beams (with or without overhang). Problems with concentrated and U.D. loads.	5					
5	Stresses and Strains - Tensile and compressive stresses, strains, modulus of elasticity, modulus of rigidity, bulk modulus. Relation between elastic constants. Lateral strain, Poisson's ratio, volumetric strain. Thermal stresses and strains. Problems based on stresses and strains. Stresses and Strains Relationship and Strain Deformation relationship.	4					
6	Theory of Bending - Assumptions in derivation of basic equation, Basic equation, section modulus, bending stress distribution. Advantages of various geometric sections from bending consideration.	3					
7	Problems on shear stress - Concept, Derivation of basic formula. Shear stress distribution for standard shapes. Problems of Shear stress distribution. Conditions under which shear stress is the governing criteria of design.	3					
8	Slope and Deflection of beams - Basic concept, Slope and Deflection of cantilever and simply supported beams under standard loading. Macaulay's method. Simple problems of finding slopes and deflections.	3					
	Total	30					
	List of Text Books/ Reference Books						
1	Engineering Mechanics Vol I Statics by B. N. Thadani, Publisher Wenall Book Corporation						
2	Introduction to Mechanics of Solids by Egor Popov, Prentice Hall of India Pvt. Ltd						
3	Mechanics of Materials by Ferdinand Beer and E. Russel Johnston, Tata McGraw Hill Publishing Co. Ltd.						
4	Fundamentals of applied Mechanics by Dadhe, Jamdar and Walavalkar, Sarita Prakashan Pune						
5	Engineering Mechanics by S. Timoshenko and D. H. Young, McGraw Hill Publications						
6	Strength of Materials by Ferdinand Singer and Andrew Pytel, Harper Colins Publishers						
	Course Outcomes (students will be able to)						
CO1	Understand the use of basic concepts of Resolution and composition of forces.	K2					
CO2	Analysis of the beams, truss or any engineering component by applying conditions of equilibrium.	K2					
-							

Semester I Page 34 of 185

CO3	Understand the advantages and disadvantages of various geometric sections used in engineering design.	K2		
CO4	Understand the different stresses and strains occurring in components of structure various standard loadings and in case of any complicated loading.	K2		
CO5	Determination of shear stress, bending stresses in the beams with simple and complex loading.	K4		
CO6	Understand how to calculate the deformations such as axial, normal deflections under different loading conditions.	K2		
K1: Remembering, K2: Understanding, K3: Applying, K4: Analyzing, K5: Evaluating, K6: Creating				

Structural Mechanics: EST4151 Mapping of Course Outcomes (COs) with Programme Outcomes (POs)												
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	2	2	1	2	ı	-	-	1	-	-
CO2	3	2	1	-	1	1	-	-	-	-	-	-
CO3	2	1	2	1	-	1	-	-	-	1	-	-
CO4	3	2	1	1	2	3	2	-	-	1	-	-
CO5	3	2	1	2	1	2	1	-	-	2	-	-
CO6	2	1	-	1	1	1	-	-	-	-	-	-
3-Strong Contribution; 2-Moderate Contribution; 1-Low Contribution;												

Structural Mechanics: EST4151 Mapping of Course Outcomes (COs) with Programme Specific Outcomes (PSOs)										
	PSO1 PSO2 PSO3 PSO4 PSO5									
CO1	3	2	1	-	-					
CO2	3	2	1	-	-					
CO3	3	2	2	1	-					
CO4	3	2	1	2	-					
CO5	1	2	2	3	1					
CO6	2	2	-	3	-					
3-Strong Contribution; 2-Moderate Contribution; 1-Low Contribution;										

Semester I Page 35 of 185

		Semester I						
	Course Code: Course Title:							
	ESP4151	Structural Mechanics Laboratory	L T					
	Semester: I	Total contact hours: 60	0	0	2			
		List of Prerequisite Courses						
	XIIth Standard Physics, Mathematics, Applied Mathematics I and II (MAT4151-52), Structural Mechanics (EST4151)							
	Lis	et of Courses where this course will be prerequisite						
Equipment design and Drawing I and II (CEP4451)								
Description of relevance of this course in the Int. M. Tech. Program								

This subject will help students to understand the basics of Applied Mechanics and Strength of Materials. In engineering equipment which different types of forces are to be considered and how to quantify them. What are different conditions of equilibrium and how to apply them analyze the problems. Importance of center of gravity and moment of Inertia in Engineering Design. Study of different types of stresses and strains occurring in various components of the structure. Advantages and disadvantages of various geometric sections available for engineering design. This is the foundation course for a good Design Engineer.

	Course Contents (Topics and subtopics)	Reqd. hours				
1	Suitable number of experiments from the above list will be performed (Minimum 5):	4				
2	To study simple lifting machine and determine Law of Machine for (Screw Jack and	4				
	Differential wheel and axle).					
3	To study graphical methods of analysis.	4				
4	To study the Universal testing machine and tests. (Demonstration)	4				
5	To study Non-destructive testing methods in Engineering	4				
6	Demonstration of Smith Hammer test, Ultrasonic pulse velocity test	4				
7	To study corrosion of reinforcement. (Demonstration)	6				
8	To study properties of cement composites and its applications.	6				
9	To study effect of performance enhancing admixtures and additives for cement composites.	4				
10	To study methods of manufacturing for Fiber Reinforced Polymer Composites	6				
11	. To study various materials used for flooring.	6				
12	To study various materials used for Pipes for different engineering applications.	4				
	Total	60				
	List of Textbooks/ Reference Books					
1	Engineering Mechanics Vol I Statics by B. N. Thadani, Publisher Wenall Book Corporation					
2	Introduction to Mechanics of Solids by Egor Popov, Prentice Hall of India Pvt. Ltd					
3	Mechanics of Materials by Ferdinand Beer and E. Russel Johnston, Tata McGraw Hill					
4	Fundamentals of applied Mechanics by Dadhe, Jamdar and Walavalkar, Sarita Prakashan Pune					
5	Engineering Mechanics by S. Timoshenko and D. H. Young, McGraw Hill Publications					
6	Strength of Materials by Ferdinand Singer and Andrew Pytel, Harper Colins Publishers					
	Course Outcomes (students will be able to)					
CO1	Further understanding of the concepts in the Theory course of Structural Mechanics	K2				
CO2	Understand structural mechanics principles	K3				
CO3	Measure stress, strain, testing, reinforcement and its applications	K4				
CO4	Analyze and estimate the experimental data	K4				
CO5	Evaluate the experimental value by analyzing the experimental data	K5				
CO6	Prepare and write the report K6					
K1: Ren	nembering, K2: Understanding, K3: Applying, K4: Analyzing, K5: Evaluating, K6: Creating					

Semester I Page 36 of 185

	Structural Mechanics Laboratory: ESP4151 Mapping of Course Outcomes (COs) with Programme Outcomes (POs)											
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	1	1	-	-	-	-	-	-	1	-	-
CO2	3	1	2	-	1	-	-	-	-	1	-	-
CO3	2	1	1	2	1	-	-	-	-	-	-	-
CO4	3	1	1	2	1	-	-	-	-	1	-	-
CO5	3	2	2	-	-	-	-	-	-	-	-	-
CO6	2	1	2	-	-	-	-	-	-	-	-	-
	3	-Strong (Contribu	tion; 2-M	loderate (Contribut	tion; 1-L	ow Contr	ribution;			

Mapping of	Structural Mechanics Laboratory: ESP4151 Mapping of Course Outcomes (COs) with Programme Specific Outcomes (PSOs)										
	PSO1	PSO2	PSO3	PSO4	PSO5						
CO1	3	2	1	1	-						
CO2	3	2	1	1	-						
CO3	2	3	2	2	1						
CO4	3	3	2	1	1						
CO5	3	2	1	-	-						
CO6	2	1	2	-	-						
3-5	Strong Contribution; 2	2-Moderate Contr	ibution; 1-Low Co	ontribution;	•						

Semester I Page 37 of 185

	Semester I							
Course Code:	Course Title	Credits = 2						
ESP4152	Engineering Graphics and Computer Aided Drafting (CAD)	L	T	P				
Semester: I	Total contact hours: 60	0	0	4				
	List of Prerequisite Courses							
Basic Geometry								
·	List of Courses where this course will be prerequisite							
	Engineering Graphics: II (ESP4152), Equipment Design and Drawing (CEP4451), Structural Mechanics (EST4151)							
Descr	intion of relevance of this course in the Int. M. Tech. Program							

Description of relevance of this course in the Int. M. Tech. Program

A student of Chemical Engineering is required to know the various processes and the equipment used to carry out the processes. Some of the elementary processes like filtration, size reduction, evaporation, condensation, crystallization etc., are common to all engineers and technologists. These and many other processes require machines and equipment. One should be familiar with the design, manufacturing, working, and maintenance of such machines and equipment. The subject of "drawing" is a medium through which one can learn all such matters, because the "drawings" are used to represent objects and processes on paper. Through the drawings, a lot of accurate information is conveyed which will not be practicable through a spoken word or a written text. Drawing is a language used by engineers and technologists. This course is required in many subjects as well as later in the professional career.

	Course Contents (Topics and subtopics)	Reqd. hours			
1	Orthographic projections:	12			
	Basics of Engineering drawing, Different lines in the drawing and their applications, Methods of				
	projection, Different planes of projection, first and third angle of projections of drawing, four				
	quadrants and concept of orthographic projections.				
2	Sectional views and Missing views:	08			
	Need for the drawing sectional views, concept of sectioning and section lines, sectional drawings				
	of different solids and machine components, auxiliary planes, and views.				
	Concept of recognizing missing views and their interpretation, drawing of missing views from				
	given orthographic drawings.				
3	Projections, Sections, Development of surfaces and Interpenetration of solids:	12			
	Introduction to basic shapes of Solids, Projections of Solids in different planes as per the given				
	conditions, Sectional planes for cutting solids and respective drawings,				
	Concept of surface development of respective solids, Development of surfaces of cylinders,				
	prisms, pyramids, cones etc.				
	Interpenetration of two or more solids and their respective drawings	0.0			
4	Introduction to Computer Aided Drafting (CAD):	08			
	Basic introduction to CAD software, 2D and 3D drawings, drawing modification and				
	dimensioning, different components of an engineering drawing in the industry.	08			
5	Isometric projections using CAD:				
	Concept of isometric views, isometric projections and isometric scale, Iso metric projections of				
	different solids and machine components using CAD software.	10			
6	Assembly drawing using CAD:	12			
	Basics of Assembly drawing, preparation of 3d components and assembling on CAD software, labelling and table creation for bill of materials				
	Total	60			
	List of Textbooks/ Reference Books	00			
1	Engineering Drawing by N.D.Bhat				
2	Engineering Drawing by N.H.Dubey				
3	CAD/CAM: Theory and Practice by Ibrahim Zeid and R Sivasubramanian				
<u> </u>	Course Outcomes (students will be able to)				
CO1	Students will be able to read Drawing	K2			
CO2	· ·	K2 K2			
CUZ	Can understand Different drawing views and its interpretation.	N.Z			

Semester I Page 38 of 185

Integrated Master of Technology, Chemical Engineering (Major) and MDM ICT Marathwada Campus, Jalna

CO3	Can draw 3d drawing on a CAD software	K3				
CO4	Assembly of different machine parts and its working.	K3				
CO5	Estimate and evaluate the computer data with modeling	K5				
CO6	Create the file and data reporting					
K1: Remembering, K2: Understanding, K3: Applying, K4: Analyzing, K5: Evaluating, K6: Creating						

	Engineering Graphics and Computer Aided Drafting (CAD): ESP4152 Mapping of Course Outcomes (COs) with Programme Outcomes (POs)											
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	-	2	1	2	-	-	-	-	-	1	1
CO2	2	1	1	2	1	-	-	-	-	1	1	1
CO3	2	1	1	1	1	-	1	-	-	-	2	1
CO4	1	-	1	1	2	-	-	-	-	-	1	-
CO5	2	1	1	1	2	-	1	-	-	1	1	1
CO6	3	1	2	2	1	-	-	-	-	-	-	-
	3	S-Strong	Contribu	tion; 2-M	Ioderate (Contribut	ion; 1-L	ow Contr	ribution;	•		•

_	Engineering Graphics and Computer Aided Drafting (CAD): ESP4152 Mapping of Course Outcomes (COs) with Programme Specific Outcomes (PSOs)									
	PSO1	PSO2	PSO3	PSO4	PSO5					
CO1	3	2	1	-	-					
CO2	3	2	1	-	-					
CO3	2	1	-	2	1					
CO4	2	1	2	3	1					
CO5	3	2	1	2	1					
CO6	3	2	1	-	-					
3-Str	ong Contribution; 2	-Moderate Contri	bution; 1-Low Co	ntribution;						

Semester I Page 39 of 185

		Semester I						
	Course Code:	Course Title:	Cr	edits :	= 2			
	HUP4151	Communication Skills - English	L	Т	P			
	Semester: I	Total contact hours: 30	2	0	0			
		List of Prerequisite Courses	1	I				
	Basic English Langu	uage of the XII Grade Level						
	6 6	List of Courses where this course will be prerequisite	1					
	NA	235 of Source will be out the prorequisite						
		escription of relevance of this course in the Int. M. Tech. Program						
This is		for the effective functioning of an Engineer. Communication skills are required	in all a	2011800				
11115 15			1					
		Course Contents (Topics and subtopics)	Keq	d. ho u 6	ırs			
1	Communication as a way of life Process of communication and its elements							
		inication and importance in future careers						
	Essentials of good co							
2	The communication			4				
	The 5-step communi	ication cycle:						
	Idea formation							
	Message encoding.							
	Message transmission	on.						
	Decoding							
	Feedback							
3	Factors affecting eff	ective communication.		3				
	Planning for effective	ve communication						
	Modes of communic	eation						
4	Non-verbal commun	nication		4				
	Gestures							
	Facial expressions							
	Posture and moveme	ent.						
	Paralinguistics							
	Eye contact							
	Image management							
5	Presentation skills			8				
	What makes good pr	resentation?						
	Presenting the messa							
	Presenting oneself							
	Visual Communicati	ion						
6	Introduction to resea	arch study		5				
Ü	Introduction to datab	· · · · · · · · · · · · · · · · · · ·						
		ion and referencing styles.						
	How to conduct liter	· ·						
	Preparation of a repo	ort based on literature review						
		Total		30				
	1	List of Text Books	ı					
1	THE SCIENCE OF	EFFECTIVE COMMUNICATION: Improve Your Social Skills and Small						
	Talk, Develop Chari	isma and Learn How to Talk to Anyone- Ian Tuhovsky						
2	The Quick and Easy	Way to Effective Speaking- Dale Carnegie						
	1	List of Additional Reading Material / Reference Books	,					
1	The Hindu Business							
2	National Newspaper	rs' editorials						

Semester I Page 40 of 185

	Course Outcomes (students will be able to)						
CO1	Student would be able to illustrate the 5-step communication process	K2					
CO2	Student would be able to explain the end goal of communication	K2					
CO3	Student would be able to explain barriers to clear communication	K2					
CO4	Student would be able to articulate the role of visual communication within society and implement the creative process to express himself/herself.	К3					
CO5	Student would be able to identify the most relevant textbooks, reviews, papers and journals	K4					
CO6	Reporting and communicate the idea and thoughts	K6					
K1: R	emembering, K2: Understanding, K3: Applying, K4: Analyzing, K5: Evaluating, K6: Creating						

	Communication Skills - English: HUP4151 Mapping of Course Outcomes (COs) with Programme Outcomes (POs)											
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	-	-	3	1	1	-	-	-	-	2	-	-
CO2	-	-	2	1	-	-	-	-	-	2	1	-
CO3	-	-	3	1	1	1	-	-	-	2	-	-
CO4	-	-	2	1	2	2	ı	-	-	3	-	-
CO5	-	-	2	1	1	1	-	-	-	3	1	-
CO6	-	-	2	1	1	1	i	-	-	3	1	-
	3	S-Strong (Contribu	tion; 2-M	Ioderate	Contribut	ion; 1-L	ow Contr	ribution;			

Mapping of	Communication Skills - English: HUP4151 Mapping of Course Outcomes (COs) with Programme Specific Outcomes (PSOs)										
	PSO1 PSO2 PSO3 PSO4 PSO5										
CO1	3	2	1	-	-						
CO2	2	2	3	-	-						
CO3	2	3	3	-	-						
CO4	2	2	3	1	-						
CO5	-	2	3	2	-						
CO6	2	2	3	1	-						
3-Str	ong Contribution; 2	-Moderate Contr	ibution; 1-Low Co	ontribution;							

Semester I Page 41 of 185

		Semester I			
	Course Code:	Course Title:	Cr	edits:	= 2
	HUP4152	Yoga and Self Development	L	T	P
	Semester: I	Total contact hours: 60	0	0	4
		List of Prerequisite Courses		1	
	status, academic sch because of any situa they have proper nu	to gather some basic information about the students, such as their age, marital edules, and recreational activities, whether they have any sleep issues and stress ation. It shall be better to know how the students deal with stress, and whether trition. We also might need information about any injuries past or current and andition that may interfere in the program.			
		List of Courses where this course will be prerequisite	1		
	Applicable throughout	out professional and personal lives			
	De	escription of relevance of this course in the Int. M. Tech. Program			
by doi potenti	ng Yoga Aasanas. A ial. Professional and p	rney. The benefits of Yoga are many. It brings in calmness of mind besides the part from flexibility developed by regular physical activities, it makes one awarersonal lives are full of situations that can be stressful. Yoga helps the students to extations and demands of their own lives.	are o	f his	own
		Course Contents (Topics and subtopics)	Req	d. hot	urs
2	be practiced for eac observing the stream. The students shall be elicit a state of deep or changing the symetc. are exercised to experiences. The students shall flexibility, strength record will form the Yoga helps to develocompassion. It's ma and poses during the Assessment: The for Regular attendance Paper Assessment: philosophy of yoga	foundations of yoga. Both concentrative and insight meditation techniques may h session. Behavioural techniques of self-monitoring should also be practiced of consciousness from the perspective of a vigilant but detached observer. Be trained to practice different models of mindfulness and meditation so as to physical and behavioural relaxation. They may work on selectively influencing metry in hemispheric brain activity. Positive addiction, meta-cognitive practices of make the students experience the universal human capacity through spiritual addents may learn to turn-off or bypass the cognitive processing of usual daily concerns, allowing access to mindful, spiritual and meditative state of self-keep a small journal to write down their own journey/progress on physical building and most importantly, how they deal with stressful conditions. This paper assessment of the student. Op many mental skills like mindfulness, self-control, focus, and even self-inly a physical practice. The students are taken through different movements be yoga sessions. Illowing assessments are recommended: A paper assessment may include assessing student's understanding of the basic on the basis of his/her ability to assimilate the philosophy of yoga and practicing		20	
	•	ity assessment is to assess the strength and flexibility, like twist.			
		Total		60	
		List of Text Books/ Reference Books			
1	_	jali, Ramakrishna Mission, Kolkata			
2	RN Jha, Science of C 2016	Consciousness Psychotherapy and Yoga Practices, Vidyanidhi Prakashan, Delhi			
		Course Outcomes (students will be able to)			
CO1	Keep physically fit a	and mentally agile		K2	
CO2	Manage stress in stu	dies and later in life		K2	
CO3	Coordinate body and	d mind together		K2	
CO4		otions and maintain healthy daily routine		K2	

Semester I Page 42 of 185

CO	Understand and apply the importance of Yoga and Self-development in personal life	К3
K1:	Remembering, K2: Understanding, K3: Applying, K4: Analyzing, K5: Evaluating, K6: Creating	

	Yoga and Self Development: HUP4152 Mapping of Course Outcomes (COs) with Programme Outcomes (POs)												
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	-	1	2	-	1	-	1	2	2	1	-	2	
CO2	-	1	2	-	1	-	1	2	2	1	-	2	
CO3	-	1	2	-	1	-	1	2	2	1	-	2	
CO4	-	1	2	-	1	-	1	2	2	1	-	2	
CO5	-	2	2	-	1	-	2	2	3	2	-	3	
	3	S-Strong	Contribu	tion: 2-M	Ioderate (Contribut	ion: 1-L	ow Contr	ibution:		•		

Mapping	Yoga and of Course Outcomes	d Self Developme (COs) with Prog		Outcomes (PSOs)	
	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	-	-	-	-	1
CO2	-	-	-	-	1
CO3	-	-	-	-	1
CO4	-	-	-	-	1
CO5	-	-	-	-	1

Semester I Page 43 of 185

		Semester I			
	Course Code: HUP4152 Fine Arts and Performing Arts Semester: I Total contact hours: 60 List of Prerequisite Courses Basic Drawing Course, Primary Extracurricular Activities course List of Courses where this course will be prerequisite NA Description of relevance of this course in the Int. M. Tech. Program ation of arts is an integral part of the development of human beings since the arts are what make us mete as people. They offer us the experience of wholeness because they touch us at the deepest levality. They come into being not when we move beyond necessity but when we move to a deeper human need to create order, beauty and meaning out of chaos. They are the expressions of deeper atives and aspirations Course Contents (Topics and subtopics) The Institute offers a range of courses in different art forms: music, dance, theatre, painting, and other art forms. Students will be given an option to choose a particular art form, and learn and practice it under an artist-instructor. At the end of the course, a student should be able to demonstrate basic proficiency in that particular art form.	Cre	edits :	= 2	
	HUP4152	Fine Arts and Performing Arts	L	T	P
	Semester: I	Total contact hours: 60	0	0	4
		List of Prerequisite Courses			
	Basic Drawing Cour	rse, Primary Extracurricular Activities course			
		List of Courses where this course will be prerequisite			
	NA				
	D	escription of relevance of this course in the Int. M. Tech. Program			
deeper		te order, beauty and meaning out of chaos. They are the expressions of deepes	st hun		rges,
1	other art forms. Students will be giv artist-instructor. At	a range of courses in different art forms: music, dance, theatre, painting, and en an option to choose a particular art form, and learn and practice it under an the end of the course, a student should be able to demonstrate basic proficiency		60	
	-	Total		60	
	•	List of Text Books/ Reference Books			
1		ugh the Ages: A Global History. (13th Ed.), ed. F.S. Kleiner, Ref. N5300 .G25			
2		pedia of Classical Art and Architecture. ed. Gordon Campbell. Ref. N5610 .G76			
3	Art and Music: A St	rudent's Guide (Reclaiming the Christian Intellectual Tradition)			

Course Outcomes (students will be able to....)

Develop an understanding and sharing of culture, with social skills that enhance the awareness and

K1: Remembering, K2: Understanding, K3: Applying, K4: Analyzing, K5: Evaluating, K6: Creating

K3

K3

K3

K3

K3

CO1

CO2

CO3

CO4

CO5

respect of others

Enhance perceptual and cognitive skills

Be creative with improved emotional expression

Develop social harmony and appreciation of diversity.

Develop self-esteem, motivation, aesthetic awareness, cultural exposure

Fine Arts and Performing Arts: HUP4152 Mapping of Course Outcomes (COs) with Programme Outcomes (POs)												
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	-	-	1	-	2	1	1	2	2	2	1	2
CO2	-	-	1	-	2	1	1	2	2	2	1	2
CO3	-	-	1	-	2	1	1	2	2	2	1	2
CO4	-	-	2	-	1	1	1	2	2	1	1	2
CO5	-	-	2	-	1	1	1	2	2	1	1	2
	3	S-Strong	Contribu	tion; 2-M	Ioderate (Contribut	ion; 1-L	ow Conti	ribution;			

Semester I Page 44 of 185

Mapping of	Fine Arts a	and Performing A (COs) with Prog		Outcomes (PSOs)						
	PSO1	PSO2	PSO3	PSO4	PSO5					
CO1	-	-	-	-	1					
CO2	CO2									
CO3	-	-	-	-	1					
CO4	-	-	-	-	1					
CO5										
3-St	rong Contribution; 2	-Moderate Contri	bution; 1-Low Co	ontribution;						

Semester I Page 45 of 185

First Year

Semester-II

Semester-II Page 46 of 185

		Semester II			
	Course Code:	Course Title:	Cro	edits :	= 2
	CHT4152	Applied Chemistry II	L	T	P
	Semester: II	Total contact hours: 30	2	0	0
		List of Prerequisite Courses			
	Standard XII Chemistry				
		List of Courses where this course will be prerequisite			
	Engineering (CET4253 Process Dynamics (CE	Balance Calculations (CEP4151), Industrial Chemistry and Reaction (S), Chemical Engineering Operation (CET4251), Instrumentation and T4256), Chemical Reaction Engineering (CET4351), Chemical Process Leering (CET4451), Biochemical Engineering (Hon.), Catalytic Science and			
	Descri	ption of relevance of this course in the Int. M. Tech. Program			
Underst		ture activity relationship in organic molecules. Write simple mechanism	ns of	aron	natic
		Course Contents (Topics and subtopics)	Req	d. hou	ırs
1		tionship in organic molecules: Use of bond length and bond energies to f functional groups. Acidity & basicity values for organic molecules such ids, ketones, amines.		4	
2	compounds, resonating alkylation, and acylation	e substitution: Activating and deactivating functional groups on aromatic structures, reactions such as Halogenation, Nitration, Friedel Crafts n, sulfonation, Diazotization and important reacts of arene diazonium salts. It auxochrome concept, Azo dyes		10	
3	_	Problems associated with SNAr reactions and how to overcome them. c nucleophilic substitutions		4	
4	Organometallics: Metaligands, CO and PPh3 li	al-ligand bonding, Concepts of sigma and pi bond formation. Types of igands.		6	
5	Basic reactions of orga	nometallic compounds: insertion, migration, oxidative addition, reductive		6	
	elimination. E.g., Wilkin	nsons, Grignard Reagent etc.			
		Total		30	
		List of Textbooks/ Reference Books			
1	Organic chemistry: T. V	V. G Solomons, C. B. Fryhle, John Wiley and Sons			
2	Organic chemistry, Clay	yden, Greeves, Warren, Oxford publication			
3	Organic Chemistry, Pau	ıla Y. Bruice, Pearson Education			
4	The Organometallic Che	emistry of the Transition Metals by Robert H. Crabtree			
5	March's Advanced Orga Paperback, Michael B.	anic Chemistry: Reactions, Mechanisms, and Structure 7 Edition (English, Smith)			
6	Basic Inorganic Chemis	stry, F.A. Cotton and G. Wilkinson, John Wiley and Sons			
		Course Outcomes (students will be able to)			
CO1	Understand reactions an	nd structure activity relationship in organic molecules.		K2	
CO2	Write simple mechanism	ns of aromatic reactions.		K3	
CO3	Describe the fundament bonding, and types of li	ntal concepts related to name reactions, organometallics, Metal-ligand gands		К3	
CO4	Role of Wilkinsons, Gri	gnard Reagent in chemical reactions		K2	
CO5	Student will estimate an	nd analyze the fundamental knowledge of basic science		K5	
CO6	Student will be able to o	create an idea and thought to apply knowledge of applied chemistry		K6	
K1: Re	membering, K2: Understa	anding, K3: Applying, K4: Analyzing, K5: Evaluating, K6: Creating			

Semester II Page 47 of 185

	Applied Chemistry II: CHT4152 Mapping of Course Outcomes (COs) with Programme Outcomes (POs)												
PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12													
CO1	3	-	-	1	1	-	-	-	1	2	1	-	
CO2	-	2	1	1	2	-	-	-	1	2	2	-	
CO3	3	2	1	1	-	-	-	-	-	2	2	-	
CO4	3	1	-	-	-	-	-	-	-	-	1	-	
CO5	3	2	1	1	2	-	-	-	-	2	2	-	
CO6	2	3	2	1	-	-	-	-	-	-	-	-	
	3	S-Strong (Contribu	tion; 2-M	loderate (Contribut	tion; 1-L	ow Contr	ibution;				

Mapping o	Applied Chemistry II: CHT4152 Mapping of Course Outcomes (COs) with Programme Specific Outcomes (PSOs)												
	PSO1	PSO2	PSO3	PSO4	PSO5								
CO1	3	2	2	-	-								
CO2	1	2	2	1	1								
CO3	1	2	1	3	1								
CO4	2	1	2	1	-								
CO5	2	2	2	1	-								
CO6	3	2	1	-	-								
3-S	trong Contribution; 2	2-Moderate Contr	ribution; 1-Low Co	ontribution;									

Semester II Page 48 of 185

		Semester II			
	Course Code:	Course Title:	Cr	edits	= 4
	MAT4152	Applied Mathematics: II	his knowledge courses such Hours Hours 15 10 5 6 8 10 60	T	P
	Semester: II	Total contact hours: 60		0	
		List of Prerequisite Courses			
	HSC Standard Mathematics,	Applied Mathematics: I (MAT4151)			
	List	of Courses where this course will be prerequisite			
	Engineering (CET4253), Che CEP4253 and CEP4254), C (CET4352), Process Simula Control (CET4354), Separat	Balance Calculation (CEP4151), Industrial Chemistry and Reaction emical Engineering Laboratory I, II, III and IV (CEP4251, CEP4252, Chemical Reaction Engineering (CET4351), Momentum Transfer tion Lab - I and II (CEP4255 and CEP4256), Chemical Process ion Processes + Membrane (CET4356), Heat Transfer Equipment natical Methods & Optimization in Chemical Engineering (Hon.), (Hon.)			
	Description	of relevance of this course in the Int. M. Tech. Program			
require	ed for solving various mathema	This knowledge will be required in almost all subjects later on. This tical equations that need to be solved in several chemical engineering engineering, separation processes, thermodynamics, etc.			
	Cours	se Contents (Topics and subtopics)]	Hour	S
1	cumulative distribution fundamental Some common univariate distribution; Mormal, Gamma, beta etc; functions: moment generation and Joint distribution; marginal stribution; marginal stribution stribution fundamental stributio	mpling Distribution: Review of probability, Random variables and ction; probability mass function and probability density function; stributions: Binomial, Poisson, Geometric and Uniform, exponential, Expectation and Moments (central and raw moments); Generating ang function and characteristic function; Multiple random variables and distributions, independence; Covariance and Correlation; method inear regression; nonlinear regression		15	
2	Partial Differential Equa	ations: Introduction to Partial Differential Equations (PDE), r PDEs, Solution of PDEs using separation of variable techniques		10	
3		tem of Linear Equations: Solutions of system of linear equations omposition etc.), Numerical solution set of linear algebraic equations: der / over relaxation method		5	
4	Numerical Roots: Numerical Newton's method, Secant and	cal methods for solving non-linear algebraic / transcendental etc.: d Regula Falsi		6	
5		n and extrapolation for equal and non-equal spaced data (Newtons d and Lagrange), Numerical integration (trapezoidal rule, Simpson's		6	
6	values and boundary value pr	umerical methods for solution of first and higher order ODEs (initial roblems) using single step methods (RK, Euler's explicit and implicit s (predictor: corrector methods etc.)		8	
7	Backward difference, and	BVP and PDE: Finite difference methods: Forward difference, Central differences application of finite difference methods to ODE and PDE (parabolic, elliptic and hyperbolic)		10	
		Total		60	
		List of Textbooks / Reference Books			
1	•	y, Sheldon Ross, Pearson Prentice Hall, 9th Edition (2018)			
2	W.W. Hines, D. C. Montgo Engineering, John Wiley &	omery, D.M. Goldsman, John-Wiley, Probability and Statistics in Sons (2008)			
3	Alexander M. Mood, Duand Statistics, McGraw Hill; 3rd	e C. Boes, and Franklin A. Graybill, Introduction to the Theory of edition (1974).			_
4	An Introduction to Statistic Haslwanter, 2016, Springer	s with Python with Applications in the Life Sciences by Thomas			

Semester II Page 49 of 185

E. Kreyszig, Advanced Engineering Mathematics, 8th Ed., John Wiley (1999).

6	S. R. K. Iyengar, R. K. Jain, Advanced Engineering Mathematics, Narosa	
7	Learning Statistics with R by Daniel Joseph Navarro, 2015	
8	Sastry S. S., Introductory Methods of Numerical Analysis, 5th Ed., PHI (20120	
9	M. K. Jain, S R K Iyengar and R K Jain, Numerical Methods: For Scientific and Engineering Computation, New Age International Publication (2003)	
10	Kenneth J Beers Numerical Methods for Chemical Engineering Application Using MATLAB (2007), Cambridge University Press	
11	Mark E. Davis, Numerical Methods and Modelling for Chemical Engineers, Dover Publications (2003)	
12	Sandip Mazumder, Numerical Methods for Partial Differential Equations (2015), Elsevier	
	Course Outcomes (students will be able to)	
CO1	Understand the concepts of various probability distributions and apply them to analyse various engineering problems and make inference about the system	K4
CO2	Understand the method of linear and nonlinear least squares method and apply it to choose appropriate mathematical functions for modelling real data sets, arising from chemical engineering applications	K4
CO3	classify higher of partial differential equation and solve parabolic equation using separation of variables.	К3
CO4	Understand the principles of various numerical approximation techniques and apply them to solve system of linear equations and nonlinear algebraic equations	K4
CO5	Approximate appropriate mathematical functions from equal an unequally spaced data and perform integration using various numerical methods	K4
CO6	Choose appropriate numerical techniques to solve initial and boundary value problems on ordinary and partial differential equations arising from various chemical engineering applications	K5
K1: Re	membering, K2: Understanding, K3: Applying, K4: Analysing, K5: Evaluating, K6: Creating	

	Applied Mathematics - II: MAT4152 Mapping of Course Outcomes (COs) with Programme Outcomes (POs)													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
CO1	3	2	1	-	2	1	-	-	-	-	1	-		
CO2	3	2	2	-	1	2	-	-	-	-	1	1		
CO3	3	2	1	1	2	-	-	-	-	-	-	1		
CO4	3	1	-	2	1	-	-	-	-	-	1	-		
CO5	2	3	1	2	1	-	-	-	-	-	-	-		
CO6	2	1	1	1	-	1	i	-	-	-	1	-		
	3	S-Strong	Contribu	tion; 2-M	Ioderate (Contribut	tion; 1-L	ow Contr	ribution;					

Mapping	Applied Mathematics - II: MAT4152 Mapping of Course Outcomes (COs) with Programme Specific Outcomes (PSOs)										
	PSO1	PSO2	PSO3	PSO4	PSO5						
CO1	3	3	2	2	-						
CO2	2	2	2	1	-						
CO3	2	2	3	1	-						
CO4	1	2	2	-	-						
CO5	3	3	2	1	1						
CO6	2	3	1	1	1						
3-5	Strong Contribution; 2	2-Moderate Contr	ibution: 1-Low Co	ontribution:							

Semester II Page 50 of 185

		Semester II			
	Course Code:	Course Title:	C	redits	= 2
	EST4153	Electrical Engineering and Basic Electronics	L	T	P
	Semester: II	Total contact hours: 30	2	0	0
		List of Prerequisite Courses			
	XIIth Standard Physics	and Mathematics courses, Applied Physics: II (PHT4151)			
	•	List of Courses where this course will be prerequisite			
	Chemical Process Cont	rol (CET4354), Energy Engineering			
	Descri	ption of relevance of this course in the Int. M. Tech. Program			
basics of	f electricity, and the select	the importance of Electrical Energy in Chemical Plants. The students we tion of diverse types of drives for a given application process. They will get rumentation amplifiers and thyristor application in industries.			
		Course Contents (Topics and subtopics)	Req	d. hou	ırs
1	Fundamentals of DC of Voltage and Current S Thevenin's Theorem,	Circuits Sources, Basic Laws, Network Theorems, Superposition Theorem and		4	
2	AC Fundamentals: A RLC circuits. Power, po	.C. through resistance, inductance and capacitance, simple RL, RC and ower factor		4	
3	Three Phase Systems: three phase power	Three phase system of emfs and currents, Star and Delta connections,		3	
4	Single phase transform	ners: Principle of working, Efficiency, regulation.		3	
5	Electrical drives: Basi suitability for various a	c concepts of different types of Electrical motors as drives, Their pplications.		2	
6	Regulated power supp Regulators	blies, Diodes as rectifiers, Half wave and Full wave rectifier, Filters, and		3	
7		nsistors : Different configurations, Characteristics, Concept of basic lifier gain, Transistor as switch		3	
8	Introduction to Integr	rated circuits: Basic concepts of ICs		2	
9		requisition and signal conditioning, Basic concept and Block diagram, of physical quantity to electrical signal, signal conditioning, Introduction ters		3	
10	Notation, Pin diagram	mentation amplifiers and their applications Operational Amplifier: , Differential and common mode gain, CMRR, Applications as non-mming, differential amplifiers, integrator, differentiator,		3	
		Total		30	
	1	List of Textbooks/ Reference Books			
1	Electrical Engineering	Fundamentals by Vincent Deltoro			
2		circuits by Boylstead, Nashelsky			
3	Electrical Machines by				
4	Electrical Technology l	by B. L. Theraja, A. K. Theraja vol I, II, IV			
	1	Course Outcomes (students will be able to)			
CO1	Understand the basic of Solve basic electrical of	concepts of D.C., single phase and three phase AC supply and circuits ircuit problems		K2	
CO2	Understand the basic co	oncepts of transformers and motors used as various industrial drives.		K2	
CO3	Understand the basic camplification, and instr	oncepts of electronic devices and their applications in power supplies, umentation	, K2		
CO4	Understand the basic co	oncepts of Data acquisition, signal conditioning		K2	
CO5	Analyze and evaluate the	ne electrical engineering fundamental principle		K5	

Semester II Page 51 of 185

K6

CO6

Create the electrical instrumentation

K1: Remembering, K2: Understanding, K3: Applying, K4: Analyzing, K5: Evaluating, K6: Creating

	Electrical Engineering and Basic Electronics: EST4153 Mapping of Course Outcomes (COs) with Programme Outcomes (POs)												
	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12												
CO1	3	1	1	1	-	1	1	-	-	1	1	-	
CO2	3	2	1	2	1	1	1	-	-	1	-	-	
CO3	1	2	1	1	1	1	-	-	-	-	1	-	
CO4	3	-	-	1	-	-	2	-	-	1	1	-	
CO5	3	2	1	1	1	1	1	-	-	1	1	-	
CO6	3	2	1	1	1	2	1	-	=	-	=	-	
	3	S-Strong	Contribu	tion; 2-M	Ioderate (Contribut	tion; 1-L	ow Contr	ibution;	•		•	

Mapping	Electrical Engine of Course Outcomes				
	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	2	2	-
CO2	2	2	2	2	-
CO3	2	3	2	1	1
CO4	2	2	1	-	-
CO5	3	2	2	1	1
CO6	2	2	1	-	-

Semester II Page 52 of 185

_	Course Code: ESP4153	Compa Title.			
	ECD4152	Course Title:	Cr	edits =	= 2
	ESF4155	Electrical Engineering and Basic Electronics Laboratory	L	T	P
L.	Semester: II	Total contact hours: 60	0	0	4
		List of Prerequisite Courses			
	XIIth Standard Math Engineering and Elect	nematics and Physics courses, Applied Physics I (PHT4151), Electrical ronics (EST4153)			
		List of Courses where this course will be prerequisite			
	Chemical Process Cor	atrol (CET4354)			
	Des	cription of relevance of this course in the Int. M. Tech. Program			
basics o	of electricity, and the se	nto the importance of Electrical Energy in Chemical Plants. The students will election of diverse types of drives for a given application process. They will get be instrumentation amplifiers and thyristor application in industries.			
		Course Contents (Topics and subtopics)	Req	d. ho	urs
		nents related the following concepts will be conducted:		10	
		ous Instruments and components in Electrical Engineering and			
	Electronics			10	
2	Electrical Engineerin Verification of Netwo			10	
	Study of RLC circuits				
	Load test on transform			10	
_	Load test on induction			10	
	Study of 3 phase circu	its			
4	Electronics:			10	
	•	ll wave rectifier circuits			
		put characteristics of a transistor.		10	
6	Study of operational a	•		10	
	Study of sensors and t				
		Total		60	
		List of Textbooks/ Reference Books			
		Fundamentals by Vincent Deltoro			
2		l circuits by Boylstead, Nashelsky			
3	Electrical Machines by	y Nagrath, Kothari			
4	Electrical Machines by	y P.S. Bhimbra			
5	Electrical Technology	by B. L. Theraja, A. K. Theraja vol I, II, IV			
		Course Outcomes (students will be able to)			
	Understand the basic obasic electrical circuit	concepts of D.C., single phase and three phase AC supply and circuits Solve problems		K2	
CO2	Understand the basic of	concepts of transformers and motors used as various industrial drives.		K2	
CO3	Understand the basic amplification, and inst	concepts of electronic devices and their applications in power supplies, trumentation		K2	
CO4	Understand the basic of	concepts of Data acquisition, signal conditioning		K2	
CO5	Estimating and evalua	te the data		K5	
CO6	Prepare the report and	create the idea and thoughts		K6	

Semester II Page 53 of 185

	Electrical Engineering and Basic Electronics Laboratory: ESP4153 Mapping of Course Outcomes (COs) with Programme Outcomes (POs)												
	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12												
CO1	3	1	1	1	-	1	1	-	-	1	1	-	
CO2	3	2	1	2	1	1	1	-	-	-	1	-	
CO3	1	2	1	1	1	1	-	-	-	1	-	-	
CO4	3	-	-	1	-	-	2	-	-	-	-	-	
CO5	3	2	1	1	1	1	1	-	-	1	-	-	
CO6	2	1	2	1	-	-	-	-	-	-	-	-	
	3-Strong Contribution; 2-Moderate Contribution; 1-Low Contribution;												

	Electrical Engineering and Basic Electronics Laboratory: ESP4153 Mapping of Course Outcomes (COs) with Programme Specific Outcomes (PSOs)												
	PSO1	PSO2	PSO3	PSO4	PSO5								
CO1	2	1	2	1	-								
CO2	2	2	3	2	-								
CO3	2	1	1	1	-								
CO4	1	2	1	2	-								
CO5	2	1	1	1	-								
CO6	2	1	2	1	-								
3-St	rong Contribution; 2	2-Moderate Contri	ibution; 1-Low Co	ontribution;									

Semester II Page 54 of 185

Semester: II Total contact hours: 60 3 1 0			Semester II			
Semester: II				Cr	edits =	- 4
Applied Physics (PHT4151), Applied Mathematics: I and II (MAT4151 and MAT4152) List of Courses where this course will be prerequisite Chemical Engineering Thermodynamics-I (CET4155), Material and Energy Balance Calculations (CFP4151), Chemical Process Design and Engineering (CFP4451), Process Safety (CET4255) Chemical Project Engineering and Economics (CET4358) Description of relevance of this course in the Int. M. Tech. Program Students will be able to understand various equipment's like steam turbine, gas turbine, pumps, compressors, and power transmission system. Course Contents (Topics and subtopics) Reqd. hours 1 Introduction to Thermodynamics, First and Second law of thermodynamics. 2 Properties of steam, T-S Diagram, Calculation of entropy, enthalpy, specific volume of steam, steam table, Dryness fraction, 3 Introduction to Steam Power Plant, Rankine cycle, Reheat cycle, Regenerative cycle, Back Pressure Turbine. 4 Steam Turbine, Classification, Calculation of Power Developed by Steam Turbine, Compounding of Steam Turbine 5 Boilers, Classification, Study of various Boiler such as Babcock & Wilcox Boiler, Cochran Boiler, La-Mount Boiler, Benson Boiler, Boiler Mountings and Accessories, Boiler Performance, Measurement of Steam Quality 6 Steam Nozzles, Diverse types of Steam Nozzles, Variation of area, velocity, and specific volume 2 Tellements of Steam condenser, several types of steam condenser, Condenser Efficiency 4 Elements of Steam condenser, several types of steam condenser, Condenser Efficiency 5 Pumps, Classification of Pumps, Reciprocating Pumps, Centrifugal Pumps, Axial Pumps, Gear Pumps, Maintenance of Pumps 10 Refrigeration: COP of refrigerator and heat pumps, classification of refrigerants, Nomenclature, properties desired by refrigerants. Vapor compression refrigeration cycle. Methods of increasing thermal efficiency and performance of internal combustion engines: Thermodynamic cycles such as bot, noice, chain, and gear drives. Introduction to mechanical elements such as keys		EST4152	Mechanical Engineering		T	P
Applied Physics (PHT4151), Applied Mathematics: I and II (MAT4151 and MAT4152) List of Courses where this course will be prerequisite Chemical Engineering Thermodynamics (CEF4155), Material and Energy Balance Calculations (CEP4151), Chemical Process Design and Engineering (CEP4451), Process Safety (CET4255) Chemical Project Engineering and Economics (CET4358) Description of relevance of this course in the Int. M. Tech. Program Students will be able to understand various equipment's like steam turbine, gas turbine, pumps, compressors, and power transmission system. Course Contents (Topics and subtopics) Reqd. hours Introduction to Thermodynamics, First and Second law of thermodynamics. 4 Properties of steam, T-S Diagram, Calculation of entropy, enthalpy, specific volume of steam, steam table, Dryness fraction. Introduction to Steam Power Plant, Rankine cycle, Reheat cycle, Regenerative cycle, Back Pressure Turbine. Steam Turbine, Classification, Calculation of Power Developed by Steam Turbine, Compounding of Steam Turbine (Classification, Study of various Boilers such as Babcock & Wilcox Boiler, Cochran Boiler, La-Mount Boiler, Benson Boiler, Boiler Mountings and Accessories, Boiler Performance, Measurement of Steam Quality Steam Nozzles, Diverse types of Steam Nozzles, Variation of area, velocity, and specific volume Elements of Steam condenser, several types of steam condenser, Condenser Efficiency Elements of Steam condenser, several types of steam condenser, Condenser Efficiency Refrigeration of Compressors, Reciprocating Compressors, Single stage compressors, and multistage compressor, Pv. diagram, Application of Compressors, Rotary Compressors, Centifugal and Axial compressors Refrigeration of Pumps Refrigeration of Pumps Refrigeration of Pumps, Reciprocating Pumps, Centrifugal Pumps, Axial Pumps, Gear Pumps, Maintenance of Pumps Refrigeration of Pumps, Pumps, Maintenance of Pumps, Centrifugal Pumps, Axial Pumps, Gear Pumps, Maintenance of Pumps Refrigeration of Pumps, Pumps, Maintenan		Semester: II	Total contact hours: 60	3	1	0
Chemical Engineering Thermodynamics-1 (CET4155), Material and Energy Balance Calculations (CEP4151), Chemical Process Design and Engineering (CEP4451), Process Safety (CET4255)		,	List of Prerequisite Courses			
Chemical Engineering Thermodynamics-1 (CET4155), Material and Energy Balance Calculations (CEP4151), Chemical Process Design and Engineering (CEP4451), Process Safety (CET4255)		Applied Physics (PH				
CEP4151), Chemical Process Design and Engineering (CEP4451), Process Safety (CET4255) Chemical Project Engineering and Economics (CET4558) **Description of relevance of this course in the Int. M. Tech. Program Students will be able to understand various equipment's like steam turbine, gas turbine, pumps, compressors, and power transmission system. **Course Contents (Topics and subtopics)** Read. hours** Course Contents (Topics and subtopics)** Read. hours** Introduction to Thermodynamics, First and Second law of thermodynamics. 4 Properties of steam, T-S Diagram, Calculation of entropy, enthalpy, specific volume of steam, steam table, Dryness fraction, 3 Introduction to Steam Power Plant, Rankine cycle, Reheat cycle, Regenerative cycle, Back Pressure Turbine, Classification, Calculation of Power Developed by Steam Turbine, Compounding of Steam Turbine, Classification, Study of various Boilers such as Babcock & Wilcox Boiler, Cochran Boiler, La-Mount Boiler, Benson Boiler, Boiler Mountings and Accessories, Boiler Performance, Measurement of Steam Quality Steam Nozzles, Diverse types of Steam Nozzles, Variation of area, velocity, and specific volume 2 Elements of Steam condenser, several types of steam condenser, Condenser Efficiency 4 Compressors, Classification of Compressors, Reciprocating Compressors, Rotary Compressors and multistage compressors and multistage compressors of Accurrifugal and Axial compressors 4 Pumps, Maintenance of Pumps Reciprocating Pumps, Centrifugal Pumps, Axial Pumps, Gear Pumps, Maintenance of Pumps Reciprocating Pumps, Centrifugal Pumps, Axial Pumps, Gear Pumps, Maintenance of Pumps Pumps, M		1				
Students will be able to understand various equipment's like steam turbine, gas turbine, pumps, compressors, and power transmission system. Course Contents (Topics and subtopics) Reqd. hours		(CEP4151), Chemica	al Process Design and Engineering (CEP4451), Process Safety (CET4255)			
Course Contents (Topics and subtopics) Reqd. hours		De	escription of relevance of this course in the Int. M. Tech. Program			
Course Contents (Topics and subtopics) Reqd. hours			lerstand various equipment's like steam turbine, gas turbine, pumps, compresso	rs, an	d pow	er
Introduction to Thermodynamics, First and Second law of thermodynamics. Properties of steam, T-S Diagram, Calculation of entropy, enthalpy, specific volume of steam, steam table, Dryness fraction. Introduction to Steam Power Plant, Rankine cycle, Reheat cycle, Regenerative cycle, Back Pressure Turbine, Steam Turbine, Classification, Calculation of Power Developed by Steam Turbine, Compounding of Steam Turbine Boilers, Classification, Study of various Boilers such as Babcock & Wilcox Boiler, Cochran Boiler, La-Mount Boiler, Boiler Mountings and Accessories, Boiler Performance, Measurement of Steam Quality Elements of Steam Quality Elements of Steam condenser, several types of steam condenser, Condenser Efficiency Elements of Steam condenser, several types of steam condenser, Condenser Efficiency Elements of Steam condenser, several types of steam condenser, Condenser Efficiency Compressors, Classification of Compressors, Rotary Compressors, and multistage compressor, P-V diagram, Application of Compressors, Rotary Compressors, Cantrifugal and Axial compressors Pumps, Classification of Pumps, Reciprocating Pumps, Centrifugal Pumps, Axial Pumps, Gear Pumps, Maintenance of Pumps Refrigeration: COP of refrigerator and heat pumps, classification of refrigerants, Nomenclature, properties desired by refrigerants, Vapor compression refrigeration cycle. Methods of increasing COP of VCRS. Vapor absorption refrigeration systems. Internal combustion engines: Thermodynamic cycles such as otto, diesel and dual cycles. Methods of increasing thermal efficiency and specific work output of gas turbines. Total Gas turbines: Constant pressure and constant volume gas turbines, open and closed cycle gas turbines. Methods of increasing thermal efficiency and specific work output of gas turbines. Total One List of Textbooks/ Reference Books Total Thermodynamics by P.K. Nag Gas turbine theory by HiH Saravanamutoo Refrigeration and air conditioning by C.P. Arora Power plant by Morse Heat Engines by P.L. Balani Hydr	transr	nission system.				
Properties of steam, T-S Diagram, Calculation of entropy, enthalpy, specific volume of steam, steam table, Dryness fraction, Introduction to Steam Power Plant, Rankine cycle, Reheat cycle, Regenerative cycle, Back Pressure Turbine, Steam Turbine, Classification, Calculation of Power Developed by Steam Turbine, Compounding of Steam Turbine Boilers, Classification, Study of various Boilers such as Babcock & Wilcox Boiler, Cochran Boiler, La-Mount Boiler, Benson Boiler, Boiler Mountings and Accessories, Boiler Performance, Measurement of Steam Quality Steam Nozzles, Diverse types of Steam Nozzles, Variation of area, velocity, and specific volume Compressors, Classification of Compressors, Reciprocating Compressors, Single stage compressor and multistage compressor, P-V diagram, Application of Compressors, Rotary Compressors, Centrifugal and Axial compressors Pumps, Classification of Pumps, Reciprocating Pumps, Centrifugal Pumps, Axial Pumps, Gear Pumps, Maintenance of Pumps Refrigeration: COP of refrigerator and heat pumps, classification of refrigerants, Nomenclature, properties desired by refrigerator and heat pumps, classification of refrigerants, Nomenclature, properties desired by refrigerator refrigeration systems. Internal combustion engines: Thermodynamic cycles such as otto, diesel and dual cycles. Methods of increasing thermal efficiency and performance of internal combustion engines Gas turbines: Constant pressure and constant volume gas turbines, open and closed cycle gas turbines. Methods of increasing thermal efficiency and specific work output of gas turbines. Total 60 Total 60 Total 60 Refrigeration and air conditioning by C.P. Arora Power plant by Morse List of Textbooks/ Reference Books Total 7 Thermodynamics by P.K. Nag Gas turbines of power: Introduction to various drives such as belt, rope, chain, and gear drives. Introduction to mechanical elements such as keys, couplings, and bearings in power transmission. Total 60 Total 7 Heat Engines by P.L. Balani Hydraulic Machines				Rec		ırs
steam table, Dryness fraction. Introduction to Steam Power Plant, Rankine cycle, Reheat cycle, Regenerative cycle, Back Pressure Turbine, Steam Turbine, Classification, Calculation of Power Developed by Steam Turbine, Compounding of Steam Turbine Classification, Study of various Boilers such as Babcock & Wilcox Boiler, Cochran Boiler, La-Mount Boiler, Benson Boiler, Boiler Mountings and Accessories, Boiler Performance, Measurement of Steam Quality Steam Nozzles, Diverse types of Steam Nozzles, Variation of area, velocity, and specific volume Elements of Steam condenser, several types of steam condenser, Condenser Efficiency Compressors, Classification of Compressors, Reciprocating Compressors, Rotary Compressors and multistage compressor, P-V diagram, Application of Compressors, Rotary Compressors, Centrifugal and Axial compressors Pumps, Classification of Pumps, Reciprocating Pumps, Centrifugal Pumps, Axial Pumps, Gear Pumps, Maintenance of Pumps Refrigeration: COP of refrigerator and heat pumps, classification of refrigerants, Nomenclature, properties desired by refrigerants. Vapor compression refrigeration cycle. Methods of increasing COP of VCRS. Vapor absorption refrigeration systems. Internal combustion engines: Thermodynamic cycles such as otto, diesel and dual cycles. Methods of increasing thermal efficiency and performance of internal combustion engines Gas turbines: Constant pressure and constant volume gas turbines, open and closed cycle gas turbines. Methods of increasing thermal efficiency and specific work output of gas turbines. Transmission of power: Introduction to various drives such as belt, rope, chain, and gear drives. Introduction to mechanical elements such as keys, couplings, and bearings in power transmission. List of Textbooks/ Reference Books Total Thermodynamics by P.K. Nag Gas turbine theory by HiH Saravanamutoo Refrigeration and air conditioning by C.P. Arora Power plant by Morse Heat Engines by P.L. Balani Hydraulic Machines by Jagdish Lal Theory of Machines by			·		4	
Turbine, 4 Steam Turbine, Classification, Calculation of Power Developed by Steam Turbine, Compounding of Steam Turbine 5 Boilers, Classification, Study of various Boilers such as Babcock & Wilcox Boiler, Cochran Boiler, La-Mount Boiler, Benson Boiler, Boiler Mountings and Accessories, Boiler Performance, Measurement of Steam Quality 6 Steam Nozzles, Diverse types of Steam Nozzles, Variation of area, velocity, and specific volume 7 Elements of Steam condenser, several types of steam condenser, Condenser Efficiency 8 Compressors, Classification of Compressors, Reciprocating Compressors, Single stage compressor and multistage compressor, P-V diagram, Application of Compressors, Rotary Compressors, Centrigual and Axial compressors 9 Pumps, Classification of Pumps, Reciprocating Pumps, Centrifugal Pumps, Axial Pumps, Gear Pumps, Maintenance of Pumps 10 Refrigeration: COP of refrigerator and heat pumps, classification of refrigerants, Nomenclature, properties desired by refrigerants. Vapor compression refrigeration cycle. Methods of increasing COP of VCRS. Vapor absorption refrigeration systems. 11 Internal combustion engines: Thermodynamic cycles such as otto, diesel and dual cycles. Methods of increasing thermal efficiency and performance of internal combustion engines 4 Use Gas turbines: Constant pressure and constant volume gas turbines, open and closed cycle gas turbines. Methods of increasing thermal efficiency and specific work output of gas turbines. 1 Transmission of power: Introduction to various drives such as belt, rope, chain, and gear drives. Introduction to mechanical elements such as keys, couplings, and bearings in power transmission. 1 Thermodynamics by P.K. Nag 2 Gas turbine theory by HiH Saravanamutoo 3 Refrigeration and air conditioning by C.P. Arora 4 Power plant by Morse 5 Heat Engines by P.L. Balani 6 Hydraulic Machines by Jagdish Lal 7 Theory of Machines by Rattan. S.S Course Outcomes (students will be able to)		steam table, Dryness	fraction,		4	
of Steam Turbine 5 Boilers, Classification, Study of various Boilers such as Babcock & Wilcox Boiler, Cochran Boiler, La-Mount Boiler, Benson Boiler, Boiler Mountings and Accessories, Boiler Performance, Measurement of Steam Quality 6 Steam Nozzles, Diverse types of Steam Nozzles, Variation of area, velocity, and specific volume 7 Elements of Steam condenser, several types of steam condenser, Condenser Efficiency 8 Compressors, Classification of Compressors, Reciprocating Compressors, Single stage compressor and multistage compressor, P-V diagram, Application of Compressors, Rotary Compressors, Centrifugal and Axial compressors 9 Pumps, Classification of Pumps, Reciprocating Pumps, Centrifugal Pumps, Axial Pumps, Gear Pumps, Maintenance of Pumps 10 Refrigeration: COP of refrigerator and heat pumps, classification of refrigerants, Nomenclature, properties desired by refrigerants. Vapor compression refrigeration cycle. Methods of increasing COP of VCRS. Vapor absorption refrigeration systems. 11 Internal combustion engines: Thermodynamic cycles such as otto, diesel and dual cycles. Methods of increasing thermal efficiency and performance of internal combustion engines 4 Internal combustion engines: Thermodynamic cycles such as otto, diesel and dual cycles. Methods of increasing thermal efficiency and specific work output of gas turbines. Methods of increasing thermal efficiency and specific work output of gas turbines. 12 Gas turbines: Constant pressure and constant volume gas turbines, open and closed cycle gas turbines. Methods of increasing thermal efficiency and specific work output of gas turbines. 13 Transmission of power: Introduction to various drives such as belt, rope, chain, and gear drives. Introduction to mechanical elements such as keys, couplings, and bearings in power transmission. 14 Total 60 15 Termodynamics by P.K. Nag 2 Gas turbine theory by HiH Saravanamutoo 3 Refrigeration and air conditioning by C.P. Arora 4 Power plant by Morse 5 Heat Engines by P.L. Balani 6 Hydraulic Mac	3		n Power Plant, Rankine cycle, Reheat cycle, Regenerative cycle, Back Pressure		6	
La-Mount Boiler, Benson Boiler, Boiler Mountings and Accessories, Boiler Performance, Measurement of Steam Quality Steam Nozzles, Diverse types of Steam Nozzles, Variation of area, velocity, and specific volume 2 Elements of Steam condenser, several types of steam condenser, Condenser Efficiency 4 Compressors, Classification of Compressors, Reciprocating Compressors, Single stage compressor and multistage compressor, P-V diagram, Application of Compressors, Rotary Compressors, Centrifugal and Axial compressors 9 Pumps, Classification of Pumps, Reciprocating Pumps, Centrifugal Pumps, Axial Pumps, Gear Pumps, Maintenance of Pumps 10 Refrigeration: COP of refrigerator and heat pumps, classification of refrigerants, Nomenclature, properties desired by refrigerants. Vapor compression refrigeration cycle. Methods of increasing COP of VCRS. Vapor absorption refrigeration systems. 11 Internal combustion engines: Thermodynamic cycles such as otto, diesel and dual cycles. Methods of increasing thermal efficiency and performance of internal combustion engines 4 turbines. Methods of increasing thermal efficiency and specific work output of gas turbines. 12 Gas turbines: Constant pressure and constant volume gas turbines, open and closed cycle gas turbines. Methods of increasing thermal efficiency and specific work output of gas turbines. 13 Transmission of power: Introduction to various drives such as belt, rope, chain, and gear drives. Introduction to mechanical elements such as keys, couplings, and bearings in power transmission. 6 Total 60 10 Thermodynamics by P.K. Nag 11 Gas turbines by P.E. Balani 12 Gas turbines by P.L. Balani 13 Hydraulic Machines by Jagdish Lal 14 Theory of Machines by Patan. S.S 15 Course Outcomes (students will be able to)	4		sification, Calculation of Power Developed by Steam Turbine, Compounding		6	
7 Elements of Steam condenser, several types of steam condenser, Condenser Efficiency 8 Compressors, Classification of Compressors, Reciprocating Compressors, Single stage compressor and multistage compressors 9 Pumps, Classification of Pumps, Reciprocating Pumps, Centrifugal Pumps, Axial Pumps, Gear Pumps, Maintenance of Pumps 10 Refrigeration: COP of refrigerator and heat pumps, classification of refrigerants, Nomenclature, properties desired by refrigerants. Vapor compression refrigeration cycle. Methods of increasing COP of VCRS. Vapor absorption refrigeration systems. 11 Internal combustion engines: Thermodynamic cycles such as otto, diesel and dual cycles. Methods of increasing thermal efficiency and performance of internal combustion engines 12 Gas turbines: Constant pressure and constant volume gas turbines, open and closed cycle gas turbines. Methods of increasing thermal efficiency and specific work output of gas turbines. 13 Transmission of power: Introduction to various drives such as belt, rope, chain, and gear drives. Introduction to mechanical elements such as keys, couplings, and bearings in power transmission. 14 Total 15 Gas turbines by P.K. Nag 16 Gas turbines by P.K. Nag 17 Thermodynamics by P.K. Nag 18 Gas turbine theory by HiH Saravanamutoo 19 Refrigeration and air conditioning by C.P. Arora 10 Power plant by Morse 11 Heat Engines by P.L. Balani 12 Hydraulic Machines by Jagdish Lal 13 Theory of Machines by Rattan. S.S 14 Course Outcomes (students will be able to)	5	La-Mount Boiler, I	Benson Boiler, Boiler Mountings and Accessories, Boiler Performance,		6	
8 Compressors, Classification of Compressors, Reciprocating Compressors, Single stage compressor and multistage compressor, P-V diagram, Application of Compressors, Rotary Compressors, Centrifugal and Axial compressors 9 Pumps, Classification of Pumps, Reciprocating Pumps, Centrifugal Pumps, Axial Pumps, Gear Pumps, Maintenance of Pumps 10 Refrigeration: COP of refrigerator and heat pumps, classification of refrigerants, Nomenclature, properties desired by refrigerants. Vapor compression refrigeration cycle. Methods of increasing COP of VCRS. Vapor absorption refrigeration systems. 11 Internal combustion engines: Thermodynamic cycles such as otto, diesel and dual cycles. Methods of increasing thermal efficiency and performance of internal combustion engines 4 2 12 Gas turbines: Constant pressure and constant volume gas turbines, open and closed cycle gas turbines. Methods of increasing thermal efficiency and specific work output of gas turbines. 13 Transmission of power: Introduction to various drives such as belt, rope, chain, and gear drives. Introduction to mechanical elements such as keys, couplings, and bearings in power transmission. 1 Total 60 1 Thermodynamics by P.K. Nag 2 Gas turbine theory by HiH Saravanamutoo 3 Refrigeration and air conditioning by C.P. Arora 4 Power plant by Morse 5 Heat Engines by P.L. Balani 6 Hydraulic Machines by Jagdish Lal 7 Theory of Machines by Rattan. S.S Course Outcomes (students will be able to)	6	Steam Nozzles, Dive	erse types of Steam Nozzles, Variation of area, velocity, and specific volume		2	
and multistage compressor, P-V diagram, Application of Compressors, Rotary Compressors, Centrifugal and Axial compressors Pumps, Classification of Pumps, Reciprocating Pumps, Centrifugal Pumps, Axial Pumps, Gear Pumps, Maintenance of Pumps Refrigeration: COP of refrigerator and heat pumps, classification of refrigerants, Nomenclature, properties desired by refrigerants. Vapor compression refrigeration cycle. Methods of increasing COP of VCRS. Vapor absorption refrigeration systems. Internal combustion engines: Thermodynamic cycles such as otto, diesel and dual cycles. Methods of increasing thermal efficiency and performance of internal combustion engines Gas turbines: Constant pressure and constant volume gas turbines, open and closed cycle gas turbines. Methods of increasing thermal efficiency and specific work output of gas turbines. Introduction to mechanical elements such as keys, couplings, and bearings in power transmission. Total List of Textbooks/ Reference Books Total Gas turbine theory by HiH Saravanamutoo Refrigeration and air conditioning by C.P. Arora Power plant by Morse Heat Engines by P.L. Balani Hydraulic Machines by Jagdish Lal Theory of Machines by Rattan. S.S Course Outcomes (students will be able to)	7	Elements of Steam c	ondenser, several types of steam condenser, Condenser Efficiency		4	
Pumps, Maintenance of Pumps Refrigeration: COP of refrigerator and heat pumps, classification of refrigerants, Nomenclature, properties desired by refrigerants. Vapor compression refrigeration cycle. Methods of increasing COP of VCRS. Vapor absorption refrigeration systems. Internal combustion engines: Thermodynamic cycles such as otto, diesel and dual cycles. Methods of increasing thermal efficiency and performance of internal combustion engines Gas turbines: Constant pressure and constant volume gas turbines, open and closed cycle gas turbines. Methods of increasing thermal efficiency and specific work output of gas turbines. Transmission of power: Introduction to various drives such as belt, rope, chain, and gear drives. Introduction to mechanical elements such as keys, couplings, and bearings in power transmission. Total 60 List of Textbooks/ Reference Books Thermodynamics by P.K. Nag Gas turbine theory by HiH Saravanamutoo Refrigeration and air conditioning by C.P. Arora Power plant by Morse Heat Engines by P.L. Balani Hydraulic Machines by Jagdish Lal Theory of Machines by Rattan. S.S Course Outcomes (students will be able to)	8	and multistage com	pressor, P-V diagram, Application of Compressors, Rotary Compressors,		4	
properties desired by refrigerants. Vapor compression refrigeration cycle. Methods of increasing COP of VCRS. Vapor absorption refrigeration systems. Internal combustion engines: Thermodynamic cycles such as otto, diesel and dual cycles. Methods of increasing thermal efficiency and performance of internal combustion engines Gas turbines: Constant pressure and constant volume gas turbines, open and closed cycle gas turbines. Methods of increasing thermal efficiency and specific work output of gas turbines. Transmission of power: Introduction to various drives such as belt, rope, chain, and gear drives. Introduction to mechanical elements such as keys, couplings, and bearings in power transmission. Total 60 List of Textbooks/ Reference Books Thermodynamics by P.K. Nag Gas turbine theory by HiH Saravanamutoo Refrigeration and air conditioning by C.P. Arora Power plant by Morse Heat Engines by P.L. Balani Hydraulic Machines by Jagdish Lal Theory of Machines by Rattan. S.S Course Outcomes (students will be able to)	9				4	
of increasing thermal efficiency and performance of internal combustion engines 12 Gas turbines: Constant pressure and constant volume gas turbines, open and closed cycle gas turbines. Methods of increasing thermal efficiency and specific work output of gas turbines. 13 Transmission of power: Introduction to various drives such as belt, rope, chain, and gear drives. Introduction to mechanical elements such as keys, couplings, and bearings in power transmission. 1 Total 60 1 Thermodynamics by P.K. Nag 2 Gas turbine theory by HiH Saravanamutoo 3 Refrigeration and air conditioning by C.P. Arora 4 Power plant by Morse 5 Heat Engines by P.L. Balani 6 Hydraulic Machines by Jagdish Lal 7 Theory of Machines by Rattan. S.S Course Outcomes (students will be able to)	10	properties desired by	y refrigerants. Vapor compression refrigeration cycle. Methods of increasing		6	
turbines. Methods of increasing thermal efficiency and specific work output of gas turbines. 13 Transmission of power: Introduction to various drives such as belt, rope, chain, and gear drives. Introduction to mechanical elements such as keys, couplings, and bearings in power transmission. 1 Total 60 List of Textbooks/ Reference Books 1 Thermodynamics by P.K. Nag 2 Gas turbine theory by HiH Saravanamutoo 3 Refrigeration and air conditioning by C.P. Arora 4 Power plant by Morse 5 Heat Engines by P.L. Balani 6 Hydraulic Machines by Jagdish Lal 7 Theory of Machines by Rattan. S.S Course Outcomes (students will be able to)	11				4	
Introduction to mechanical elements such as keys, couplings, and bearings in power transmission. Total 60 List of Textbooks/ Reference Books 1 Thermodynamics by P.K. Nag 2 Gas turbine theory by HiH Saravanamutoo 3 Refrigeration and air conditioning by C.P. Arora 4 Power plant by Morse 5 Heat Engines by P.L. Balani 6 Hydraulic Machines by Jagdish Lal 7 Theory of Machines by Rattan. S.S Course Outcomes (students will be able to)	12				4	
List of Textbooks/ Reference Books 1 Thermodynamics by P.K. Nag 2 Gas turbine theory by HiH Saravanamutoo 3 Refrigeration and air conditioning by C.P. Arora 4 Power plant by Morse 5 Heat Engines by P.L. Balani 6 Hydraulic Machines by Jagdish Lal 7 Theory of Machines by Rattan. S.S Course Outcomes (students will be able to)	13				6	
1 Thermodynamics by P.K. Nag 2 Gas turbine theory by HiH Saravanamutoo 3 Refrigeration and air conditioning by C.P. Arora 4 Power plant by Morse 5 Heat Engines by P.L. Balani 6 Hydraulic Machines by Jagdish Lal 7 Theory of Machines by Rattan. S.S Course Outcomes (students will be able to)			Total		60	
2 Gas turbine theory by HiH Saravanamutoo 3 Refrigeration and air conditioning by C.P. Arora 4 Power plant by Morse 5 Heat Engines by P.L. Balani 6 Hydraulic Machines by Jagdish Lal 7 Theory of Machines by Rattan. S.S Course Outcomes (students will be able to)			List of Textbooks/ Reference Books			
3 Refrigeration and air conditioning by C.P. Arora 4 Power plant by Morse 5 Heat Engines by P.L. Balani 6 Hydraulic Machines by Jagdish Lal 7 Theory of Machines by Rattan. S.S Course Outcomes (students will be able to)	1	Thermodynamics by	P.K. Nag			_
4 Power plant by Morse 5 Heat Engines by P.L. Balani 6 Hydraulic Machines by Jagdish Lal 7 Theory of Machines by Rattan. S.S Course Outcomes (students will be able to)	2	Gas turbine theory by	y HiH Saravanamutoo			
5 Heat Engines by P.L. Balani 6 Hydraulic Machines by Jagdish Lal 7 Theory of Machines by Rattan. S.S Course Outcomes (students will be able to)	3	Refrigeration and air	conditioning by C.P. Arora			
5 Heat Engines by P.L. Balani 6 Hydraulic Machines by Jagdish Lal 7 Theory of Machines by Rattan. S.S Course Outcomes (students will be able to)	4	Power plant by Mors	se			
6 Hydraulic Machines by Jagdish Lal 7 Theory of Machines by Rattan. S.S Course Outcomes (students will be able to)	5					
7 Theory of Machines by Rattan. S.S Course Outcomes (students will be able to)	6					
Course Outcomes (students will be able to)		•	• •			
	-	1 2 3 22 2.200	•			
	CO1	Understand the first			K2	

Semester II Page 55 of 185

Integrated Master of Technology, Chemical Engineering (Major) and MDM ICT Marathwada Campus, Jalna

CO2	Describe the properties of steam and working of various steam boilers.	K2						
CO3	Explain the working principles of power developing systems such as steam turbines, gas turbines and internal combustion engines.	K2						
CO4	Describe the working principle of vapor compression and vapor absorption refrigeration systems.	K2						
CO5	Discuss several types of power transmission systems and their typical applications.	K2						
CO6	Explain the working principles of power absorbing devices such as pumps and compressors.	K2						
K1: R	1: Remembering, K2: Understanding, K3: Applying, K4: Analyzing, K5: Evaluating, K6: Creating							

	Mechanical Engineering: EST4152 Mapping of Course Outcomes (COs) with Programme Outcomes (POs)													
	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12													
CO1	3	1	1	2	-	-	-	-	-	1	-	-		
CO2	2	1	1	1	-	1	-	-	-	-	-	-		
CO3	3	1	1	1	1	-	2	-	-	-	-	-		
CO4	2	2	2	-	1	-	1	-	-	-	-	-		
CO5	1	2	1	1	2	2	-	-	-	-	-	-		
CO6	-	2	1	2	-	-	1	-	-	-	-	-		
	3	S-Strong (Contribu	tion; 2-M	loderate (Contribut	ion; 1-L	ow Contr	ribution;					

Mapping o	Mechanical Engineering: EST4152 Mapping of Course Outcomes (COs) with Programme Specific Outcomes (PSOs)											
	PSO1	PSO2	PSO3	PSO4	PSO5							
CO1	3	2	2	1	-							
CO2	3	3	2	1	-							
CO3	3	2	1	2	-							
CO4	2	1	2	1	-							
CO5	2	2	1	1	-							
CO6	2	1	1	1	1							
3-S	Strong Contribution; 2	-Moderate Contr	ibution; 1-Low Co	ontribution;								

Semester II Page 56 of 185

Course Code: Course Title: Service Ser		,	Semester II	1		
Semester: II Total contact hours: 30 2 0 0				Cre	edits =	= 2
Standard X+XII (Chemistry, Physics, Mathematics)		EST4154			T	P
Standard X+XII (Chemistry, Physics, Mathematics)		Semester: II	Total contact hours: 30	2	0	0
List of Courses where this course will be prerequisite			List of Prerequisite Courses			
Material and Energy Balance Calculations (CEP4151); Fluid Flow (CET4151); Heat Transfer (CET4252); Engineering Thermodynamics (EST4155); Industrial Chemistry and Reaction Engineering (CET4253); Environmental Science (CET4258); Chemical Engineering Operations (CET4254); Process Safety (CET4255); Instrumentation and Process Dynamics (CET4256); Chemical Reaction Engineering (CET4351); Momentum Transfer (CET4352); Chemical Process Control (CET43545); Separation Processes (CET4356); Chemical Process Development and Engineering (CET4451); Chemical Process Equipment Design and Drawing (CEP4451), Chemical Engineering Laboratory: 1 (CEP4251), Chemical Process Development and Engineering Laboratory: 1 (CEP4251), Chemical Process Development and Engineering (CET4451) **Description of relevance of this course in the Int. M. Tech. Program Students will be able to understand role of chemical engineering and chemical engineering principle and operation along with design and economics. **Course Contents (Topics and subtopics)** 1 Chemical Engineer and Chemical Engineering Profession 4 2 Indian Chemical Industry: (a) Petroleum and petrochemical industry (b) Pharmaceutical industry (c) Agrochemicals and Pesticides industry (d) Specialty Chemicals industry (e) Inorganic Chemicals etc. 3 Chemical Engineering Principles: Chemical reaction engineering, separation processes, automation and process control 4 Overview of chemical process equipment: Reactors, Distillation, Absorption, Filters, Dryer and solid handling 5 Global trends of chemicals 4 Life cycle assessment and environmental impact 7 Modern Chemical Engineering Plants: Batch to Continuous processing 8 Total 30 **List of Textbooks** 1 Introduction to Chemical Engineering: Tools for Today and Tomorrow: A First-Year Integrated Course 5th Edition (English, Paperback, Kenneth A. Solen, John N. Harb), Wiley, 2014 2 Introduction To Chemical Engineering (English, Paperback, S. Pushpavanam) 3 Chemical Engineering: An Introduction (Cembri(Paperback) by Morton D		Standard X+XII (Che	emistry, Physics, Mathematics)			
CET4252); Engineering Thermodynamics (EST4155); Industrial Chemistry and Reaction Engineering (CET4253); Environmental Science (CET4255); Chemical Engineering Operations (CET4254); Process Safety (CET4255); Instrumentation and Process Dynamics (CET4256); Chemical Reaction Engineering (CET4351); Momentum Transfer (CET4352); Chemical Process Control (CET4354); Separation Processes (CET4356); Chemical Process Development and Engineering (CET4451); Chemical Process Equipment Design and Drawing (CEP4451), Chemical Engineering Laboratory: I (CEP4251), Chemical Process Development and Engineering (CET4451); Chemical Process Development and Engineering (CEP4451). Description of relevance of this course in the Int. M. Tech. Program			* *	1		
Engineering (CET4253); Environmental Science (CET4258); Chemical Engineering Operations (CET4254); Process Safety (CET4255); Instrumentation and Process Dynamics (CET4255); Chemical Reaction Engineering (CET4351); Momentum Transfer (CET4352); Chemical Process Control (CET4354); Separation Processes (CET4356); Chemical Process Development and Engineering (CET4451); Chemical Process Equipment Design and Drawing (CEP4451), Chemical Engineering Laboratory: I (CEP4251), Chemical Process Development and Engineering (CET4451); Chemical Process Development and Engineering (CET4451); Chemical Process Development and Engineering (CET4451); Chemical Engineering and chemical engineering principle and operation along vith design and economics. Course Contents (Topics and subtopics) Reqd. hours						
CET4254); Process Safety (CET4255); Instrumentation and Process Dynamics (CET4256); Chemical Reaction Engineering (CET4351); Momentum Transfer (CET4352); Chemical Process Control (CET4354); Separation Processes (CET4356); Chemical Process Development and Engineering (CET4451); Chemical Process Equipment Design and Drawing (CEP4451), Chemical Engineering Laboratory: I (CEP4251), Chemical Process Development and Engineering (CET4451) Description of relevance of this course in the Int. M. Tech. Program						
Chemical Reaction Engineering (CET4351); Momentum Transfer (CET4352); Chemical Process Control (CET4354); Separation Processes (CET4356); Chemical Process Development and Engineering (CET4451); Chemical Process Equipment Design and Drawing (CEP4451), Chemical Engineering Laboratory: I (CEP4251), Chemical Process Development and Engineering (CET4451) Description of relevance of this course in the Int. M. Tech. Program						
Engineering (CET4451); Chemical Process Equipment Design and Drawing (CEP4451), Chemical Engineering Laboratory: I (CEP4251), Chemical Process Development and Engineering (CET4451) **Description of relevance of this course in the Int. M. Tech. Program Students will be able to understand role of chemical engineering and chemical engineering principle and operation along with design and economics. **Course Contents (Topics and subtopics)** Reqd. hours** 1 Chemical Engineer and Chemical Engineering Profession 4 2 Indian Chemical Industry: (a) Petroleum and petrochemical industry (b) Pharmaceutical industry (c) Agrochemicals and Pesticides industry (d) Specialty Chemicals industry (e) Inorganic Chemicals etc. 3 Chemical Engineering Principles: Chemical reaction engineering, separation processes, automation and process control 4 4 Overview of chemical process equipment: Reactors, Distillation, Absorption, Filters, Dryer and solid handling 4 5 Global trends of chemicals 4 6 Life cycle assessment and environmental impact 4 7 Modern Chemical Engineering Plants: Batch to Continuous processing 2 **Total** **Total** **Total** **Introduction to Chemical Engineering: Tools for Today and Tomorrow: A First-Year Integrated Course 5th Edition (English, Paperback, Kenneth A. Solen, John N. Harb), Wiley, 2014 2 Introduction To Chemical Engineering (English, Paperback, S. Pushpavanam) 3 Chemical Engineering: An Introduction (Cambri(Paperback) by Morton Denn (Cambridge University Press) **List of Additional Reading Material / Reference Books** 1 Ministry of Commerce and Industry reports 2 A History of The International Chemical Industry by Fred Aftalion **Course Outcomes (students will be able to)**						
Engineering Laboratory: I (CEP4251), Chemical Process Development and Engineering (CET4451)						
Students will be able to understand role of chemical engineering and chemical engineering principle and operation along with design and economics. Course Contents (Topics and subtopics) Reqd. hours						
Students will be able to understand role of chemical engineering and chemical engineering principle and operation along with design and economics. Course Contents (Topics and subtopics)						
Course Contents (Topics and subtopics) Reqd. hours	C41 -		-		:1	
1 Chemical Engineer and Chemical Engineering Profession 2 Indian Chemical Industry: (a) Petroleum and petrochemical industry (b) Pharmaceutical industry (c) Agrochemicals and Pesticides industry (d) Specialty Chemicals industry (e) Inorganic Chemicals etc. 3 Chemical Engineering Principles: Chemical reaction engineering, separation processes, automation and process control 4 Overview of chemical process equipment: Reactors, Distillation, Absorption, Filters, Dryer and solid handling 5 Global trends of chemicals 6 Life cycle assessment and environmental impact 7 Modern Chemical Engineering Plants: Batch to Continuous processing 2 Total 30 List of Textbooks 1 Introduction to Chemical Engineering: Tools for Today and Tomorrow: A First-Year Integrated Course 5th Edition (English, Paperback, Kenneth A. Solen, John N. Harb), Wiley, 2014 2 Introduction To Chemical Engineering (English, Paperback, S. Pushpavanam) 3 Chemical Engineering: An Introduction (Cambri(Paperback) by Morton Denn (Cambridge University Press) List of Additional Reading Material / Reference Books 1 Ministry of Commerce and Industry reports 2 A History of The International Chemical Industry by Fred Aftalion Course Outcomes (students will be able to)			ierstand role of chemical engineering and chemical engineering principle and	operat	ion ai	ong
Indian Chemical Industry: (a) Petroleum and petrochemical industry (b) Pharmaceutical industry (c) Agrochemicals and Pesticides industry (d) Specialty Chemicals industry (e) Inorganic Chemicals etc. Chemical Engineering Principles: Chemical reaction engineering, separation processes, automation and process control 4			Course Contents (Topics and subtopics)	Requ	l. hou	rs
(c) Agrochemicals and Pesticides industry (d) Specialty Chemicals industry (e) Inorganic Chemicals etc. Chemical Engineering Principles: Chemical reaction engineering, separation processes, automation and process control Overview of chemical process equipment: Reactors, Distillation, Absorption, Filters, Dryer and solid handling Global trends of chemicals Life cycle assessment and environmental impact Modern Chemical Engineering Plants: Batch to Continuous processing List of Textbooks Introduction to Chemical Engineering: Tools for Today and Tomorrow: A First-Year Integrated Course 5th Edition (English, Paperback, Kenneth A. Solen, John N. Harb), Wiley, 2014 Introduction To Chemical Engineering (English, Paperback, S. Pushpavanam) Chemical Engineering: An Introduction (Cambri(Paperback) by Morton Denn (Cambridge University Press) List of Additional Reading Material / Reference Books Ministry of Commerce and Industry reports A History of The International Chemical Industry by Fred Aftalion Course Outcomes (students will be able to)	1	Chemical Engineer ar	nd Chemical Engineering Profession		4	
etc. Chemical Engineering Principles: Chemical reaction engineering, separation processes, automation and process control Overview of chemical process equipment: Reactors, Distillation, Absorption, Filters, Dryer and solid handling Global trends of chemicals Life cycle assessment and environmental impact Modern Chemical Engineering Plants: Batch to Continuous processing List of Textbooks List of Textbooks Introduction to Chemical Engineering: Tools for Today and Tomorrow: A First-Year Integrated Course 5th Edition (English, Paperback, Kenneth A. Solen, John N. Harb), Wiley, 2014 Introduction To Chemical Engineering (English, Paperback, S. Pushpavanam) Chemical Engineering: An Introduction (Cambri(Paperback) by Morton Denn (Cambridge University Press) List of Additional Reading Material / Reference Books Ministry of Commerce and Industry reports A History of The International Chemical Industry by Fred Aftalion Course Outcomes (students will be able to)	2				8	
and process control 4 Overview of chemical process equipment: Reactors, Distillation, Absorption, Filters, Dryer and solid handling 5 Global trends of chemicals 4 Life cycle assessment and environmental impact 7 Modern Chemical Engineering Plants: Batch to Continuous processing 2 Total 30 List of Textbooks 1 Introduction to Chemical Engineering: Tools for Today and Tomorrow: A First-Year Integrated Course 5th Edition (English, Paperback, Kenneth A. Solen, John N. Harb), Wiley, 2014 2 Introduction To Chemical Engineering (English, Paperback, S. Pushpavanam) 3 Chemical Engineering: An Introduction (Cambri(Paperback) by Morton Denn (Cambridge University Press) List of Additional Reading Material / Reference Books 1 Ministry of Commerce and Industry reports 2 A History of The International Chemical Industry by Fred Aftalion Course Outcomes (students will be able to)		. , .	d Pesticides industry (d) Specialty Chemicals industry (e) Inorganic Chemicals			
handling 5 Global trends of chemicals 6 Life cycle assessment and environmental impact 7 Modern Chemical Engineering Plants: Batch to Continuous processing 2 Total 30 List of Textbooks 1 Introduction to Chemical Engineering: Tools for Today and Tomorrow: A First-Year Integrated Course 5th Edition (English, Paperback, Kenneth A. Solen, John N. Harb), Wiley, 2014 2 Introduction To Chemical Engineering (English, Paperback, S. Pushpavanam) 3 Chemical Engineering: An Introduction (Cambri(Paperback) by Morton Denn (Cambridge University Press) List of Additional Reading Material / Reference Books 1 Ministry of Commerce and Industry reports 2 A History of The International Chemical Industry by Fred Aftalion Course Outcomes (students will be able to)	3		g Principles: Chemical reaction engineering, separation processes, automation		4	
6 Life cycle assessment and environmental impact 7 Modern Chemical Engineering Plants: Batch to Continuous processing 2 Total 30 List of Textbooks 1 Introduction to Chemical Engineering: Tools for Today and Tomorrow: A First-Year Integrated Course 5th Edition (English, Paperback, Kenneth A. Solen, John N. Harb), Wiley, 2014 2 Introduction To Chemical Engineering (English, Paperback, S. Pushpavanam) 3 Chemical Engineering: An Introduction (Cambri(Paperback) by Morton Denn (Cambridge University Press) List of Additional Reading Material / Reference Books 1 Ministry of Commerce and Industry reports 2 A History of The International Chemical Industry by Fred Aftalion Course Outcomes (students will be able to)	4		l process equipment: Reactors, Distillation, Absorption, Filters, Dryer and solid		4	
7 Modern Chemical Engineering Plants: Batch to Continuous processing Total 30 List of Textbooks 1 Introduction to Chemical Engineering: Tools for Today and Tomorrow: A First-Year Integrated Course 5th Edition (English, Paperback, Kenneth A. Solen, John N. Harb), Wiley, 2014 2 Introduction To Chemical Engineering (English, Paperback, S. Pushpavanam) 3 Chemical Engineering: An Introduction (Cambri(Paperback) by Morton Denn (Cambridge University Press) List of Additional Reading Material / Reference Books 1 Ministry of Commerce and Industry reports 2 A History of The International Chemical Industry by Fred Aftalion Course Outcomes (students will be able to)	5	Global trends of chen	nicals		4	
List of Textbooks Introduction to Chemical Engineering: Tools for Today and Tomorrow: A First-Year Integrated Course 5th Edition (English, Paperback, Kenneth A. Solen, John N. Harb), Wiley, 2014 Introduction To Chemical Engineering (English, Paperback, S. Pushpavanam) Chemical Engineering: An Introduction (Cambri(Paperback) by Morton Denn (Cambridge University Press) List of Additional Reading Material / Reference Books Ministry of Commerce and Industry reports A History of The International Chemical Industry by Fred Aftalion Course Outcomes (students will be able to)	6	·	•			
List of Textbooks Introduction to Chemical Engineering: Tools for Today and Tomorrow: A First-Year Integrated Course 5th Edition (English, Paperback, Kenneth A. Solen, John N. Harb), Wiley, 2014 Introduction To Chemical Engineering (English, Paperback, S. Pushpavanam) Chemical Engineering: An Introduction (Cambri(Paperback) by Morton Denn (Cambridge University Press) List of Additional Reading Material / Reference Books Ministry of Commerce and Industry reports A History of The International Chemical Industry by Fred Aftalion Course Outcomes (students will be able to)	7	Modern Chemical En				
Introduction to Chemical Engineering: Tools for Today and Tomorrow: A First-Year Integrated Course 5th Edition (English, Paperback, Kenneth A. Solen, John N. Harb), Wiley, 2014 Introduction To Chemical Engineering (English, Paperback, S. Pushpavanam) Chemical Engineering: An Introduction (Cambri(Paperback) by Morton Denn (Cambridge University Press) List of Additional Reading Material / Reference Books Ministry of Commerce and Industry reports A History of The International Chemical Industry by Fred Aftalion Course Outcomes (students will be able to)					30	
Course 5th Edition (English, Paperback, Kenneth A. Solen, John N. Harb), Wiley, 2014 Introduction To Chemical Engineering (English, Paperback, S. Pushpavanam) Chemical Engineering: An Introduction (Cambri(Paperback) by Morton Denn (Cambridge University Press) List of Additional Reading Material / Reference Books Ministry of Commerce and Industry reports A History of The International Chemical Industry by Fred Aftalion Course Outcomes (students will be able to)		Τ				
Chemical Engineering: An Introduction (Cambri(Paperback) by Morton Denn (Cambridge University Press) List of Additional Reading Material / Reference Books Ministry of Commerce and Industry reports A History of The International Chemical Industry by Fred Aftalion Course Outcomes (students will be able to)	1					
University Press) List of Additional Reading Material / Reference Books Ministry of Commerce and Industry reports A History of The International Chemical Industry by Fred Aftalion Course Outcomes (students will be able to)	2	Introduction To Chen	nical Engineering (English, Paperback, S. Pushpavanam)			
1 Ministry of Commerce and Industry reports 2 A History of The International Chemical Industry by Fred Aftalion Course Outcomes (students will be able to)	3		ng: An Introduction (Cambri(Paperback) by Morton Denn (Cambridge			
2 A History of The International Chemical Industry by Fred Aftalion Course Outcomes (students will be able to)			List of Additional Reading Material / Reference Books			
Course Outcomes (students will be able to)	1	Ministry of Commerc	ee and Industry reports			
	2	A History of The Inte	ernational Chemical Industry by Fred Aftalion			
Students will be able to			Course Outcomes (students will be able to)			
		Students will be able	e to			
CO1 Identify the role of chemical engineer in industry and society K2	CO1	Identify the role of ch	nemical engineer in industry and society		K2	
CO2 Understand the Unit process and Unit Operation in chemical Engineering K2	CO2	Understand the Unit J	process and Unit Operation in chemical Engineering		K2	
CO3 Understand the design of industrial process and equipment K2	CO3	Understand the design	n of industrial process and equipment		K2	
CO4 Use some of the engineering basic calculations K3	CO4	Use some of the engin	neering basic calculations		K3	
CO5 Perform basic process calculations K3	CO5	Perform basic process	s calculations		K3	
CO6 Create and develop the idea and thought in problem solving in chemical engineering principles	CO6	Create and develop th	ne idea and thought in problem solving in chemical engineering principles			
K1: Remembering, K2: Understanding, K3: Applying, K4: Analyzing, K5: Evaluating, K6: Creating	K1: R	Remembering, K2: Und	lerstanding, K3: Applying, K4: Analyzing, K5: Evaluating, K6: Creating			

Semester II Page 57 of 185

	Ma	pping of			Chemical es (COs)	_	_		mes (PO	s)			
	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12												
CO1	3	2	1	1	-	-	1	-	2	1	1	1	
CO2	2	1	1	2	2	-	1	-	-	2	2	-	
CO3	2	1	1	2	1	1	-	1	-	1	1	-	
CO4	2	2	1	-	1	-	-	-	-	2	1	-	
CO5	2	1	-	-	1	-	1	-	-	2	1	2	
CO6	2	2	1	2	1	1	1	1	-	2	1	1	
	3-Strong Contribution; 2-Moderate Contribution; 1-Low Contribution;												

Mapping	Introduction to of Course Outcomes		ineering: EST41: gramme Specific		
	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	2	1	-
CO2	3	2	1	2	-
CO3	2	1	1	1	-
CO4	2	2	-	1	-
CO5	1	3	2	3	1
CO6	3	3	2	2	1
3-5	Strong Contribution; 2	2-Moderate Contr	ibution; 1-Low C	ontribution;	•

Semester II Page 58 of 185

	<u> </u>	Semester II			
	Course Code:	Course Title:		edits	= 2
	CEP4151	Material Balance and Energy Balance Calculations	L	T	P
	Semester: II	Total contact hours: 60	0	0	4
	1	List of Prerequisite Courses	1		
	Chemistry: I (CHT4	hematics, Chemistry, Physics, Applied Mathematics: I (MAT4151), Applied 151 and CHT4152), Applied Physics: I (PHT4151); Introduction to Chemical 54); Mechanical Engineering (EST4152) List of Courses where this course will be prerequisite			
	In 1 and 1 Chamber				
	4254); Chemical R. Chemical Engineerin Separation Processes Economics (CET435 Elective III-Environ	and Reaction Engineering (CET4253), Chemical Engineering Operation (CET eaction Engineering (CET4351); Chemical Project Economics (CET4358), and Laboratory I, II, III and IV (CEP4151, CEP4252, CEP4253 and CEP4254), as (CET4356), Heat Transfer Equipment design (CET4357), Chemical Project (8), Chemical Process Development and Engineering (CET4451), Chemical Engineering and Chemical Process Safety (CETxxx), Biochemical Refinery Science and Engineering (Hon.)			
		escription of relevance of this course in the Int. M. Tech. Program			
This is	s a basic Chemical Eng	gineering Course. This knowledge will be required in ALL subjects later on.			
		Course Contents (Topics and subtopics)	Req	d. ho	urs
1		emical Engineering: Chemical Process Industries, Chemistry to Chemical on of Units and Dimensions		4	
2	Mole concept, compo	osition relationship and Stoichiometry, Behavior of gases and vapors		6	
3	Material balances for bypass and purge	reacting and non-reacting chemical and biochemical systems including recycle,		20	
4	Introduction to psych	nrometry humidity and air-conditioning calculations.		10	
5	Introduction to Energ	gy Balances, Energy Balances in systems with and without reactions		10	
6	Unsteady State Mate	rial and Energy Balances		6	
7	Material and Energy	Balances for multistage processes and complete plants		4	
		Total		60	
		List of Textbooks/ Reference Books			
1	Chemical Process Pr	inciples, Hougen O.A., Watson K. M.			
2	Basic Principles and	Calculations in Chemical Engineering, Himmelblau,			
3	Stoichiometry, Bhatt	B.I. and Vora S.M.			
		Course Outcomes (students will be able to)			
CO1	Students will be able	to convert units of simple quantities from one set of units to another set of units		К3	
CO2		e to calculate quantities and /or compositions in various processes and process actors, filters, dryers, etc.		K3	
CO3	Students will be able as reactors, filters, dr	to calculate energy usages, etc. in various processes and process equipment such yers, etc.		K3	
CO4	Able to apply the n principle.	nass and energy balance etc, in various application of chemical engineering		K4	
CO5	Able to evaluate the	calculate the final predicted results		K5	
CO6	Create and develop is	dea and thoughts in chemical engineering principles		K6	
K1: R	emembering, K2: Und	lerstanding, K3: Applying, K4: Analyzing, K5: Evaluating, K6: Creating			

Semester II Page 59 of 185

	Material Balance and Energy Balance Calculations: CEP4151 Mapping of Course Outcomes (COs) with Programme Outcomes (POs)												
	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12												
CO1	3	2	1	1	-	-	1	-	2	1	1	1	
CO2	2	1	1	2	2	-	1	-	-	1	2	-	
CO3	2	1	1	2	1	1	-	1	-	2	1	-	
CO4	2	2	1	2	1	1	1	1	-	1	1	1	
CO5	3	2	1	1	1	-	-	-	-	-	-	-	
CO6	2	3	1	2	-	-	1	-	-	-	-	-	
	3-Strong Contribution; 2-Moderate Contribution; 1-Low Contribution;												

PSO1	PSO2	PSO3	PSO4	PSO5
3	2	2	1	1
2	2	2	2	-
1	3	1	1	-
2	2	2	1	1
3	2	1	-	-
2	3	1	-	-
	Course Outcomes	Course Outcomes (COs) with Prog	Course Outcomes (COs) with Programme Specific	aterial Balance and Energy Balance Calculations: CEP4151 Course Outcomes (COs) with Programme Specific Outcomes (PSOs) PSO1 PSO2 PSO3 PSO4 3 2 2 1 2 2 2 2 1 3 1 1 2 2 2 1 3 2 1 - 3 2 1 - 2 3 1 -

Semester II Page 60 of 185

		Semester II			
	Course Code:	Course Title:	Cr	edits =	= 2
	ESP4154	Engineering Applications of Digital Computers	L	Т	P
	Semester: II	Total contact hours: 60	0	0	4
		List of Prerequisite Courses			
	XIIth Standard Mat MAT4152)	hematics and Physics Courses, Applied Mathematics: I and II (MAT4151 and			
		List of Courses where this course will be prerequisite			
	Digital Computation	n in Emerging areas (AI/ML/DA)			
	Ι	Description of relevance of this course in the Int. M. Tech. Program			
Stude	nts will be able to und	derstand engineering applications of digital computers and data interpretation and	d pres	entatio	on.
		Course Contents (Topics and subtopics)	Req	d. hou	rs
1		tions: Use of cells, formulas, table calculations, graphs, matrix operations, goal fitting, regression, statistical analysis, excel important formulas, visual basic		20	
2	Any programming iterative loops, func	language (preferably python): Basics, array types, conditional statements, tions		20	
3		studies involving solution of single non-linear equation (Equation of state such ng Robinson, RKS, friction factor equation, Ergun equation, Estimation of Drag		6	
4	Solution of ordinary	differential equations (IVP and BVP)		8	
5	Data visualization (2	2D plots, 3D plots, contours, surface plots)		6	
		Total		60	
		List of Text Books/ Reference Books			
1	Microsoft Office he	lp			
2	Python: The Comple	ete Reference, Martin Brown			
3	Unit Operations of O	Chemical Engineering, McCabe, Smith and Harriott (for case studies)			
		Course Outcomes (students will be able to)			
CO1	Students would be a	ble to carry out Spreadsheet calculations for chemical engineering problems		K3	
CO2	Students would be a	ble to develop programming logic and code it in software		K4	
CO3	Student would be ab	ole to apply the software skill in making code		K4	
CO4	Student would be ab	ole to analyze the result using data solving		K4	
CO5	Student would be ab	ole to evaluate result using formulae in computer		K5	
CO6	Student would be ab	ele to create and write the program		K6	
K1: R	emembering, K2: Un	derstanding, K3: Applying, K4: Analyzing, K5: Evaluating, K6: Creating			

	Engineering Applications of Digital Computers: ESP4154 Mapping of Course Outcomes (COs) with Programme Outcomes (POs)											
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	-	-	-	1	2	-	ı	1	-	1	ı	-
CO2	-	2	2	1	1	1	-	-	-	1	-	-
CO3	-	2	2	2	2	1	-	1	-	1	-	1
CO4	-	1	2	-	-	-	ı	-	-	-	ı	-
CO5	-	2	1	-	-	-	-	-	-	-	-	-
CO6	-	1	2	-	-	-	-	-	-	-	-	-
	3	S-Strong (Contribu	tion; 2-M	Ioderate (Contribut	ion; 1-L	ow Contr	ibution;			

Semester II Page 61 of 185

	Engineering Applic Course Outcomes	_	_		
	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	2	2	1	2	-
CO2	3	2	2	1	1
CO3	2	2	1	1	1
CO4	2	1	2	-	-
CO5	2	1	1	-	-
CO6	1	1	1	-	-
3-Str	rong Contribution; 2	-Moderate Contr	ibution; 1-Low Co	ontribution;	

Semester II Page 62 of 185

		Semester II			
	Course Code:	Course Title:	Cr	edits :	= 2
	HUT4153	MOOC- Indian Knowledge System	L	T	P
	Semester: II	Total contact hours: 30	1	1	0
		List of Prerequisite Courses			
	NIL				
		List of Courses where this course will be prerequisite			
	NIL				
	D	escription of relevance of this course in the Int. M. Tech. Program			
omple erson eeper	ete as people. They cality. They come into	gral part of the development of human beings since the arts are what make us more offer us the experience of wholeness because they touch us at the deepest level to being not when we move beyond necessity but when we move to a deeper rete order, beauty and meaning out of chaos. They are the expressions of deepers	els of necess	mind ity, to	an th
	-	Course Contents (Topics and subtopics)	Req	d. hou	urs
1	Introduction to Inc	lian Knowledge System (IKS):		2	
	- Introduction, Defin	•			
	- Need to study it in				
	Chemists and texts				
2		Pharmaceutical Sciences and Technology:			
	•	ns of Medicine/ Welfare of the society: Principles of Ayurveda			
	Medicinal plants a Pappraisal of Av	and crude drugs /urvedic Phytochemistry			
		e forms and similarity to that of modern dosage forms		6	
		os in Ayurvedic System and comparison to that of modern extraction process			
		poisonous plants (Shodhan Prakriya)			
		of Adulterants and Substitutes			
3		Knowledge on Oils, Perfumery and Flavoring agents			
5	Essential oils and	· · · · · · · · · · · · · · · · · · ·		3	
	Applications in perf	Tumery and flavoring-fragrance industry			
4		Knowledge on Textile and Fibers			
	 Types of fibers 			2	
	 Textile patterns ac 	•		2	
	Methods and Techn	*			
5		Knowledge on Dyes, Pigments, mordents and specialty chemicals		_	
	Natural dyes and			2	
	Sources, Methods of				
6	Waxes, Gums, Carb	Knowledge on Polymers and surface coatings		2	
7	Traditional Indian	•			
				2	
8		Knowledge about Metallurgy and Materials Science		3	
9		Preservation Technology		2	
	Methods of present Materials used in Pr	rvation: Food, monuments and artifacts		3	
10		with traditional Indian practices during festivals		2	
11	Connecting The trac	ditional Indian Knowledge with Modern Science		3	

Semester II Page 63 of 185

List of Text Books/ Reference Books

Acharya Prafulla Chandra Ray, A History of Hindu Chemistry, 1902, republ., Shaibya Prakashan

1

Bibhag, centenary edition, Kolkata, 2002

30

Total

2	B. Mahadevan and Vinayak Rajat Bhat, Introduction To Indian Knowledge System: Concepts And Applications, PHI Learning publication, 2022	
3	The Positive Sciences of the Ancient Hindus; Brijendra Nath Seal; 4th Edition; 2016	
4	Fine Arts & Technical Sciences in Ancient India with special reference to Someśvara's Mānasollāsa; Dr. Shiv Shekhar Mishra, Krishnadas Academy, Varanasi 1982	
5	A Concise History of Science in India, ed. D M Bose, S N Sen and B V Subbarayappa; INSA; 2009	
6	Science and Technology in Medieval India - A Bibliography of Source Materials in Sanskrit, Arabic and Persian by A Rahman, M A Alvi, S A Khan Ghori and K V Samba Murthy; 1982.	
7	<u>Vaidya Navnitlal B. Pandya</u> , Fundamental principles of ayurveda part – 1. October 1982 Ancient Science of Life.	
8	Vasant Lad, Textbook of Ayurveda: Fundamental Principle, reprint 2010	
9	Lakshmi chandra Mishra (Editor), Scientific Basis for Ayurvedic Therapies, CRC Press LLC 2003	
10	H.Panda, Handbook on Speciality Gums, Adhesives, Oils, Rosin & Derivatives, Resins, Oleoresins, Katha, Chemicals with other Natural Products, Asia Pacific Business Press Inc., 2022	
11	Achyut Godbole, Anna, Madhushree Publication, 2022, Marathi edition	
	Course Outcomes (students will be able to)	
CO1	List the key achievements of Ancient India in different areas of Chemical Technology	К3
CO2	Describe the various features of traditional Indian knowledge in different areas of Chemical Technology	K2
CO3	Describe Key Principles of Traditional Indian Health Systems	K2
CO4	Describe the various products and key technology aspects based on traditional Indian Knowledge in context of Modern science	K2
CO5	Understanding the applications of IKS in current practices.	К3
K1: Re	emembering, K2: Understanding, K3: Applying, K4: Analyzing, K5: Evaluating, K6: Creating	

	MOOC- Indian Knowledge System: HUT4153 Mapping of Course Outcomes (COs) with Programme Outcomes (POs)											
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	2	1	1	3	1	1	3	3	1	-
CO2	3	2	2	1	1	3	1	1	3	3	1	-
CO3	3	2	2	1	1	3	-	1	3	3	1	-
CO4	3	2	2	1	1	3	-	1	3	3	1	-
CO5	2	1	1	3	1	1	-	1	1	3	1	1
	3-Strong Contribution; 2-Moderate Contribution; 1-Low Contribution;											

Mapping	MOOC- Indi of Course Outcomes		System: HUT415. gramme Specific		
	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	2	1	1	3	2
CO2	2	2	1	1	1
CO3	2	1	1	3	2
CO4	2	1	1	1	2
CO5	2	2	1	1	2
3-5	Strong Contribution; 2	2-Moderate Contr	ribution; 1-Low Co	ontribution;	

Semester II Page 64 of 185

		Semester II			
	Course Code:	Course Title:	Cre	edits =	= 2
	HUT4154	Physical Activities (Sports & games)	L	T	P
	Semester: II	Total contact hours: 60	1	1	0
		List of Prerequisite Courses			
	None				
		List of Courses where this course will be prerequisite			
	Not Applicable				
	De	escription of relevance of this course in the Int. M. Tech. Program			
games, and ch enjoys In the p	Games are necessary eerful throughout the life. For him, life is a playground, the playe	sary and useful for all. Games play an important part in life. Education is inco y to keep the body fit and trim. Moreover, they provide recreation. As a result, day. If one is cheerful and healthy, he or she is able to get the best out of life. song and a beauty. Games teach us the lesson of discipline, teamwork, patience are obey the captain and abide by the rules of the games. Games also teach us that for victory or defeat. A healthy man is always hopeful and cheerful.	one fe A pla and pu we sh	eels sr yer re inctua iould j	mart cally dity. play
		Course Contents (Topics and subtopics)	Requ	d. hou	ırs
1	morning/evening or routine of physical at Physical activity me expenditure, for example Activities can be concluded and one's head Moderate physical: Walking brisk Bicycling (les) General garde Dancing Go Water aerobic Canoeing Tennis (doubl Vigorous physical at Running/joggic Walking very Bicycling (mo	activities include: cly (about 3½ miles per hour) s than 10 miles per hour) ching (raking, trimming shrubs) olf (walking and carrying clubs) s es) activities include: ang (5 miles per hour) fast (4½ miles per hour) are than 10 miles per hour) ork, such as chopping wood eestyle laps) mpetitive)		60	
		Total		60	
		Course Outcomes (students will be able to)			
CO1	Keep physically fit a	and mentally agile		K2	
CO2	Manage stress in stu	dies and later in life		K2	
CO3	Coordinate body and	d mind together		K2	
CO4	Understand own em-	otions and maintain healthy daily routine		K2	
CO5	Develop teamwork a	and an ability to work with others for a common goal		К3	
K1: Re	emembering, K2: Und	lerstanding, K3: Applying, K4: Analyzing, K5: Evaluating, K6: Creating			

Physical Activities (Sports & games): HUT4154 Mapping of Course Outcomes (COs) with Programme Outcomes (POs)											
PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12											

Semester II Page 65 of 185

CO1	-	1	-	-	-	1	1	1	1	1	-	1
CO2	-	1	1	-	-	1	1	1	1	1	-	1
CO3	-	1	-	-	-	1	1	1	1	1	-	1
CO4	-	1	-	-	-	1	1	1	1	1	-	1
CO5 - 1 1 1 1 1 1 - 1												
3-Strong Contribution; 2-Moderate Contribution; 1-Low Contribution;												

Mapping	Physical Activities (Sports & games): HUT4154 Mapping of Course Outcomes (COs) with Programme Specific Outcomes (PSOs)												
	PSO1	PSO2	PSO3	PSO4	PSO5								
CO1	-	-	-	-	1								
CO2	-	-	-	-	1								
CO3	-	-	-	-	1								
CO4	-	-	-	-	1								
CO5	-	-	-	-	1								
3-Strong Contribution: 2-Moderate Contribution: 1-Low Contribution:													

Semester II Page 66 of 185

Second Year

Semester-III

Semester-III Page 67 of 185

		Semester III								
	Course Code:	Course Title:	Cr	edits	= 2					
	CET4251	Fluid Flow	L	T	P					
	Semester: III	Total contact hours: 30	1	1	0					
		List of Prerequisite Courses								
		and Mathematics, Applied Physics (PHT4151), Applied Mathematics: I and T4152); Introduction to Chemical Engineering (EST4154)								
		List of Courses where this course will be prerequisite								
	CEP4252, CEP4253 an	CET4352), Chemical Engineering Laboratory I, II, III and IV (CEP4251, ad CEP4254), Instrumentation and Process Dynamics (CET4256), Chemical CET4351), Chemical Process Development and Engineering (CET4451)								
	Desc	cription of relevance of this course in the Int. M. Tech. Program								
	pasic course introduces of troduced.	concepts of fluid transfer to students. Various concepts such as pressure, mo	menti	ım, er	iergy					
		Course Contents (Topics and subtopics)	Req	d. hou	irs					
1	Fluid Statics and applie	cations to engineering importance.		4						
2										
3	Utility network in chemical process industries: Cooling water, Steam, Chilled water, Thermic fluid system									
4										
5	Particle Dynamics, Bo Fluidized Beds, Flow t	oundary layer separation: skin and form drag, Flow through Fixed and hrough porous media		6						
		Total		30						
		List of Text Books/ Reference Books								
1	Transport Phenomena,	Bird R.B., Stewart W.E., Lightfoot E.N.								
2	Fluid Mechanics, Kund	du Pijush K.								
3	Fluid Mechanics, F. W	7. White								
4	Unit Operations of Che	emical Engineering, McCabe, Smith and Harriott								
		Course Outcomes (students will be able to)								
CO1	Calculate pressure drop phase flow, fixed and f	p in pipelines and equipment for different situations such as single- and two- luidized beds		К3						
CO2	Calculate forces on par	rticles and terminal velocities of particles		K3						
CO3	Design pumps and pip	ing systems for simple situations		K6						
CO4	Estimate and analyze to	he fluid mechanics problem in chemical industry		K4						
CO5	Evaluate the fluid flow	calculation in design the pumps and piping systems		K5						
CO6	Design and create the f	fluid piping systems in chemical industry								
K1: R	emembering, K2: Under	rstanding, K3: Applying, K4: Analyzing, K5: Evaluating, K6: Creating								

	Fluid Flow: CET4251 Mapping of Course Outcomes (COs) with Programme Outcomes (POs)												
PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12													
CO1	3	3	-	2	1	-	1	ı	-	1	2	1	
CO2	3	3	-	1	-	-	-	-	-	-	2	1	
CO3	-	-	1	1	-	1	1	1	-	-	1	1	
CO4	3	3	1	1	1	1	1	1	-	1	2	1	

Semester III Page 68 of 185

Integrated Master of Technology, Chemical Engineering (Major) and MDM ICT Marathwada Campus, Jalna

CO5	3	2	1	1	-	-	-	-	-	-	-	1
CO6	2	3	2	1	1	-	-	-	-	-	2	2
3-Strong Contribution; 2-Moderate Contribution; 1-Low Contribution;												

Mapping	of Course Outcomes	Fluid Flow: CET (COs) with Prog		Outcomes (PSOs)	
	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	2	2	1	-	-
CO2	1	2	2	2	-
CO3	2	2	2	3	1
CO4	2	2	2	2	1
CO5	3	2	1	-	-
CO6	1	2	3	3	3
3-5	Strong Contribution; 2	2-Moderate Contr	ibution; 1-Low Co	ontribution;	

Semester III Page 69 of 185

		Semester III							
	Course Code:	Course Title:	Cre	edits :	= 2				
	CET4252	Heat Transfer	L	T	P				
	Semester: III	Total contact hours: 30	1	1	0				
		List of Prerequisite Courses							
	I and II (MAT415)	CET4352), Chemical Engineering Operation (CET4254), Applied Mathematics and MAT4152), Material and Energy Balance Calculations (CEP4151); nical Engineering (EST4154)							
		List of Courses where this course will be prerequisite							
	Process Developme Engineering Labora Instrumentation and I (CET4451), Multiph	ngineering (CET4351), Multiphase Reactor Engineering (HONOURS Syllabus), and Engineering (CEP4451), Process Safety (CET4255), Chemical tory I, II, III and IV (CEP4251, CEP4252, CEP4253 and CEP4254), Process Dynamics (CET4256), Chemical Process Development and Engineering ase Reaction Engineering (Non.), Mathematical Methods & Optimization in g (Hon.), Refinery Science and Engineering (Hon.)							
	De	escription of relevance of this course in the Int. M. Tech. Program							
		eals with heat transfer, overview of heat exchangers Heat transfer forms one of the ucation and is required in all future activities.	ne bas	sic pil	lars				
		Course Contents (Topics and subtopics)	Req	d. ho	urs				
1	Revision of Basics of Heat transfer: Steady state and unsteady state conduction, Fourier's law, Concepts of resistance to heat transfer and the heat transfer coefficient. Heat transfer in Cartesian, cylindrical and spherical coordinate systems, Insulation, critical radius.								
2	Convective heat transfer in laminar and turbulent boundary layers. Theories of heat transfer and analogy between momentum and heat transfer.								
3	Heat transfer by natural convection.								
4	Concurrent, counter- exchanger evaluation	minar and turbulent flow in circular pipes: Double pipe heat exchangers: current and cross flows, mean temperature difference, NTU: epsilon method for a. Heat transfer outside various geometries in forced convection, such as, single es or cylinders, packed beds and fluidized beds		8					
5		ted vessels: coils, jackets, limpet coils, calculation of heat transfer coefficients, imes, applications to batch reactors and batch processes		4					
6	Basics of Radiative h	eat transfer and application to Furnace Design		4					
		Total		30					
		List of Text Books/ Reference Books							
1	Heat Transfer, Kern I	D.Q.							
2	Heat Exchangers, Kal	kac S., Bergles A.E., Mayinger F							
3	Process Heat Transfer	r, G. Hewitt							
		Course Outcomes (students will be able to)							
CO1	Calculate temperatur	e profiles in a slab at steady state		K3					
CO2	Calculate heat transfe	er coefficients for free and forced convection in different heat transfer equipment		K3					
CO3	Rate performance of	heat exchanger using NTU-epsilon method		K5					
CO4	Design agitated vesse	el for heat transfer controlled process		K6					
CO5	Design heat transfer	equipment and their design calculation		K6					
CO6	Design the furnace ar	nd its design calculation		K6					
K1: R	emembering, K2: Und	erstanding, K3: Applying, K4: Analyzing, K5: Evaluating, K6: Creating							

Heat Transfer: CET4252 Mapping of Course Outcomes (COs) with Programme Outcomes (POs)											
Mapping of Course Outcomes (COs) with Programme Outcomes (POs)											
PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12											

Semester III Page 70 of 185

CO1	-	3	-	2	1	-	1	-	-	1	1	1
CO2	-	3	1	2	1	-	1	-	-	1	-	1
CO3	-	-	ı	3	2	1	1	-	-	-	-	1
CO4	-	-	1	2	2	3	2	1	-	-	2	2
CO5	-	3	1	2	2	1	2	1	-	1	1	1
CO6	-	2	2	1	-	-	-	-	-	1	-	1

3 Strong C	ontribution	2 Moderate	Contribution	1-Low Contribution:

Mapping (Hoof Course Outcomes	eat Transfer: CE (COs) with Pro		Outcomes (PSOs)	
	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	2	1	-
CO2	2	3	2	1	-
CO3	1	2	3	3	1
CO4	2	1	3	3	2
CO5	3	2	3	3	1
CO6	1	2	1	3	3
3-5	Strong Contribution; 2	2-Moderate Contr	ibution; 1-Low Co	ontribution;	

Semester III Page 71 of 185

		Semester III				
	Course Code: Course Title:				= 2	
EST4155		Engineering Thermodynamics		T	P	
	Semester: III	Total contact hours: 30	1	1	0	
		List of Prerequisite Courses				
		ring (EST4152); Material and Energy Balance Calculations (CEP4151); ical Engineering (EST4154)				
		List of Courses where this course will be prerequisite				
	Chemical Engineering	g Lab I, II, III and IV (CEP4251, CEP4252, CEP4253 and CEP4253), Chemical				
	Engineering Thermo	dynamics (CEP4353), Industrial Chemistry and Reaction Engineering I Engineering Laboratory I, II, III and IV (CEP4251, CEP4252, CEP4253 and				
		Engineering Operation (CET4254), Chemical Reaction Engineering on Processes (CET4356), Chemical Process Development and Engineering				
		scription of relevance of this course in the Int. M. Tech. Program				
insight		mits on performance of processes and equipment. This course gives students the preliminary thermodynamic analysis of a process for the purpose of establishments.				
		Course Contents (Topics and subtopics)	Req	d. ho	urs	
1	Reversible process; C	Concepts of thermodynamics. State functions; Equilibrium; Phase Rule; onstant P, V, T processes; Energy conservation & first law of thermodynamics; nees for open systems, nozzles,	6			
2		econd law; Heat engines, Carnot's theorem, Thermodynamic Temperature		6		
	Scales; Entropy; Entropy changes of an ideal gas; Mathematical statement of the second law; Entropy balance for open systems Industrial Applications of Second Law of Thermodynamics using Ideal Gas Law and Thermodynamic Property Charts and Tables					
3.	Thermodynamic analy	ysis of flow process, steam power plants; Rankine cycle; Internal combustion liesel engine; Jet engine.	6			
4.	Carnot refrigerator; V processes.	apor-compression cycle; Absorption refrigeration; Heat pump, Liquefaction				
5	Phases, phase transitions, PVT behavior; description of materials: Ideal gas law, van der Waals, virial and cubic equations of state; Reduced conditions & corresponding states theories; correlations in description of material properties and behavior			6		
	Total					
		List of Text Books/ Reference Books				
1	Introduction to Chem	ical Engineering Thermodynamics: Smith, van Ness, Abbott				
2	Chemical, Biochemic	al and Engineering Thermodynamics: S. I. Sandler				
3	Properties of Gases and	nd Liquids: Reid, Prausnitz, Pauling				
		Course Outcomes (students will be able to)				
CO1	Calculate Enthalpy, E pressure	Entropy and Gibbs energy changes in fluids with changes in temperature and	К3			
CO2	Analyze process effic	iencies using first law and second law of thermodynamics concepts	K4			
CO3	Calculate saturation to	emperature and pressure relationship for pure fluids from equations of state	K3			
CO4	Analyze process effic	efficiencies of various engines and refrigeration units			K4	
CO5	Estimate and evaluate the thermodynamics calculation			K5		
CO6	Develop and create the thermodynamic model equation				K6	
K1: Re	emembering, K2: Unde	erstanding, K3: Applying, K4: Analyzing, K5: Evaluating, K6: Creating				

Semester III Page 72 of 185

	Engineering Thermodynamics: EST4155 Mapping of Course Outcomes (COs) with Programme Outcomes (POs)													
	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12													
CO1	3	3	-	1	-	ı	1	ı	ı	1	1	-		
CO2	-	-	-	2	1	1	-	-	-	1	-	-		
CO3	3	3	-	1	-	-	1	-	-	-	1	-		
CO4	3	3	-	2	-	1	1	1	-	1	1	-		
CO5	3	3	-	2	1	1	1	1	-	1	1	-		
CO6	CO6 3 2 1 2 1 2 1 2 2													
	3	S-Strong	Contribu	tion; 2-M	loderate (Contribut	tion; 1-Lo	ow Contr	ibution;		•			

Mapping	Engineeri of Course Outcomes	ng Thermodynai (COs) with Prog		Outcomes (PSOs)	
	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	2	2	1	-
CO2	1	2	2	3	1
CO3	2	3	1	2	-
CO4	2	3	3	2	-
CO5	2	3	2	2	1
CO6	2	1	2	2	1
3-5	Strong Contribution; 2	2-Moderate Contr	ibution; 1-Low Co	ontribution;	•

Semester III Page 73 of 185

		Semester III			
	Course Code:	Course Title:	Cr	edits =	- 4
	CET4253	Industrial Chemistry and Reaction Engineering	L	T	P
	Semester: III	Total contact hours: 60	3	1	0
		List of Prerequisite Courses			
	Chemistry (CHT415)	1 and CHT4152), Material & Energy Balance Calculations (CEP4151),			
		I and II (MAT4151 and MAT4152), Momentum Transfer (CET4352)			
		List of Courses where this course will be prerequisite			
	(CET4353), Process	and Membrane (CET4356), Chemical Engineering Thermodynamics Safety (CET4255), Chemical Engineering Laboratory I, II, III and IV CEP4253 and CEP4254), Chemical Process Development and Engineering			
	De	scription of relevance of this course in the Int. M. Tech. Program			
inorga		•	rtypes	of reac	ctors
		Course Contents (Topics and subtopics)	Reqd	. hour	'S
1	Raw material and ene and specialty chemica	ergy sources, Organic and inorganic intermediates and final products, Bulk als		10	
2	Production costs of fu	els and chemicals		2	
3	Industrial gases and in	norganic products		4	
4	Examples of major in	dustrial processes		6	
5	Types of chemical rea	actions: elementary/non-elementary, single/multiple, irreversible/reversible		8	
6	Types of chemical rea	actors: batch and semi-batch reactors, continuous reactors (CSTR and PFR)		8	
7	Reaction kinetics (hor	nogeneous reactions)		8	
8	Isothermal, adiabatic	and non-isothermal operation modes		8	
9	Different types of sing	gle phase and multiphase reactors		6	
		Total		60	
	I	List of Text Books			
1		Reaction Engineering: H. Scott FOGLER			
2	Chemical Reaction Er	ngineering: Octave LEVENSPIEL			
3	The Engineering of C	hemical Reactions: Lanny D. SCHMIDT			
4	An introduction to Ch	emical Engineering Kinetics and Reactor Design: Charles HILL			
		List of Additional Reading Material / Reference Books			
1	, ,	nical Technology, Kirk-Othmer			
2		lia of Industrial Chemistry			
3	_	emistry, Weissermel & Arpe			
4		ustries, Shreve B. Austin	<u> </u>		
5		chnology, Moulijn, M. and van Dippen			
6		Chemical Technology	<u> </u>		
7		rnaces and Refractories, O.P. Gupta			
8	Fuels handbook, John				
~-		Course Outcomes (students will be able to)			
CO1	from process descripti			K2	
CO2	List out various altern the best choice	atives for carrying out a particular process and provide recommendations for		K3	

Semester III Page 74 of 185

Integrated Master of Technology, Chemical Engineering (Major) and MDM ICT Marathwada Campus, Jalna

CO3	List Principles of combustion systems for solid, liquid and gaseous fuel	K2
CO4	Design chemical reactors optimally, using minimum amount of data	К3
CO5	Design experiments in a judicious way to get the required data, if not available	K6
	Increase capacity and/or selectivity and/or safety by improving/changing the reactor type/sequence and/or operating conditions	K6
K1: R	emembering, K2: Understanding, K3: Applying, K4: Analyzing, K5: Evaluating, K6: Creating	

	Industrial Chemistry and Reaction Engineering: CET4253 Mapping of Course Outcomes (COs) with Programme Outcomes (POs)													
	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12													
CO1	3	1	1	-	1	2	1	-	-	1	1	2		
CO2	-	2	1	1	-	-	-	-	-	1	1	1		
CO3	2	1	1	2	-	1	-	-	-	1	-	2		
CO4	2	1	1	2	1	-	-	-	-	-	1	1		
CO5	2	1	-	1	1	-	1	-	-	-	2	-		
CO6	CO6 3 2 2 1 2 1 1 - 1													
	3	S-Strong	Contribu	tion; 2-M	Ioderate (Contribut	tion; 1-L	ow Contr	ribution;					

	Industrial Chemist Course Outcomes	•	0		
	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	2	1	-
CO2	2	2	1	1	-
CO3	1	1	2	-	-
CO4	2	2	1	-	-
CO5	1	2	3	3	1
CO6	1	1	2	2	1
3-Str	ong Contribution; 2	2-Moderate Contri	bution; 1-Low Co	ontribution;	

Semester III Page 75 of 185

		Semester III			
	Course Code:	Course Title:	Cr	edits =	= 2
	CEP4251	Chemical Engineering Laboratory - I	L	T	P
	Semester: III	Total contact hours: 60	pts learnt in the as a bridge between the second se	4	
		List of Prerequisite Courses			
	Calculations (CEP41	mical Engineering (EST4154), Material Balance and Energy Balance 51), Fluid Flow (CET4151), Heat Transfer (CET4252), Engineering T4155), Mathematics I and II (MAT5141 and MAT5142), Applied Physics Chemistry (CHT4151)			
		List of Courses where this course will be prerequisite			
	NA				
	Des	scription of relevance of this course in the Int. M. Tech. Program			
course	es. It also exposes them	ovides students the firsthand experience of verifying various theoretical concepto practical versions of typical chemical engineering equipment and servers as focuses on fluid dynamics, thermodynamics, and mass transfer.	a brid	ge bet	ween
		Course Contents (Topics and subtopics)	Requ	l. hou	rs
1	6-8 Experiments on Fl	luid Flow		40	
2	2-3 Experiments on H	eat Transfer		10	
3	2-3 Experiments on K	inetics		10	
		Total		60	
		List of Text Books/ Reference Books			
1	McCabe W.L., Smith	J.C., and Harriott P. Unit Operations in Chemical Engineering, 2014			
2	Bird R.B., Stewart W.	E., and Lightfoot, E.N. Transport Phenomena, 2007			
3	Coulson J.M., Richard Chemical engineering	dson J.F., and Sinnott, R.K. Coulson & Richardson's Chemical Engineering: design, 1996.			
4	Green D. and Perry R.	Perry's Chemical Engineers' Handbook, Eighth Edition, 2007.			
		Course Outcomes (students will be able to)			
CO1	Student would be able	to Learn to experimentally verify various theoretical principles		К3	
CO2	Student would be ab principles	ole to Visualize practical implementation of basic chemical engineering		K2	
CO3	Student would be able	to Develop experimental skills		K4	
CO4	Student would be able	to Connect classroom teaching with the laboratory practical		К3	
CO5	Student would be able	to Improve understanding about safety in the laboratory		K4	
CO6	Student would be able	to evaluate and write the report based on results		K6	
K1: R	emembering, K2: Unde	erstanding, K3: Applying, K4: Analyzing, K5: Evaluating, K6: Creating			

	Chemical Engineering Laboratory - I: CEP4251 Mapping of Course Outcomes (COs) with Programme Outcomes (POs)													
	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12													
CO1	CO1 3 2 2 1 - 2 2 1 1													
CO2	CO2 3 2 2 1 1 2													
CO3	3	2	1	1	-	1	-	-	-	1	2			
CO4	3	1	1	2	-	-	-	-	-	2	1	-		
CO5	3	2	-	-	-	-	1	-	-	2	1	2		
CO6	CO6 3 2 2 2 1 1 2 1 1													
	3	S-Strong (Contribu	tion; 2-M	loderate (Contribut	tion; 1-L	ow Contr	ribution;					

Semester III Page 76 of 185

Mapping of	Chemical Eng Course Outcomes	_	tory - I: CEP425 ramme Specific		
	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	2	3	2	3	1
CO2	3	1	1	3	-
CO3	1	2	3	1	2
CO4	2	1	2	2	2
CO5	2	1	2	2	2
CO6	1	2	1	2	2
3-Str	ong Contribution; 2	-Moderate Contri	bution; 1-Low Co	ontribution;	

Semester III Page 77 of 185

		Semester III			
	Course Code:	Course Title:	Cr	edits =	= 2
	HUT4156	Basic Principles of Finance and Economics	L	Т	P
	Semester: III	Total contact hours: 30	2	0	0
		List of Prerequisite Courses			
	Applied Mathematics	:: I and II (MAT4151 and MAT4152)			
	Tippines illustration	List of Courses where this course will be prerequisite			
	Project aconomics (C	ET4358); Fundamentals of marketing management and market research			
	,	7			
TD1 :		escription of relevance of this course in the Int. M. Tech. Program			
This	course gives the inform	nation about Basic Principles of Finance and Economics.			
		Course Contents (Topics and subtopics)	Rec	ıd. ho	urs
1	INTRODUCTION			3	
	Explaining the Econo				
	The Supply and Dem				
	Using the Supply and				
2		E EQUILIBRIUM MODEL		5	
	Deriving Demand				
	Deriving Supply	TECC.			
	Market Equilibrium a	·			
3	DEVIATIONS FROM			5	
	Monopoly and Market				
	Between Monopoly a Antitrust Policy and I	<u> </u>			
1	MACRO FACTS AN			-	
4				5	
	_	Macroeconomic Ideas n, Income and Spending of Nations			
5	ACCOUNTING TRA			5	
)	Journal entries.	ANSACTIONS		3	
	Debit credit rules.				
	Compound journal er	ntry.			
	Journal and ledger.	,			
	Rules of posting entri	ies			
	Trial balance				
6	CAPITAL AND REV	/ENUE		5	
	Income and expenditu				
	Expired costs and inc				
	Final accounts				
	Manufacturing accou	nts			
	Trading accounts				
	Profit and Loss accou	int.			
	Suspense account				
	Balance sheet				
7	CONCEPT OF DEPE	RECIATION		2	
L		Total		30	
		List of Textbooks			
1	G. Droms and Jay O.	ing for Nonfinancial Managers: All the Basics You Need to Know -William Wright Microeconomics: Basic Principles and Applications- A A Temu, D PRINCIPLES OF ECONOMICS(12e)- E. Case Karl, C. Fair Ray, et al			
	, ,,	List of Additional Reading Material / Reference Books			
1	Basic Finance for No.	nfinancial Managers: A Guide to Finance and Accounting Principles for			
•		ers- Kendrick Fernandez			

Semester III Page 78 of 185

2	Microeconomic Theory: Basic Principles and Extensions- Walter Nicholson and Christopher Snyder	
3	Macroeconomics(10e) Part of: Pearson Series in Economics (23 books) - by Froyen	
	Course Outcomes (students will be able to)	
CO1	Students will be able to know and apply accounting and finance theory.	K2
CO2	Students will be able to understand the mechanics of preparation of financial statements, their analysis and interpretation	K2
CO3	Students will be able to explain basic economic terms, concepts, and theories	К3
CO4	Students will be able to identify key macroeconomic indicators	K4
CO5	Student will be able to evaluate the accounting statements	K5
CO6	Student will be able to create the statemen and capital statement.	K6
K1: R	emembering, K2: Understanding, K3: Applying, K4: Analyzing, K5: Evaluating, K6: Creating	•

	Basic Principles of Finance and Economics: HUT4156 Mapping of Course Outcomes (COs) with Programme Outcomes (POs)													
	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12													
CO1	-	1	1	1	-	1	-	-	-	1	2	1		
CO2	-	1	3	-	-	-	-	-	-	1	1	1		
CO3	-	-	-	1	-	1	-	-	-	-	1	1		
CO4	-	-	3	2	-	-	-	-	-	1	1	-		
CO5	-	1	3	2	-	1	1	-	-	1	1	1		
CO6	CO6 2 2 - 1 3 1													
	3	S-Strong	Contribu	tion; 2-M	Ioderate (Contribut	ion; 1-L	ow Contr	ribution;					

Mapping of	Basic Principles of Course Outcomes				
	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	2	2	1	-
CO2	2	3	1	1	-
CO3	1	2	3	-	-
CO4	2	1	2	-	-
CO5	1	3	2	1	1
CO6	3	3	2	1	1
3-Str	ong Contribution; 2	-Moderate Contri	bution; 1-Low Co	ontribution;	

Semester III Page 79 of 185

		Semester III			
	Course Code:	Course Title:	Cro	dits =	= 2
	CET4257	Environmental Sciences	L	T	P
	Semester: III	Total contact hours: 30	2	0	0
		List of Prerequisite Courses			
	Environmental Studie	es of Standard XII			
		List of Courses where this course will be prerequisite			
		conomics (CET4358), Chemical Engineering Elective III - Environmental mical Process Safety (CETxxx)			
	De	scription of relevance of this course in the Int. M. Tech. Program			
This c	ourse gives the information	ation about Basic Principles of Environmental Sciences.			
		Course Contents (Topics and subtopics)	Req	l. hou	ırs
1	chemical industry (c)	ar economy, EHS management (b) Environment management systems in the Legal provisions for environmental management: EP Act 1986; Air Act, 1981; cardous waste management Rules, 2019		6	
2	Importance of ecology	y, effluent treatment and discharging norms for treated water		6	
3	SPCB consent parame	eters, monitoring, and analysis		4	
4	External monitoring of	of ambient air, noise, stacks, etc		4	
5	Air pollutants, source	s and effects on human health and environment, monitoring, and analysis		6	
6	Life cycle analysis, en	nvironmental impact assessment		4	
		Total		30	
		List of Text Books/ Reference Books			
1	Introduction to Enviro	onmental Engineering and Science by Gilbert M Masters and Wendell P Ela			
2	Environmental Pollut	ion Control Engineering, C. S. Rao			
3	Principles of Instrum Learning, 2007	ental Analysis by D. A. Skoog, F. James Holler and S. R. Crouch, Cengage			
		Course Outcomes (students will be able to)			
CO1	Describe the methods	of industrial effluent treatment		K2	
CO2	apply the learning for sustainable developm	selection and implementation of appropriate waste management technique for ent		K2	
CO3	Basic understanding a	and awareness about the components of environment		K2	
CO4	Gaining knowledge a	bout Climate patterns of India		К3	
CO5	Awareness about dise	ases caused due to polluted environment		К3	
CO6	Understanding the dif	ferent strategies used to control pollution.		K5	
K1: R	emembering, K2: Unde	erstanding, K3: Applying, K4: Analyzing, K5: Evaluating, K6: Creating			

	Environmental Sciences: CET4257 Mapping of Course Outcomes (COs) with Programme Outcomes (POs)												
	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12												
CO1	1	1	1	2	1	-	ı	-	2	1	1	2	
CO2	1	2	ı	2	-	-	1	-	2	1	1	1	
CO3	1	1	1	2	1	-	1	-	2	1	1	1	
CO4	1	2	1	1	-	-	3	1	2	-	2	3	
CO5	1	2	1	1	-	-	3	1	2	-	2	1	
CO6	-	1	1	-	-	-	3	1	-	-	1	2	
	3-Strong Contribution; 2-Moderate Contribution; 1-Low Contribution;												

Semester III Page 80 of 185

Mapping of (nmental Sciences (COs) with Prog		Outcomes (PSOs)	
	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	2	3	2	1	-
CO2	2	2	3	1	-
CO3	2	3	3	1	-
CO4	1	2	2	1	-
CO5	1	2	3	1	-
CO6	1	2	2	1	-
3-Stro	ong Contribution; 2	-Moderate Contri	bution; 1-Low Co	ontribution;	

Semester III Page 81 of 185

Second Year

Semester-IV

Semester-IV Page 82 of 185

		Semester IV			
	Course Code:	Course Title:	Cr	edits :	= 4
	CET4254	Chemical Engineering Operations	L	T	P
	Semester: IV	Total contact hours: 60	2	2	0
		List of Prerequisite Courses			
	Material and Energy Engineering Thermod	Balance Calculations (CEP4151), Chemistry (CHT4151 and CHT4152), lynamics (EST4155)			
		List of Courses where this course will be prerequisite			
	Laboratory I, II, III a Lab: I and II (CEP42 Process Developmen Engineering and Cher Engineering (Non.), Refinery Science and				
		scription of relevance of this course in the Int. M. Tech. Program			
		Eng. course. The principles learnt in this course are required in almost all ghout the professional career of Chemical Engineer			
		Course Contents (Topics and subtopics)	Reqd	l. hour	rs
1		Operations and Chemical Engineering Processes, Introduction to mass Convective and diffusive transport		4	
2	Fractionating column Lewis-Sorel methods minimum and optimu based methods: HETF distillation. Methods	ry mixtures: Differential distillation, Flash or equilibrium distillation, and multistage column, reflux, reflux ratio, need for reflux, McCabe-Thiele, of estimation of number of equilibrium stages, Operating and feed lines, m reflux ratio, Tray and column efficiency, Packed column distillation: rate-P, HTU, Ponchon Savarit method, Introduction to batch distillation and steam for multicomponent separations: Fenske-Underwood-Gilliland Method		12	
3	Operating lines from efficiency and column	ping of dilute mixtures: Fundamentals of absorption, equilibrium curves, material balances, Number of equilibrium stages, Kremser Equation, Stage a performance, Absorption columns, Rate based methods for packed columns a considerations: loading and flooding zones, pressure drop and column		12	
4	rate filtration, Incomp	ration theory: constant pressure, constant rate, and variable pressure-variable pressible and compressible cake filtration, Continuous filtration, filter aids, Selection, Sizing and Scale-up		10	
5	Sedimentation, Class Performance evaluati	sification and Centrifugal Separations: Design and scale up equations, ion, Sedimentation equipment, classifiers, centrifugal equipment, Sieving ieving (dry, wet, vibro), magnetic separators, and froth flotation, Selection,		8	
6		chanism of drying, drying rate curves, Estimation of drying time, Drying a, Process design of dryers, material, and energy balances in direct dryers, s		10	
7	Operational considera	ion: Energy requirements for size reduction and scale-up considerations, tions, Crushing and grinding equipment: impact and roller mills, fluid energy mills, Selection of equipment		4	
		Total		60	
	In	List of Textbooks/ Reference Books			
1	Particle technology ar	ulson, J.M., Harker, J.H., Backhurst, J.R., 2002. Chemical engineering: nd separation processes. Butterworth-Heinemann, Woburn, MA.			
2	-	E.J., 2005. Separation Process Principles, 2 ed. Wiley, Hoboken, N.J.			
3	•	Solid-Liquid Separation. Butterworth-Heinemann, Woburn, MA.			
4		J., Harriott, P., 2004. Unit Operations of Chemical Engineering, 7 ed. //Engineering/Math, Boston.			

Semester IV Page 83 of 185

5	Green, D., Perry, R., 2007. Perry's Chemical Engineers' Handbook, Eighth Edition, 8 ed. McGraw-Hill Professional, Edinburgh.							
6	6 Dutta, B.K., 2007. Principles of Mass Transfer and Separation Process. Prentice-Hall of India Pvt. Ltd, New Delhi.							
	Course Outcomes (students will be able to)							
CO1	Know the significance and usage of different particulate characterization parameters, and equipment to estimate them	K2						
CO2	Describe Size reduction energy requirements, estimate performance of equipment, selection and sizing of equipment	К3						
CO3	Analyze filtration data and select systems based on requirements, estimate filtration area for given requirements, understand filter aids and their usage	K4						
CO4	Draw T-y-x diagrams, and y-x diagrams, operating lines, feed line, bubble point, dew point calculations, ternary phase diagrams, partition coefficient	K4						
CO5	Describe two common modes of drying, industrial drying equipment	K2						
CO6	Calculate mass transfer coefficient in various equipment, calculate height and diameter required, minimum solvent required in absorption, calculate height and diameter required, minimum reflux required in distillation	K4						
K1: R	emembering, K2: Understanding, K3: Applying, K4: Analyzing, K5: Evaluating, K6: Creating							

	Chemical Engineering Operations: CET4254 Mapping of Course Outcomes (COs) with Programme Outcomes (POs)												
	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12												
CO1	2	2	2	2	-	1	2	-	-	1	2	1	
CO2	2	2	2	2	-	1	2	-	-	2	1	2	
CO3	3	3	-	-	-	-	3	-	-	1	1	2	
CO4	3	3	-	-	-	-	-	-	-	2	2	1	
CO5	2	2	-	-	-	-	-	-	-	2	2	1	
CO6	3	3	-	3	-	3	3	-	-	2	1	1	
	3	S-Strong (Contribu	tion; 2-M	Ioderate (Contribut	tion; 1-L	ow Contr	ribution;				

		ations: CET4254 gramme Specific (Outcomes (PSOs)	
PSO1	PSO2	PSO3	PSO4	PSO5
3	2	2	1	-
3	3	1	1	-
2	1	2	3	1
1	2	1	2	-
2	2	1	1	-
1	3	2	1	1
				PSO1 PSO2 PSO3 PSO4 3 2 2 1 3 3 1 1 2 1 2 3 1 2 1 2 2 1 2 1 2 2 1 1 1 3 2 1

Semester IV Page 84 of 185

		Semester IV			
	Course Code:	Course Title:	Cr	edits =	= 2
	CET4255	Process Safety	L	T	P
	Semester: IV	Total contact hours: 30	1	1	0
		List of Prerequisite Courses			
	Industrial Engineering	Chemistry and Engineering (CET4253)			
		List of Courses where this course will be prerequisite			
	Chemical Process Co (CET4451), Chemical	e III-Environmental Engineering and Chemical Process Safety (CETxxx), ontrol (CET4354), Chemical Process Development and Engineering Eng Elective III-Environmental Engineering and Chemical Process Safety			
	Desc	cription of relevance of this course in the Int. M. Tech. Program			
		arse are learnt the process safety inters of handing and performing the experir d transportation of hazardous chemicals.	nent in	labora	atory,
		Course Contents (Topics and subtopics)	Reqd	. hour	S
1		themicals manufacturing units (b) Overview of hazards, contributors to dents, importance of safety culture (c) Causes of fires and explosion, ,		10	
2	(a) Flammable and con(b) Storage and handlir(c) Norms for safe hand	safe handling of hazardous chemicals. abustible liquids ag of hazardous chemicals dling of chemicals at workplace portation of hazardous substances		10	
3	Basics of laboratory sa	fety al protective equipment (b) Electrical safety (c) Fire safety (d) Machine		10	
		Total		30	
1		List of Text Books/ Reference Books			
1	Chemical Process Safe LOUVAR	ety: Fundamentals with Applications: Daniel A. CROWL and Joseph F.			
2		Safety Management, Environment, Safety, Health, and Quality: Centre for Safety of the American Institute of Chemical Engineers (AIChE)			
3		ty Learning from Case Histories: Roy E. SANDERS			
4		Safety Documentation: Center for the Chemical Process Safety of the Chemical Engineers (AIChE)			
		Course Outcomes (students will be able to)			
CO1	Identify hazards in a given	ven process and assess the same and provide solutions for operating safely.		K2	
CO2	Specify safety requiren	nents for storage and handling of a given chemical.		K2	
CO3	Students learn what proinfluence it.	ocess safety is, the consequences of poor process safety, and the factors that		K3	
CO4	Students learn how to n releases of dangerous n	nanage risk and define critical controls, or barriers, to prevent unintentional naterials.		K5	
CO5	Students learn how to i	mplement sustainable improvements in PSM.		K5	
CO6	Students may gain hand critical thinking skills t	ds-on experience with bowtie diagrams and other tools and learn to apply o analyze scenarios.		K6	
K1: R	emembering, K2: Under	standing, K3: Applying, K4: Analyzing, K5: Evaluating, K6: Creating			_

Process Safety: CET4255											
Mapping of Course Outcomes (COs) with Programme Outcomes (POs)											
PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12

Semester IV Page 85 of 185

CO1	2	2	2	2	-	1	2	-	-	1	1	-
CO2	2	2	2	2	-	1	2	-	-	2	1	-
CO3	3	3	3	3	-	1	3	-	-	1	1	-
CO4	-	2	1	2	-	-	-	-	1	1	2	2
CO5	2	1	1	2	1	-	-	1	-	-	3	1
CO6	1	1	2	2	1	-	-	-	-	-	2	2
	3-Strong Contribution; 2-Moderate Contribution; 1-Low Contribution;											

Mapping o	Proof Course Outcomes	rocess Safety: CI s (COs) with Pro		Outcomes (PSOs)	
	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	2	2	3	1	-
CO2	3	2	2	-	1
CO3	2	2	2	1	1
CO4	1	2	1	1	-
CO5	2	1	3	1	-
CO6	1	2	2	2	-
3-5	Strong Contribution;	2-Moderate Contr	ribution; 1-Low Co	ontribution;	•

Semester IV Page 86 of 185

		Semester IV			
	Course Code:	Course Title:	Cr	edits =	= 2
	CET4256	Instrumentation and Process Dynamics	L	T	P
	Semester: IV	Total contact hours: 30	1	1	0
		List of Prerequisite Courses		•	•
		s I (MAT4151), Physics (PHT4151), Fluid Flow (CET4251), Heat Transfer ry (CHT4151 and CHT4152)			
		List of Courses where this course will be prerequisite			
		Control (CET4354), Chemical Engineering Laboratory I, II, III and IV, CEP4253 and CEP4254), Chemical Process Development and Engineering			
	De	scription of relevance of this course in the Int. M. Tech. Program			
		course are required in almost all the courses and throughout the professional	career (of Che	nical
Engine	eer in terms of instrum	entation and process dynamics of process and design.			
		Course Contents (Topics and subtopics)	Reqd	. hour	S
1	Revision of basic confunctions	ncepts: Laplace transformation, linearization, step, pulse, ramp, sinusoidal		4	
2.	Unsteady mass and e	nergy balances of system, dynamic equations		6	
3.		c model equations of typical chemical engineering operations, such as level e in a heated tank, reactor, column, heat exchanger		6	
4.		er systems, Stimulus-Response Techniques, Response of First order systems idal stimuli, characteristics of First and second order systems	s 4		
5.	Components of cor	ntrol system – precision, sensitivity, accuracy, and error analysis of educes, Transmission of signals	f 2		
6	Instrumentation for	stems and their response to input changes, Open Loop response, measurement of temperature, flow, pressure, level, concentration. Basic and physical construction of instruments,		2	
7		chanism – To design a simple control system of first order and second order		6	
		Total		30	
	1	List of Text Books/ Reference Books			
1	Instrumentation, Eck	man			
2	Chemical Process Co	ontrol- George Stepheanopoulous			
		Course Outcomes (students will be able to)			
CO1	To identify appropria	ate instrument for measurement of process variables		K2	
CO2	To estimate time vari	ant nature of process		К3	
CO3		the system as first order, second order, etc,		К3	
CO4	To estimate response	of the system when subjected to change		К3	
CO5	To understand behav	ior of combined systems		K2	
CO6	To evaluate and creat	te the instrumentation and control system of chemical process		K6	
K1: R	emembering, K2: Und	erstanding, K3: Applying, K4: Analyzing, K5: Evaluating, K6: Creating			

Instrumentation and Process Dynamics: CET4256 Mapping of Course Outcomes (COs) with Programme Outcomes (POs)												
	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12										PO12	
CO1	3	1	2	2	1	2	2	-	-	1	1	-
CO2	2	2	1	1	2	1	-	-	-	2	2	-
CO3	3	-	2	1	-	2	-	-	-	1	1	-

Semester IV Page 87 of 185

Integrated Master of Technology, Chemical Engineering (Major) and MDM ICT Marathwada Campus, Jalna

CO4	2	1	2	-	2	2	ı	İ	-	1	1	-
CO5	1	2	2	2	1	-	1	-	-	2	1	-
CO6	3	2	2	2	2	2	1	-	-	2	2	-
3-Strong Contribution; 2-Moderate Contribution; 1-Low Contribution;												

Mapping	Instrumentation of Course Outcomes		ynamics: CET425 gramme Specific (
	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	2	1	1	-	-
CO2	3	1	2	1	1
CO3	3	2	1	1	-
CO4	3	2	1	-	-
CO5	2	1	2	1	-
CO6	3	2	1	1	1
3-5	Strong Contribution; 2	2-Moderate Contri	bution; 1-Low Co	ntribution;	

Semester IV Page 88 of 185

		Semester IV			
	Course Code:	Course Title:	Cr	edits =	= 2
	CEP4252	Chemical Engineering Laboratory - II	L	T	P
	Semester: IV	Total contact hours: 60	0	0	4
		List of Prerequisite Courses			
	Transfer (CET4252), En and MAT4152), Chem	Energy Balance Calculations (CEP4151), Fluid Flow (CET4151), Heat gineering Thermodynamics (EST4155), Mathematics I and II (MAT4151 nical Engineering Operations (CET4154), Industrial Chemistry and CET4253), Instrumentation and Process Dynamics (CET4256)			
		List of Courses where this course will be prerequisite			
	Chemical Engineering L	aboratory III and IV (CEP4253 and CEP4254)			
	Descr	iption of relevance of this course in the Int. M. Tech. Program			
course	es. It also exposes them to	des students the firsthand experience of verifying various theoretical concepractical versions of typical chemical engineering equipment and servers accuses on fluid dynamics, thermodynamics, and mass transfer.			
		Course Contents (Topics and subtopics)	Reqd	. hour	s
2	2-3 Experiments on Hea	t Transfer		12	
4	6-8 Experiments on Che	mical Engineering Operations	40		
5	1-2 Experiments on Instr	rumentation	8		
		Total		60	
		List of Text Books/ Reference Books			
1	McCabe W.L., Smith J.C	C., and Harriott P. Unit Operations in Chemical Engineering, 2014			
2	Bird R.B., Stewart W.E.	, and Lightfoot, E.N. Transport Phenomena, 2007			
3	Coulson J.M., Richardso Chemical engineering de	on J.F., and Sinnott, R.K. Coulson & Richardson's Chemical Engineering: esign, 1996.			
4	Green D. and Perry R. P	erry's Chemical Engineers' Handbook, Eighth Edition, 2007.			
		Course Outcomes (students will be able to)			
CO1	Student would be able to	Learn to experimentally implement various theoretical principles		K2	
CO2	Student would be able t data	o Utilize the chemical engineering equipment to generate experimental		K4	
CO3	Student would be able to	Calculate experimental results		K3	
CO4	Student would be able to	Improve ability to write laboratory reports		K3	
CO5	Student would be able to	Improve ability for oral communication		К3	
CO6	Student would be able to	write and conclude the experiment data		K5	
K1: R	emembering, K2: Underst	anding, K3: Applying, K4: Analyzing, K5: Evaluating, K6: Creating			

	Chemical Engineering Laboratory - II: CEP4252 Mapping of Course Outcomes (COs) with Programme Outcomes (POs)												
	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12												
CO1	3	2	2	1	-	2	-	-	-	2	1	1	
CO2	3	2	2	-	-	-	-	-	-	1	1	2	
CO3	3	2	1	1	-	1	-	-	-	1	2		
CO4	3	1	1	2	-	-	-	-	-	2	1	-	
CO5	3	2	-	-	-	-	1	-	-	2	1	2	
CO6	3	2	2	2	2	1	1	-	-	2	1	1	
	3-Strong Contribution; 2-Moderate Contribution; 1-Low Contribution;												

Semester IV Page 89 of 185

Mapping of	Chemical Engi Course Outcomes	_	ory - II: CEP425 ramme Specific		
	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	2	3	2	3	1
CO2	3	1	1	3	-
CO3	1	2	3	1	2
CO4	2	1	2	2	2
CO5	2	1	2	2	2
CO6	1	2	1	2	2
3-Str	ong Contribution; 2	-Moderate Contri	bution; 1-Low Co	ontribution;	

Semester IV Page 90 of 185

		Semester IV			
	Course Code:	Course Title:	Cr	edits =	= 2
	HUT4157	Industrial Management	L	Т	P
	Semester: IV	Total contact hours: 30	2	0	0
		List of Prerequisite Courses			
		and Reaction Engineering (CET4253), Instrumentation and Process Process Safety (CET4255)			
		List of Courses where this course will be prerequisite			
	Process Development a Chemical Process Equi and Engineering (CET4				
	Desc	ription of relevance of this course in the Int. M. Tech. Program			
This c	• •	th human resource management skills to be able to function effectively in the	eir pro	ofessio	nal
		Course Contents (Topics and subtopics)	Rec	ıd. ho	urs
1	The production function Operation concept of production as the conver- Productivity of convers Components of product	roduction ersion process		6	
2	Manufacturing systems Factors influencing cho Classification of manuf Jobbing production Batch production. Mass or flow productio	ice of manufacturing system. acturing systems		8	
3	Facilities location Factors governing plant Economic survey of site Urban, sub-urban, rural	c location.		6	
4	Productivity techniques Kaizen Kanban JIT 5S Poka yoke Six sigma			5	
5		on planning and control		5	
	-	Total		30	
		List of Text Books/ Reference Books			
1	Modern Production / O	perations Management, (8e)- Buffa and Sarin			
2	Operations Managemer	nt,12e-Jay Heizer, Barry Render, et al.			
3	OPERATIONS MANA	GEMENT 13TH EDITION by William J. Stevenson			
4		y Chain Management (SIE) 15th Edition by Richard B. Chase, Ravi			
		Course Outcomes (students will be able to)			
CO1	Student would be able practices in their domai	to explain the concepts of management and explore the management n area within society.		K4	
		o evaluate different types of organizational structures and design them.		K6	

Semester IV Page 91 of 185

Integrated Master of Technology, Chemical Engineering (Major) and MDM ICT Marathwada Campus, Jalna

CO3	Student would be able to explain about product design process and Design product layout.	K6
CO4	Student would be able to explain about method study and use various work measurement methods.	К3
CO5	Student would be able to draw various statistical quality control charts and interpret them.	K3
CO6	Student would be able to apply the techniques of PERT/CPM in project.	K3
K1: R	emembering, K2: Understanding, K3: Applying, K4: Analyzing, K5: Evaluating, K6: Creating	

	Industrial Management: HUT4157 Mapping of Course Outcomes (COs) with Programme Outcomes (POs)											
	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12											
CO1	1	2	2	-	3	1	ı	-	-	1	3	1
CO2	2	1	3	1	1	-	-	-	-	2	2	2
CO3	1	3	1	2	2	-	-	-	2	1	1	1
CO4	2	3	3	2	2	1	-	-	2	1	3	1
CO5	2	1	2	1	2	1	-	-	1	1	-	-
CO6	2	3	1	2	1	-	-	-	1	1	-	-
	3-Strong Contribution; 2-Moderate Contribution; 1-Low Contribution;											

Mapping of (Industrial Management: HUT4157 Mapping of Course Outcomes (COs) with Programme Specific Outcomes (PSOs)												
	PSO1 PSO2 PSO3 PSO4 PSO5												
CO1	3	2	1	1	-								
CO2	2	1	2	3	2								
CO3	1	2	3	1	3								
CO4	2	2	2	1	3								
CO5	2	2	1	2	1								
CO6	2	1	2	1	-								
3-Stro	ong Contribution; 2	2-Moderate Contri	bution; 1-Low Co	ontribution;									

Semester IV Page 92 of 185

		Semester IV			
	Course Code:	Course Title:	Cr	edits =	= 2
	HUP4158	Community Projects	L	T	P
	Semester: IV	Total contact hours: 60	0	0	4
		List of Prerequisite Courses			
	Nil				
		List of Courses where this course will be prerequisite			
	Nil				
	Desc	ription of relevance of this course in the Int. M. Tech. Program			
		ous community projects as individual or group related to study of socie	tal tec	chnolo	gical
activit	ties through various organ				
		Course Contents (Topics and subtopics)	Rec	ıd. ho	urs
1	society.	ave the main objective of making the knowledge useful for the benefit of		60	
	-	ts, individually or in a group not more than 5, shall identify the problems their neighborhood or city, or the state. They shall collect necessary data,			
		tion and identify a problem that can be solved using the knowledge of own and propose an affordable solution.			
	_	cute the project with support from Institute, Local Society groups, NGOs,			
	Some of the suggested p	projects are:			
l	(i) Identification of	water supply Pipeline network, estimation of water requirement, Pressure as and pumping requirements			
	-	s data, identification of food supply, waster generation,			
		dump areas in local areas, treatment of malodour from dumped materials			
	•	hospitals, waste generation, analysis of waste treatment			
	_	ollution in the areas, identification and quantitative measurements and effect ocal population in the areas.			
	(vi) Identification of	f waste materials generated by local economic activities, development of e, and/or building economic activities			
	-	ss among people in the vicinity of chemical plants, suggesting methods in			
		f methods to contain fugitive emissions from vehicles, and transport of			
	(ix) Plastic collection	n drives and recycle methods			
	(x) Design of rain v	vater harvesting methods in housing societies			
	(xi) Green building	concept awareness			
	Any-other project of so	ocial relevance with prior approval of the HOD			
		Total		60	
	T	List of Text Books/ Reference Books			
1	General Books, Newspa				
	I	Course Outcomes (students will be able to)			
CO1		sudents to contribute of social networking as a bridge between the various and the people of India. The course also outlines the benefits of community search and innovation.		K2	
CO2	Sensitivity towards the physical, mental and s	e environment and education, safety and energy, enthusiasm towards spiritual health along with simple living and high thinking have been derstanding of the students.		K2	

Semester IV Page 93 of 185

Integrated Master of Technology, Chemical Engineering (Major) and MDM ICT Marathwada Campus, Jalna

CO3	Students will be able to understand the various problems of any community and the possible ways to address them.	К3								
CO4	Student would be able to explain about environmental impact assessment	K3								
K1: R	K1: Remembering, K2: Understanding, K3: Applying, K4: Analyzing, K5: Evaluating, K6: Creating									

	Community Projects: HUP4158 Mapping of Course Outcomes (COs) with Programme Outcomes (POs)												
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	CO1 1 1 2 1 1 2 1 1 2 2												
CO2	1	1	2	1	1	2	1	1	2	1	2	2	
CO3	1	1	2	1	1	2	1	1	2	1	2	2	
CO4	CO4 2 3 3 2 2 1 1 1 2 1 3 1												
	3-Strong Contribution; 2-Moderate Contribution; 1-Low Contribution;												

Mapping of	Community Projects: HUP4158 Mapping of Course Outcomes (COs) with Programme Specific Outcomes (PSOs)													
	PSO1 PSO2 PSO3 PSO4 PSO5													
CO1	CO1 1													
CO2	-	-	-	1	3									
CO3	-	-	-	1	3									
CO4	CO4 1 3													
3-Strong Contribution; 2-Moderate Contribution; 1-Low Contribution;														

Semester IV Page 94 of 185

Third Year

Semester-V

Semester-V Page 95 of 185

		Semester V			
	Course Code:	Course Title:	Cr	edits =	= 2
	CET4351	Chemical Reaction Engineering	L	T	P
	Semester: V	Total contact hours: 30	1	1	0
		List of Prerequisite Courses			
		*			
		List of Courses where this course will be prerequisite			
	(CET4451), Chemic Lab - I and II (CF (CET4451), Chemic Biochemical Engin Methods & Optimiz	Control (CET4354), Chemical Process Development and Engineering al Engineering Lab - III and IV (CEP4253 and CEP4254), Process Simulation EP4255 and CEP4256), Chemical Process Development and Engineering al Eng Elective III-Environmental Engineering and Chemical Process Safety, eering (Hon.), Multiphase Reaction Engineering (Non.), Mathematical ration in Chemical Engineering (Hon.), Refinery Science and Engineering ence and Engineering (Hon.)			
	D	escription of relevance of this course in the Int. M. Tech. Program			
& petroleoch	rochemicals, Pulp & pnemicals, and surfact	but not limited to the following industries: Inorganic chemicals, organic chemicals, Pigments & paints, rubber, plastics, synthetic fibers, Foods, Dyes and intants, Minerals, cleansing agents, Polymers and textiles, Biochemicals and Microelectronics, energy from conventional and non-conventional resources, Microelectronics, energy from conventional resources, energy from c	ermed d biot	liates,	Oils,
		Course Contents (Topics and subtopics)	Rec	ıd. ho	urs
1	Sizing and analysis of	of chemical Reactors (single and multiple reactions (series/parallel))		6	
2	Series of reactors, R isothermal reactor de	Recycle reactors, Use of energy balance in reactor sizing and analysis, non-esign		6	
3	Non-idealities in che	emical reactors: RTD, Axial dispersion models		6	
4	Gas-Solid reactions:	Catalytic and Non-catalytic		4	
5	Heterogeneous catal	ysis: internal and external transport, kinetics, and mechanisms		4	
6	Gas-solid reactions (non-catalytic), Kinetics of fluid-fluid reactions		4	
		Total		30	
		List of Text Books/ Reference Books			
1	Elements of Chemic	al Reaction Engineering: H. Scott FOGLER			
2	Chemical Reaction I	Engineering: Octave LEVENSPIEL			
3	The Engineering of	Chemical Reactions: Lanny D. SCHMIDT			
4	An introduction to C	Chemical Engineering Kinetics and Reactor Design: Charles HILL			
5	Heterogeneous Reac	tions, Vol. I and II: L. K. Doraiswamy, M. M. Sharma			
		Course Outcomes (students will be able to)			
CO1	Design chemical rea	ctors optimally, using minimum amount of data		K4	
CO2	Design experiments	in a judicious way to get the required data, if not available		K4	
CO3	Fix some problems r	elated to operability and productivity		K4	
CO4	Select appropriate si	ngle and multiphase reactor configuration for given application		K3	
CO5		o develop skills to choose the right reactor for isothermal, non-isothermal, or		K6	
CO6		to calculate conversion and extent values for different systems, including tems.		K6	
K1: R	emembering, K2: Und	lerstanding, K3: Applying, K4: Analyzing, K5: Evaluating, K6: Creating			

Semester V Page 96 of 185

	Chemical Reaction Engineering: CET4351 Mapping of Course Outcomes (COs) with Programme Outcomes (POs)													
	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12													
CO1 3 2 2 1 2 1 1 1 -														
CO2	2	1	1	2	2	1	3	-	1	2	2	-		
CO3	1	2	1	1	-	1	-	-	-	1	1	-		
CO4	2	1	2	1	1	2	-	-	-	-	1	-		
CO5	3	2	2	1	2	2	3	-	-	1	1	-		
CO6	CO6 3 2 2 1 2 1 2 1 2													
	3	S-Strong (Contribu	tion; 2-M	Ioderate (Contribut	tion; 1-L	ow Contr	ibution;					

Chemical Reaction Engineering: CET4351 Mapping of Course Outcomes (COs) with Programme Specific Outcomes (PSOs)												
PSO1	PSO2	PSO3	PSO4	PSO5								
1	2	3	3	-								
2	3	3	3	1								
1	2	2	3	-								
2	2	3	2	1								
2	2	3	3	1								
2	3	2	2	2								
	f Course Outcomes	f Course Outcomes (COs) with Prog	f Course Outcomes (COs) with Programme Specific	f Course Outcomes (COs) with Programme Specific Outcomes (PSOs)								

Semester V Page 97 of 185

		Semester V			
	Course Code:	Course Title:	Cr	edits =	= 2
	CET4352	Momentum Transfer	ressure, mentese laws Reqd. roll g g s s s	T	P
	Semester: V	Total contact hours: 30	1	1	0
		List of Prerequisite Courses		•	
		s and Mathematics, Applied Physics: I and II (PHT4151), Fluid Flow Mathematics: I and II (MAT4151 and MAT4152), Chemical Engineering			
		List of Courses where this course will be prerequisite			
	Membrane (CET4356 Development and Enginand Chemical Process	Lab - III and IV (CEP4253 and CEP4254), Separation Processes + 5), Heat Transfer Equipment design (CET4357), Chemical Process neering (CET4451), Chemical Eng Elective III-Environmental Engineering Safety (CETxxx), Multiphase Reaction Engineering (Non.), Mathematical on in Chemical Engineering (Hon.)			
	Desc	cription of relevance of this course in the Int. M. Tech. Program			
energy	y are introduced. Laws re	concepts of momentum transfer to students. Various concepts such as preselated to conservation of momentum; energy are taught. Applications of the cess equipment is explained with the help of several problems			
		Course Contents (Topics and subtopics)	Reqd	l. hour	rs
1	Equations of Continuity flows and its application various engineering applications.		8		
2	Boundary Layer Flow solutions,	s: Blasius equations and solution, Von-Karman integral equations and		6	
3	Introduction to turbuler	nce: turbulent pipe flow, basis of Universal velocity profile and its use		6	
4	Similarities in Moment	um, Heat and Mass Transfer		6	
5		imental and computational fluid dynamics: HFA, LDA, PIV, UVP, alence modelling, multiphase system modelling etc.		4	
		Total		30	
		List of Textbooks/ Reference Books			
1	Transport Phenomena,	Bird R.B., Stewart W.E., Lightfoot E.N.			
2	Fluid Mechanics, Kund	lu Pijush K.			
3	Fluid Mechanics, F. W.	. White			
4	Unit Operations of Che	emical Engineering, McCabe, Smith			
		Course Outcomes (students will be able to)			
CO1	Calculate velocity profi	iles, forces, pressure drops for simple 1 –D laminar flow situations		K2	
CO2	Calculate forces on par	ticles and terminal velocities of particles		K2	
CO3		at and mass transfer concepts to simple situations		K3	
CO4	Select appropriate me equipment	asurement technique for detailed characterization in chemical process		K3	
CO5	Analyze compressible t	fluids.		K4	
	G 1 1100 1	nent for transportation and metering of fluids.		K6	

	Momentum Transfer: CET4352												
Mapping of Course Outcomes (COs) with Programme Outcomes (POs)													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	CO1 3 2 2 2 1 3 2 1 -												

Semester V Page 98 of 185

CO2	1	2	1	1	2	2	1	-	-	-	1	-
CO3	3	2	1	2	2	1	2	-	1	1	-	-
CO4	1	1	2	1	2	1	1	-	1	-	1	-
CO5	3	2	2	2	1	2	2	-	-	1	1	-
CO6	2	2	1	1	2	1	-	-	-	-	-	-
3-Strong Contribution; 2-Moderate Contribution; 1-Low Contribution;												

Mapping of	Momentum Transfer: CET4352 Mapping of Course Outcomes (COs) with Programme Specific Outcomes (PSOs)												
	PSO1	PSO2	PSO3	PSO4	PSO5								
CO1	3	3	2	1	-								
CO2	3	2	3	1	-								
CO3	2	2	2	1	1								
CO4	2	1	2	2	1								
CO5	3	2	2	1	1								
CO6	2	1	2	-	-								
3-5	3-Strong Contribution; 2-Moderate Contribution; 1-Low Contribution;												

Semester V Page 99 of 185

		Semester V			
	Course Code:	Course Title:	Cı	redits :	= 4
	CEP4353	Chemical Engineering Thermodynamics	L	Т	P
	Semester: V	Total contact hours: 60	3	1	0
		List of Prerequisite Courses			•
	Engineering Thermodyr	namics (CET4155)			
		List of Courses where this course will be prerequisite			
	Environmental Enginee (Hon.), Multiphase Rea	Lab - III and IV (CEP4253 and CEP4254), Chemical Eng Elective III- ring and Chemical Process Safety (CETxxx), Biochemical Engineering action Engineering (Non.), Mathematical Methods & Optimization in Hon.), Statistical Thermodynamics (Hon.)			
	Desc	ription of relevance of this course in the Int. M. Tech. Program			
forma heats	lism and insights necessation of mixing, sparingly solu	eding course by developing the concept of non-ideal mixing and provide ary to tackle real industrial problems like liquid-liquid phase splitting, as ble gases and solids, electrolytes etc. Student who has taken this course rectrum of industrial chemical processes.	eotrop nay be	oic, non e expec	n-zero cted to
		Course Contents (Topics and subtopics)	Re	qd. ho	urs
1.	Relations, and the need	f Ideal and non-ideal mixtures. Equations for Property Changes, Maxwell for Equations of State. Residual Properties		6	
2.	equation, Gibbs energy	Pure Fluids, Fugacity and Fugacity Coefficient, Clausius-Clapeyron		6	
3.	Fugacity and Fugacity (6	
4.	Non-Ideal Mixtures, Ex		6		
5.	Models of the Liquid F UNIQUAC and NRTL)				
6.	Vapor: Liquid Equilibri point calculations for Id	ia in Ideal Mixtures, T-x-y and P-x-y diagrams, Bubble point and Dew leal mixtures		6	
7	liquid equilibria using g	a in non-ideal mixtures including azeotropes and high-pressure vapor: amma-phi and phi-phi approaches		6	
8	Solubility of Gases in L	iquids, concept of infinite dilution activity coefficient, Henry's law		4	
9	Liquid: Liquid Equilibri	ia and Phase splitting, applications to extraction		4	
10	Solubility of Solids in L	•		2	
11	Debye Huckel Theory, a	activity coefficients of electrolytes		4	
12	Chemical Equilibrium i Heterogenous reacting r	n Ideal and non-ideal Mixtures in single phase reacting mixtures and in mixtures		6	
		Total		60	
	T	List of Text Books/ Reference Books			
1		and Engineering Thermodynamics: S. I. Sandler			
2		al Engineering Thermodynamics: Smith, van Ness, Abbott			
3	Properties of Gases and	Liquids: Reid, Prausnitz, Pauling			
		Course Outcomes (students will be able to)			
CO1		equilibria in binary non-ideal mixtures using activity coefficient models		K3	
CO2	•	olutes (gases and solids) in liquids		K3	
CO3		equilibria using activity coefficient models		K3	
CO4	Analyze equilibria in re	acting mixtures		K4	
CO5		to solve problems involving multi-phase chemical systems and reactive may be related to safety.		K5	
CO6		to interpret thermodynamic data for applications in chemical engineering y, biological sciences, energy, and environmental sciences.		K6	

Semester V Page 100 of 185

K1: Remembering, K2: Understanding, K3: Applying, K4: Analyzing, K5: Evaluating, K6: Creating

	Ma	C pping of		_	ring The	•				s)				
	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12													
CO1	3	1	2	1	2	1	-	-	-	1	1	-		
CO2	2	2	1	2	1	2	-	-	-	-	1	-		
CO3	2	2	1	2	1	1	-	-	-	-	2	-		
CO4	3	2	-	2	-	2	1	-	-	-	1	-		
CO5	3	2	1	2	1	2	1	-	-	-	2	-		
CO6	CO6 3 2 1 1 1 2 2													
	3	-Strong (3-Strong Contribution: 2-Moderate Contribution: 1-Low Contribution:											

Mapping	Chemical Engir of Course Outcomes	_	lynamics: CEP4 gramme Specific		
	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	2	2	1	-
CO2	2	3	2	2	-
CO3	2	2	1	2	1
CO4	1	2	3	2	1
CO5	2	3	2	2	1
CO6	2	3	1	1	-
3-5	Strong Contribution; 2	2-Moderate Contr	ibution; 1-Low Co	ontribution;	

Semester V Page 101 of 185

		Semester V			
	Course Code:	Course Title:	Cr	edits =	= 2
	CEP4253	Chemical Engineering Laboratory - III	L	T	P
	Semester: V	Total contact hours: 60	0	0	4
	T	List of Prerequisite Courses			
	(CET4352), Materia (CET4151), Heat Tran and II (MAT4151 and Instrumentation and Pr	g Laboratory I and II (CEP4251 and CEP4252), Momentum Transfer II Balance and Energy Balance Calculations (CEP4151), Fluid Flow sfer (CET4252), Engineering Thermodynamics (EST4155), Mathematics I MAT4152), Industrial Chemistry and Reaction Engineering (CET4253), rocess Dynamics (CET4256), Chemical Reaction Engineering (CET4351), CET4352), Chemical Engineering Thermodynamics (CET4253), Chemical s (CET4254)			
		List of Courses where this course will be prerequisite			
	Chemical Engineering	Lab - IV (CEP4254)			
	Des	cription of relevance of this course in the Int. M. Tech. Program			
course	es. It also exposes them t	vides students the firsthand experience of verifying various theoretical concert of practical versions of typical chemical engineering equipment and servers as occuses on fluid dynamics, thermodynamics, and mass transfer.	a brid	ge bet	ween
		Course Contents (Topics and subtopics)	Requ	. hour	S
1	2-3 Experiments on M			10	
2	-	nemical Engineering Thermodynamics		20	
3	4-6 Experiments on Re			30	
		Total		60	
	T	List of Textbooks/ Reference Books			
1		J.C., and Harriott P. Unit Operations in Chemical Engineering, 2014			
2		E., and Lightfoot, E.N. Transport Phenomena, 2007			
3	Chemical engineering				
4	Green D. and Perry R.	Perry's Chemical Engineers' Handbook, Eighth Edition, 2007.			
	T	Course Outcomes (students will be able to)			
CO1	Student would be able	to implement the experimental procedure with minimal assistance		K3	
CO2	Student would be able	to Connect various chemical engineering subjects for common output		K2	
CO3	Student would be able	to Analyze large experimental data and results		K4	
CO4	Student would be able	to Improve ability to write scientific reports		K3	
CO5	Student would be able	to Improve ability draw conclusions	K3		
CO6	Student would be able experimental findings	to write and present technical reports and documents, and communicating orally to colleagues		K6	
K1: R	emembering, K2: Under	rstanding, K3: Applying, K4: Analyzing, K5: Evaluating, K6: Creating			

	Chemical Engineering Laboratory - III: CEP4253 Mapping of Course Outcomes (COs) with Programme Outcomes (POs)												
PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12													
CO1	3	2	2	1	-	2	-	-	-	2	1	1	
CO2	3	2	2	-	-	-	-	-	-	1	1	2	
CO3	CO3 3 2 1 1 - 1 - 1 2												
CO4	3	1	1	2	-	-	-	-	-	2	1	-	

Semester V Page 102 of 185

Integrated Master of Technology, Chemical Engineering (Major) and MDM ICT Marathwada Campus, Jalna

CO5	3	2	i	i	i	-	1	i	-	2	1	2
CO6	3	2	2	2	2	1	1	-	-	2	1	1
	3	S-Strong (Contribut	tion; 2-M	loderate (Contribut	tion; 1-L	ow Contr	ribution;			

Mapping o	Chemical Engi of Course Outcomes		ory - III: CEP42 gramme Specific		
	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	2	3	2	3	1
CO2	3	1	1	3	-
CO3	1	2	3	1	2
CO4	2	1	2	2	2
CO5	2	1	2	2	2
CO6	1	2	1	2	2
3-S	trong Contribution; 2	2-Moderate Contr	ibution; 1-Low Co	ontribution;	

Semester V Page 103 of 185

		Semester V			
	Course Code:	Course Title:	Cr	edits =	= 2
	CEP4255	Process Simulation Laboratory - I	L	T	P
	Semester: V	Total contact hours: 60	0	0	4
		List of December 21 Commen			
	WILL C. 1 1 DI .	List of Prerequisite Courses			
		cs and Mathematics, Applied Physics: I and II (PHT4151), Applied (MAT4151 and MAT4152)			
		List of Courses where this course will be prerequisite			
	Process Simulation La Transport Phenomena	b-II (CEP4256), Advanced Reaction Engineering (CET4553), Advanced (CET4551)			
	Desc	cription of relevance of this course in the Int. M. Tech. Program			
		Chemical Engineering processes and equipment.			
	0 1	uipment through programming			
To Le	arn the solving process of	of Chemical Engineering problems through computational techniques	I		
		Course Contents (Topics and subtopics)	Reqd	. hour	<u>s</u>
1.	3-4 experiments on cal energy models	culation of chemical properties by equation of state, fugacity and Gibbs'		12	
2.	2-3 experiments on co	mputation of vapor-liquid equilibria and liquid-liquid equilibria		8	
4	2-3 experiments on flas	sh vessel calculations, estimation of bubble point and dew point conditions		12	
6	5-6 Design of chemica liquid-liquid extractor,	l engineering equipment such as absorber, stripping unit, distillation unit, cooling tower		28	
		Total		60	
		List of Text Books/ Reference Books	•		
1	Coker, Ludwig's Appli	led Process Design for Chemical and Petrochemical Plants			
2	Perry's Chemical Engi	neering Handbook			
3	Albright's Chemical En	ngineering Handbook			
		Course Outcomes (students will be able to)			
CO1	Use advanced program	nming software with built in functions		К3	
CO2	Write own functions			K4	
CO3	Solve chemical engine	ering problems using computers		K4	
CO4	Design a chemical eng	ineering equipment for separation process		K4	
CO5		skills in building and running a process simulation model to predict the and to conduct technical-economic optimization.		K4	
CO6	-	mercial simulation software.		K5	
K1: R		estanding, K3: Applying, K4: Analyzing, K5: Evaluating, K6: Creating	I.		

	Process Simulation Laboratory - I: CEP4255 Mapping of Course Outcomes (COs) with Programme Outcomes (POs)												
PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12													
CO1	-	-	3	1	1	1	-	-	ı	-	2	-	
CO2	1	2	3	1	2	1	-	-	-	-	2	-	
CO3	1	2	1	2	1	1	-	-	-	-	3	-	
CO4	3	1	1	1	-	1	-	2	-	-	1	-	
CO5	2	2	2	1	1	1	-	2	1	-	2	-	
CO6	3	2	1	-	-	-	-	1	-	-	1	2	

Semester V Page 104 of 185

3-Strong Contribution; 2-Moderate Contribution; 1-Low Contribution;

Mapping o	Process Sim of Course Outcomes		ory - I: CEP4255 gramme Specific										
	PSO1 PSO2 PSO3 PSO4 PSO5												
CO1	3	2	1	2	-								
CO2	2	3	2	1	-								
CO3	2	1	3	3	1								
CO4	1	2	3	3	1								
CO5	2	2	3	3	1								
CO6	2	3	1	1	-								
3-S	trong Contribution; 2	2-Moderate Contr	ibution; 1-Low Co	ontribution;									

Semester V Page 105 of 185

Third Year

Semester-VI

Semester-VI Page 106 of 185

	Semester VI			
Course Code:	Course Title:	Cr	edits =	= 2
CET4354	Chemical Process Control	L	T	P
Semester: VI	Total contact hours: 30	1	L T 1 1 1	
	List of Prerequisite Courses			
(CET4256), Chemic	es I and II (MAT4151 and MAT4152), Instrumentation and Process dynamics al Reaction Engineering (CET4351), Process safety (CET4255), Mathematical ation in Chemical Engineering (Hon.)			
	List of Courses where this course will be prerequisite			
	ent (HUT4157), Chemical Engineering Lab-IV (CEP4354), Chemical Process ngineering (CET4451)			
I	escription of relevance of this course in the Int. M. Tech. Program			
Drogge control playe on or	orly critical role in the context of actual operation of a chemical plant. Most of t	ha aar	o obon	nion1

Process control plays an overly critical role in the context of actual operation of a chemical plant. Most of the core chemical engineering courses focus on the steady state operation. In the real-life environment, process is continuously subjected to various disturbances which deviate the operation from the designed steady state. This course specifically prepares students to assess the impact of such disturbances and equip them with the tools available with the chemical engineer to tackle these situations.

	Course Contents (Topics and subtopics)	Reqd. hours
1	Controller tuning: Open loop tuning, closed loop tuning, characteristic equation, Routh-Hurwitz criterion	6
2	Design of controllers using simple performance criteria, time-integral performance criteria. Design of controllers using frequency response technique, Nyquist, and Bode Stability criteria,	8
3	Control Strategies- Cascade control, Ratio Control, Feedforward control, Dead time compensation	6
4	Modern control strategies, Internal model control, Dynamic Matrix control	4
6	Control of batch processes, programmable logical controllers, Distributed control systems, supervisory Control systems	2
7	Digital control systems, Introduction to z-transforms	4
	Total	30
	List of Textbooks/ Reference Books	
1	Chemical Process Control- George Stephenopoulus	
2	Process control- Shinskey	
	Course Outcomes (students will be able to)	
CO1	To design a controller and understand behavior of a close loop-controlled system	K4
CO2	To evaluate performance of a close loop control system, stability and controllability, Robustness	K4
CO3	To select and Design control strategy	K3
CO4	To evaluate a advanced control system, design feedforward controllers	K4
CO5	To evaluate digital control systems	K4
CO6	Develop the transfer function for a given system to generate response for a given forcing function. and develop block diagram for a given process	K6
K1: R	emembering, K2: Understanding, K3: Applying, K4: Analyzing, K5: Evaluating, K6: Creating	

	Chemical Process Control: CET4354											
Mapping of Course Outcomes (COs) with Programme Outcomes (POs)												
PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12												
CO1	2	2	1	1	3	2	1	-	-	1	1	-
CO2 3 1 2 1 1 2 1 1 3 -											-	
CO3	CO3 2 2 1 2 1 1 2 3 2 -											
CO4	1	1	2	1	1	1	-	-	-	1	2	_

Semester VI Page 107 of 185

Integrated Master of Technology, Chemical Engineering (Major) and MDM ICT Marathwada Campus, Jalna

CO5	2	3	1	1	3	1	ı	İ	1	2	1	-
CO6	3	2	2	1	2	2	1	-	1	-	3	-
	3	S-Strong (Contribut	tion; 2-M	loderate (Contribut	ion; 1-L	ow Contr	ibution;			

Chemical Process Control: CET4354 Mapping of Course Outcomes (COs) with Programme Specific Outcomes (PSOs)					
	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	2	2	3	3	1
CO2	1	2	3	2	-
CO3	1	3	2	3	2
CO4	2	2	3	2	1
CO5	1	2	2	3	1
CO6	2	2	3	3	1
3-S	Strong Contribution; 2	2-Moderate Contr	ibution; 1-Low Co	ontribution;	

Semester VI Page 108 of 185

		Semester VI			
	Course Code:	Course Title:	Cı	edits :	= 2
	CET4356	Separation Processes	L	T	P
	Semester: VI	Total contact hours: 30	1	1	0
		List of Prerequisite Courses			
	(CET4254), Engineer Applied Mathematics	Balance Calculations (CEP4151), Chemical Engineering Operations ring Thermodynamics (EST4155), Momentum Transfer (CET4352), I and II (MAT4151 and MAT4152), Chemical Engineering Laboratory I, CEP4252 and CEP4253), Process Simulation Lab: I (CEP4255)			
		List of Courses where this course will be prerequisite			
	Chemical Process Dev	g Laboratory IV (CEP4254), Process Simulation Lab - II (CEP4256), velopment and Engineering (CET4451), Chemical Process Development 4451), Multiphase Reaction Engineering (Non.)			
	Des	cription of relevance of this course in the Int. M. Tech. Program			
	eering Principles and he	t up on and in continuation with Chem. Eng. operations. It forms the nce it is required in almost all the courses and throughout the professional ca			
		Course Contents (Topics and subtopics)	Re	qd. ho	urs
1	and Maloney-Schuber number of stages, max Introduction to reactiv supercritical fluid ex	ng of ternary systems: Ternary diagrams, Hunter-Nash graphical method it graphical equilibrium-stage method, Solvent Selection, Operating point, imum solvent to feed ratios, minimum reflux, minimum number of stages, we extraction, aqueous two phase extraction, extraction of biomolecules, traction, Solid-liquid extraction: Solid - liquid equilibria, efficiency, on, Equipment for extraction, leaching and their sizing, Design		10	
2	Chromatography, Bre Dispersion Model, S Transport-Rate Coeff	exchange: Liquid Adsorption, Ion-Exchange Equilibria, Equilibria in akthrough Curves, Kinetic and transport considerations, Convection-eparation Efficiency (Plate Height or Bandwidth), Correlations for ficients, Equipment for sorption operations, Scale-Up and Process ve Membranes, simulated-moving-bed operation, modes of operation		5	
3	relationship), Supersat of moments for rate ex operation, evaporative	ry of solubility and crystallization, phase diagram (temp/solubility uration, Nucleation, Crystal Growth, Population balance analysis, method pressions for, volume, area and length growth, CSD distribution, MSMPR and cooling (rate expressions), most dominant size, ideal classified bed, stallization, Process design of crystallizers and their operation		5	
4	tower process design,	cooling Towers: Method of changing humidity and equipment, Cooling counter-current, concurrent, and cross current, mass and heat balances in stimation of air quality, performance evaluation of cooling towers.		5	
5	Membrane Separation vapour permeation and Porous Membranes, Re Porous Membranes, T Mixtures, Gas Mixtu	s: Types of separations, reverse osmosis, ultrafiltration, gas separation, la pervaporation, dialysis, electrodialysis, nanofiltration, Transport Through esistance Models, Liquid Diffusion Through Pores, Gas Diffusion Through transport Through Nonporous Membranes, Solution-Diffusion for Liquid ures, Concentration Polarization and Fouling, Membrane modules, es in cascades, performance criteria and design considerations		5	
		Total		30	
	.	List of Textbooks/ Reference Books			
	Particle technology and	lson, J.M., Harker, J.H., Backhurst, J.R., 2002. Chemical engineering: d separation processes. Butterworth-Heinemann, Woburn, MA.			
2		E.J., 2005. Separation Process Principles, 2 ed. Wiley, Hoboken, N.J.			
3		J., Harriott, P., 2004. Unit Operations of Chemical Engineering, 7 ed. (Engineering/Math, Boston.			
1	Green, D., Perry, R.,	2007. Perry's Chemical Engineers' Handbook, Eighth Edition, 8 ed.			

Semester VI Page 109 of 185

McGraw-Hill Professional, Edinburgh.

5	Dutta, B.K., 2007. Principles of Mass Transfer and Separation Process. Prentice-Hall of India Pvt. Ltd, New Delhi.	
	Course Outcomes (students will be able to)	
CO1	List situations where liquid–liquid extraction might be preferred to distillation, Make a preliminary selection of a solvent using group-interaction rules, Size simple extraction equipment	K2
CO2	Differentiate between chemisorption and physical adsorption, List steps involved in adsorption of a solute, and which steps may control the rate of adsorption, Explain the concept of breakthrough in fixed-bed adsorption	K2
CO3	Explain how crystals grow, Explain the importance of supersaturation in crystallization.	K2
CO4	Explain membrane processes in terms of the membrane, feed, sweep, retentate, permeate, and solute-membrane interactions.	K2
CO5	Distinguish among microfiltration, ultrafiltration, nanofiltration, virus filtration, sterile filtration, filter-aid filtration, and reverse osmosis in terms of average pore size. Explain common idealized flow patterns in membrane modules.	K5
CO6	Describe effects of mixing on supersaturation, mass transfer, growth, and scale-up of crystallization	K5
K1: R	emembering, K2: Understanding, K3: Applying, K4: Analyzing, K5: Evaluating, K6: Creating	

	Ma	pping of		-		esses: CI with Pr		ne Outco	mes (PO	s)				
	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12													
CO1	3	2	1	1	2	2	2	-	-	1	3	-		
CO2	3	1	2	1	2	1	2	-	-	2	1	-		
CO3	3	2	1	-	1	1	1	-	-	1	2	-		
CO4	2	1	2	1	1	2	3	-	-	1	1	-		
CO5	CO5 3 2 2 1 2 2 2 1 2													
CO6	CO6 2 1 2 2 1 1													
	3	S-Strong	Contribu	tion; 2-M	Ioderate (Contribu	tion; 1-L	ow Conti	ribution;					

Mapping o	Separ of Course Outcomes	ation Processes: (COs) with Pro		Outcomes (PSOs)	
	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	2	2	1	2	-
CO2	3	2	2	1	1
CO3	1	2	1	2	2
CO4	1	2	1	1	1
CO5	2	2	1	2	1
CO6	1	1	2	1	-
3-S	Strong Contribution; 2	-Moderate Contr	ibution; 1-Low Co	ontribution;	

Semester VI Page 110 of 185

		Semester VI			
	Course Code:	Course Title:	Cr	edits =	- 2
	CET4357	Heat Transfer Equipment Design	L	T	P
	Semester: VI	Total contact hours: 30	1	1	0
		List of Prerequisite Courses			
	Mathematics I and II (M	ET4352), Chemical Engineering Operation (CET4254), Applied MAT4151 and MAT4152), Material and Energy Balance Calculations action Engineering (CET4351)			
		List of Courses where this course will be prerequisite			
	Engineering (CET4451),	ineering (HONOURS Syllabus), Chemical Process Development and Environmental Engineering and Process Safety (CETxxx), Chemical P4354), Chemical Process Development and Engineering (CET4451)			
	Descri	ption of relevance of this course in the Int. M. Tech. Program			
		with heat transfer, heat exchangers and their design. Heat transfer form Education and is required in all future activities.	s one o	of the	basic
		Course Contents (Topics and subtopics)	Reqd	. hour	S
1	nomenclature, choice of	angers: Basic construction and features, TEMA exchanger types, their exchanger type, correction to mean temperature difference due to cross ers. Design methods for shell and tube heat exchangers such as Kern nethod		8	
2	Finned tube exchangers, a	air-cooled cross flow exchangers and their process design aspects		3	
3	Compact Exchangers: Pla and their process design a	ate, Plate fin, Spiral, etc.: Construction, features, advantages, limitations aspects		3	
4	horizontal versus vertical aspects of total condens	theoretical prediction of heat transfer coefficients, practical aspects, condensation outside tubes, condensation inside tubes, Process Design ers, condensers with de-superheating and subcooling, condensers of condensation of vapors in presence of non-condensable.		8	
5	Heat transfer to boiling circulation reboilers	liquids: Process design aspects of evaporators, natural and forced		8	
		Total		30	
		List of Text Books/ Reference Books			
1	Heat Transfer, Kern D.Q.				
2	Heat Exchangers, Kakac	S., Bergles A.E., Mayinger F			
3	Process Heat Transfer, G.	Hewitt			
		Course Outcomes (students will be able to)			
CO1		t temperatures/pressure drops/area required for various equipment like ers, shell and tube heat exchangers, plate heat exchangers, condensation,		K4	
CO2		f shell and tube exchanger based on TEMA classification.		K2	
CO3	Design a reboiler system			K4	
CO4		e of heat transfer equipment, such as parallel and counter flow heat through black and gray bodies.		K4	
CO5	-	ipment, such as shell and tube heat exchangers, and plate type heat		K6	
CO6		ages required for a given mass transfer problem		K5	
K1: R	emembering, K2: Understa	anding, K3: Applying, K4: Analyzing, K5: Evaluating, K6: Creating			

Semester VI Page 111 of 185

	Ma	pping of			Equipm es (COs)		_		mes (PO	s)			
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	3	2	1	1	2	3	2	-	-	1	2	-	
CO2	3	-	-	1	1	-	-	-	1	2	1	-	
CO3	3	2	2	1	2	3	3	-	-	1	2	-	
CO4	3	2	2	1	2	2	2	-	1	1	1	-	
CO5	CO5 2 3 3 1 1 2 2												
CO6	1	2	2	-	-	-	-	-	-	1	3	3	
	3	-Strong (Contribu	tion; 2-M	loderate (Contribut	tion; 1-Lo	ow Contr	ibution;				

Mapping	Heat Trans of Course Outcomes		Design: CET4357 gramme Specific	Outcomes (PSOs)	
	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	2	3	3	2	1
CO2	3	1	2	1	-
CO3	2	1	2	3	-
CO4	2	1	2	2	1
CO5	2	3	3	1	-
CO6	3	2	1	2	-
3-5	Strong Contribution;	2-Moderate Contr	ibution; 1-Low Co	ontribution;	•

Semester VI Page 112 of 185

•		Semester VI			
	Course Code:	Course Title:	Cr	edits =	: 2
	CEP4256	Process Simulation Laboratory - II	L	T	P
	Semester: VI	Total contact hours: 60	0	0	4
		List of Prerequisite Courses			
		and Mathematics, Applied Physics (PHT4151), Applied Mathematics: I rocess Simulation Lab-II (CEP4255), Chemical Engineering Operations			
		List of Courses where this course will be prerequisite			
	Advanced Reaction Eng	ineering (CET4553), Advanced Transport Phenomena (CET4551)			
	Descr	iption of relevance of this course in the Int. M. Tech. Program			
	1 0	hemical Engineering processes and equipment.			
		pment through programming			
To lear	rn the solving process of (Chemical Engineering problems through computational techniques	D 1		
	D : 6 1:	Course Contents (Topics and subtopics)	Requ.	hours	<u> </u>
1	Design of multicompone			6	
2	Design of shell and tube	heat exchanger		6	
3.	Design of evaporator			4	
4.	design of adiabatic drier			4	
6	2-3 experiments on mon	-		8	
7.	1-2 experiment of multion	component reaction		4	
8.	Design of reactor			4	
9	2-3 process flow sheet c	alculation		20	
		Total		60	
	ı	List of Text Books/ Reference Books	1		
1		d Process Design for Chemical and Petrochemical Plants			
2	Perry's Chemical Engine	eering Handbook			
3	Albright's Chemical Eng				
		Course Outcomes (students will be able to)			
CO1		ing design problems involving iterative calculations		K4	
CO2	Solve chemical engineer equations	ring problems involving non-linear equations coupled with differential		K4	
CO3	Solve chemical engineer	ring problems using computers		K4	
CO4	Design a chemical engin	neering equipment for separation process		K4	
CO5		ills in building and running a process simulation model to predict the d to conduct technical-economic optimization.		K4	
CO6	Pursue by using a comm	ercial simulation software.		K5	
K1: Re	emembering, K2: Underst	anding, K3: Applying, K4: Analyzing, K5: Evaluating, K6: Creating			

	Ma	pping of			tion Lab es (COs)	•			mes (PO	s)		
PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12												PO12
CO1	-	-	3	1	1	1	-	-	-	-	2	-
CO2	1	2	3	1	2	1	-	-	-	-	2	-
CO3	1	2	1	2	1	1	-	-	-	-	3	-
CO5	3	1	1	1	-	1	-	2	-	-	1	-

Semester VI Page 113 of 185

Integrated Master of Technology, Chemical Engineering (Major) and MDM ICT Marathwada Campus, Jalna

CO6	2	2	2	1	1	1	-	2	-	-	2	-
	3	-Strong (Contribut	ion; 2-M	loderate (Contribut	ion; 1-L	ow Contr	ribution;			

		•		
PSO1	PSO2	PSO3	PSO4	PSO5
3	2	1	2	-
2	3	2	1	-
2	1	3	3	1
1	2	3	3	1
2	2	3	3	1
2	3	1	1	-
	f Course Outcomes	f Course Outcomes (COs) with Prog	f Course Outcomes (COs) with Programme Specific	Process Simulation Laboratory - II: CEP4256 f Course Outcomes (COs) with Programme Specific Outcomes (PSOs) PSO1 PSO2 PSO3 PSO4 3 2 1 2 2 3 2 1 2 1 3 3 1 2 3 3 2 2 3 3 2 2 3 3 2 3 1 1

Semester VI Page 114 of 185

		Semester VI			
	Course Code:	Course Title:	Cr	edits =	= 2
	CEP5254	Chemical Engineering Laboratory -IV	L	T	P
	Semester: VI	Total contact hours: 60	0	0	4
		List of Prerequisite Courses			
	Balance and Energy (CET4252), Enginee MAT4152), Industria Process Dynamics (C (CET4352), Chemica (CET4354), Separati	Is Laboratory I, II and III (CEP4251, CEP4252, and CEP4253), Material Balance Calculations (CEP4151), Fluid Flow (CET4151), Heat Transfer ring Thermodynamics (EST4155), Mathematics I and II (MAT4151 and al Chemistry and Reaction Engineering (CET4253), Instrumentation and (ET4256), Chemical Reaction Engineering (CET4351), Momentum Transfer al Engineering Thermodynamics (CET4353), Chemical Process Control on Processes (CET4356), Heat Transfer Equipment design (CET4357), g Operations (CET4254)			
	T	List of Courses where this course will be prerequisite	1		
	NA				
	De	escription of relevance of this course in the Int. M. Tech. Program			
cours	es. It also exposes them	rovides students the firsthand experience of verifying various theoretical concern to practical versions of typical chemical engineering equipment and servers are focuses on fluid dynamics, thermodynamics, and mass transfer.	as a brid	lge bet	ween
1	2.2 5	Course Contents (Topics and subtopics)	Keqa	. hours	8
1	2-3 Experiments on N	•		10	
3		Chemical Process Control and Dynamics		20	
4	6-8 Experiments on N	Mass Transfer and Separation Processes		30	
		Total		60	
1	MaCaba W.I. Carida	List of Textbooks/ Reference Books			
2		J.C., and Harriott P. Unit Operations in Chemical Engineering, 2014			
3		dson J.F., and Sinnott, R.K. Coulson & Richardson's Chemical Engineering:			
4		d. Perry's Chemical Engineers' Handbook, Eighth Edition, 2007.			
<u> </u>	Green B. and reny is	Course Outcomes (students will be able to)			
CO1	Student would be able	e to Completely design and implement the experimental procedure		K3	
CO2		e to Process complex information to solve chemical engineering problems		K2	
CO3		e to Connect classroom teaching with the laboratory practical		K3	
		e to Improve understanding about safety in the laboratory		K4	
CO4		1 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6			
CO4 CO5		e to evaluate and write the report based on results		K6	
CO4 CO5	Student would be able	e to evaluate and write the report based on results e to Connect classroom teaching with the laboratory practical		K6 K3	

	Chemical Engineering Laboratory - IV: CEP4254 Mapping of Course Outcomes (COs) with Programme Outcomes (POs)											
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	2	1	-	2	-	-	-	2	1	1
CO2	3	2	2	-	-	-	-	-	-	1	1	2
CO3	3	2	1	1	-	1	-	-	-	1	2	
CO4	3	1	1	2	-	-	-	-	-	2	1	-
CO5	3	2	2	2	2	1	1	-	-	2	1	1

Semester VI Page 115 of 185

Integrated Master of Technology, Chemical Engineering (Major) and MDM ICT Marathwada Campus, Jalna

CO6	2	3	2	1	1	2	İ	İ	-	-	2	3
	3	S-Strong (Contribut	ion; 2-M	oderate (Contribut	ion; 1-L	ow Contr	ribution;			

Mapping o	Chemical Engineering Laboratory - IV: CEP4254 Mapping of Course Outcomes (COs) with Programme Specific Outcomes (PSOs)											
	PSO1 PSO2 PSO3 PSO4 PSO5											
CO1	2	3	2	3	1							
CO2	3	1	1	3	-							
CO3	1	2	3	1	2							
CO4	2	1	2	2	2							
CO5	2	1	2	2	2							
CO6	3	2	1	2	-							
3-Strong Contribution; 2-Moderate Contribution; 1-Low Contribution;												

Semester VI Page 116 of 185

		Semester VI			
	Course Code:	Course Title:	Cr	edits =	2
	CET4358	Chemical Project Economics	L	T	P
	Semester: VI	Total contact hours: 30	2	0	0
		List of Prerequisite Courses			
	Material and Energy E Engineering (CET4253)	Balance Calculations (CEP4151), Industrial Chemistry and reaction			
		List of Courses where this course will be prerequisite			
	Industrial Management (HUT4157), Chemical Process Development and Engineering (CET4451)			
	Descr	iption of relevance of this course in the Int. M. Tech. Program			
This o	course is required for the f	uture professional career			
		Course Contents (Topics and subtopics)	Reqd	. hour	š
1	on Project justification a design deliverables and t	d projects and global nature of projects; Impact of currency fluctuations and cash flows and Concepts of "Quality by Design" including typical understanding constructability, operability and maintainability during all ution. Meaning of Project Engineering, various stages of project		4	
2	Relationship between processes, sales expense estimation. Introduction	ice of a product and project cost and cost of production, EVA analysis. duction, monitoring of the same in a plant, Meaning of Administrative is etc. Introduction to various components of project cost and their to concept of Inflation, location index and their use in estimating plant rious cost indices, Relationship between cost and capacity.		4	
4	of finance, time value of alternative equipment of Depreciation concept, In	Equity ratio, Promoters' contribution, Shareholders' contribution, source money. Concept of interest, time value of money, selection of various or system based on this concept. Indian norms, EMI calculations, adian norms and their utility in estimate of working results of project, and its relevance to project.		4	
5	profit, profit before tax, c	ults of proposed project. Capacity utilization, Gross profit, operating orporate tax, dividend, Net cash accruals. Project evaluation: Cumulative -Even analysis, incremental analysis, various ratios analysis, Discounted		4	
6	•	election, Feasibility Report		4	
7	technical and non-technicontracts. Lump-sum T	Commissioning: milestones, Project execution as conglomeration of cal activities, contractual details. Contract: Meaning, contents, Types of Curnkey (LSTK), Eng, Procurement and Construction (EPC), Eng, action Management (EPCM). Mergers and Acquisitions		4	
8		ets and evaluation of Techno-commercial Project Reports.		2	
9	PERT, CPM, bar charts a			4	
	· · · · · · · · · · · · · · · · · · ·	Total		30	
	<u> </u>	List of Textbooks/ Reference Books	<u> </u>		
1	Chemical Project Econor	nics, Mahajani V. V. and Mokashi S M.			
2	· ·	nics for Chemical Engineers, Peters M. S., Timmerhaus K.D.			
3	_	nent Cost Estimation, Kharbanda O.P.			
		Course Outcomes (students will be able to)			
CO1	Calculate working capita	l requirement for a given project		K4	
CO2	Calculate cost of equipm	ent used in a plant total project cost		K4	
CO3	Calculate cash flow from			K4	
CO4		ct from given alternatives		K3	
CO5		es related to project concept to commissioning		К3	
CO6		ent and treatment of risk in project evaluation and understand how		K5	

Semester VI Page 117 of 185

K1: Remembering, K2: Understanding, K3: Applying, K4: Analyzing, K5: Evaluating, K6: Creating

	Chemical Project Economics: CET4358 Mapping of Course Outcomes (COs) with Programme Outcomes (POs)											
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	1	1	-	2	3	1	-	-	1	1	-
CO2	3	1	2	1	2	3	2	-	-	2	2	2
CO3	3	-	1	1	2	1	1	-	-	1	1	-
CO4	1	-	2	-	2	-	3	-	-	-	2	-
CO5	-	1	2	1	-	-	-	-	-	1	1	-
CO6	3	1	2	1	2	3	2	-	-	1	2	1
	3-Strong Contribution: 2-Moderate Contribution: 1-Low Contribution:											

Mapping	Chemical Project Economics: CET4358 Mapping of Course Outcomes (COs) with Programme Specific Outcomes (PSOs)											
	PSO1	PSO2	PSO3	PSO4	PSO5							
CO1	1	2	3	1	-							
CO2	2	2	2	2	1							
CO3	2	3	3	1	-							
CO4	1	2	2	3	1							
CO5	-	2	3	1	-							
CO6	2	2	3	1	1							
3-5	Strong Contribution; 2	2-Moderate Contr	ibution; 1-Low Co	ontribution;								

Semester VI Page 118 of 185

		Semester VI			
	Course Code:	Course Title:	Cr	edits =	= 2
	CEP4373	IPT	L	T	P
	Semester: VI	Total contact hours: 40	0	0	0
		List of Prerequisite Courses		•	
	All				
		List of Courses where this course will be prerequisite			
	All				
	Des	scription of relevance of this course in the Int. M. Tech. Program			
	course enables students neering Principles	to integrate all the subjects that they have learnt and design plants / Proce	ess froi	n Chei	mical
		Course Contents (Topics and subtopics)	Reqd	. hour	s
1	IPT			40	
		Total		40	
		List of Textbooks/ Reference Books			
1					
		Course Outcomes (students will be able to)			
CO1	Identify market require	ement related to a particular chemical		K2	
CO2	Draw a process block	diagram from a given process description		K5	
CO3	Select a site for the pro	oject		K3	
CO4	Develop a PFD based	on block diagram		K5	
CO5	Do material and energ	y for all the equipment in PFD		K5	
CO6	Students will be know presenting problems a	ledgeable about the application of IPT theory and practice with a variety of nd groups.		K6	
K1: F	Remembering, K2: Under	erstanding, K3: Applying, K4: Analyzing, K5: Evaluating, K6: Creating			

	IPT: CEP4373 Mapping of Course Outcomes (COs) with Programme Outcomes (POs)											
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	-	3	2	1	1	2	2	1	-	1	3	2
CO2	3	2	1	2	-	1	2	-	-	1	2	1
CO3	-	1	1	2	1	1	-	-	2	2	1	2
CO4	3	1	2	1	1	2	1	-	-	1	2	3
CO5	2	2	1	2	1	2	3	-	-	2	3	2
CO6	3	2	2	2	1	2	2	1	2	1	3	2
3-Strong Contribution; 2-Moderate Contribution; 1-Low Contribution;												

IPT: CEP4373 Mapping of Course Outcomes (COs) with Programme Specific Outcomes (PSOs)										
	PSO1	PSO2	PSO3	PSO4	PSO5					
CO1	3	2	2	1	-					
CO2	3	2	1	2	-					
CO3	3	3	2	2	-					
CO4	2	2	2	1	3					

Semester VI Page 119 of 185

Integrated Master of Technology, Chemical Engineering (Major) and MDM ICT Marathwada Campus, Jalna

CO5	2	1	2	3	3		
CO6	3	2	2	3	3		
3-Strong Contribution; 2-Moderate Contribution; 1-Low Contribution;							

Semester VI Page 120 of 185

Fourth Year

Semester-VII

Semester-VII Page 121 of 185

		Semester VII			
	Course Code:	Course Title:	Cr	edits =	3
	CET4451	Chemical Process Development and Engineering	L	T	P
	Semester: VII	Total contact hours: 45	2	1	0
		List of Prerequisite Courses			
	(EST4154), Material (CET4251), Heat Tran Chemistry and Reaction Process Safety (CET4 Reaction Engineering (CET4354), Separation Chemical Project Eco	CHT4151 and CHT4152), Introduction to Chemical Engineering Balance and Energy Balance Calculations (CEP4151), Fluid Flow Insfer (CET4252), Engineering Thermodynamics (EST4155), Industrial In Engineering (CET4253), Chemical Engineering Operation (CET4254), 4255), Instrumentation and Process Dynamics (CET4256), Chemical (CET4351), Momentum Transfer (CET4352), Chemical Process Control In Process (CET4356), Heat Transfer Equipment Design (CET4357), Insmomics (CET4358) Material Science and Engineering (CEP4151), to (HUT4157), Biochemical Engineering (Hon.)			
	I ~	List of Courses where this course will be prerequisite	I		
		Management (CET4452), Chemical Process Equipment Design and Biochemical Engineering (Hon.)			
	_	ription of relevance of this course in the Int. M. Tech. Program			
		hemical engineering and allied subjects for appropriate design of process	s plants	, in sele	ection
		Course Contents (Topics and subtopics)	Reqd.	hours	
1	Development of a preli	iminary Process System: Modular approach		2	
2	Multiple process synthe	esis, selection of process, basic economic evaluation		2	
3	Sequencing of operation	ons and integration in processes		2	
4	Batch vs continuous vs	2			
5	Process Engineering development.	aspects of low and medium volume chemicals including process		4	
6	Concept of dedicated a	and multiproduct plant facilities, pilot plant, mini plants		2	
7	Development and evalu	uation of alternative flow sheets		2	
8	Scale up aspects; identi	ification of controlling steps of process,		4	
9	Green Engineering prin	nciples		3	
10	Utilization of energy; of	cost of utilities, heat exchange networks		4	
11	Process intensification			4	
12	Preparation of Concept	tual process and instrumentation diagrams		4	
13	Preparation of process	specifications for typical equipment.		4	
14	Safety and Risk of cher	mical processes		4	
15	Learn from mistakes			2	
		Total		45	
	<u>, </u>	List of Text Books/ Reference Books			
1		ocess Design, D. L. Erwine			
2		Process Development, Anderson N.			
3	Organic Unit Processes				
4		ineering: Design and Economics, Silla H.			
5		l Process Development, Chandalia S. B.			
6	Conceptual Chemical I	Plant Design, Douglas J. M.			
	T	Course Outcomes (students will be able to)	ı		
CO1	To select a strategy for	a process from amongst the alternatives		K2	

Semester VII Page 122 of 185

CO2	Determine strategy for carrying out a particular process; Apply knowledge: Use knowledge of mathematics, science, and engineering to design systems, components, or processes that meet needs while considering realistic constraints	K4				
CO3	Prepare specifications for a particular equipment; Conduct experiments: Design and conduct experiments, and analyze and interpret data	K4				
CO4	Calculate utility requirements; Work in teams: Function effectively on multi-disciplinary teams	K6				
CO5	Develop sustainable innovations: Use research skills to develop sustainable innovations in interdisciplinary areas	K6				
CO6	Develop managerial skills: Acquire essential managerial skills and ethical values to become leaders and team players	K6				
K1: Re	K1: Remembering, K2: Understanding, K3: Applying, K4: Analyzing, K5: Evaluating, K6: Creating					

	Ma				_		_	ng: CET4		s)		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	-	1	1	2	1	2	-	-	2	2	1
CO2	3	1	2	1	1	2	1	-	-	3	3	2
CO3	2	1	2	2	1	1	2	-	-	1	2	-
CO4	3	-	1	1	2	1	-	-	-	2	1	1
CO5	3	1	2	1	2	1	2	-	-	3	2	1
CO6	2	3	2	1	2	-	-	-	-	2	3	1
	3	S-Strong	Contribu	tion; 2-M	Ioderate (Contribut	tion; 1-L	ow Contr	ibution;	•		•

	Chemical Process D f Course Outcomes	_			
	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	2	1	-
CO2	2	2	3	2	1
CO3	1	2	3	3	2
CO4	-	2	3	3	3
CO5	2	2	3	3	2
CO6	-	1	2	2	2
3-St	rong Contribution; 2	-Moderate Contri	ibution; 1-Low Co	ontribution;	

Semester VII Page 123 of 185

		Semester VII			
	Course Code:	Course Title:	Cr	edits =	2
	CET4452	Chemical Industrial Management	L	T	P
	Semester: VII	Total contact hours: 30	2	0	0
		List of Prerequisite Courses			•
	Chemical Process De (HUT4157)	velopment and Engineering (CET 4451), Industrial Management			
		List of Courses where this course will be prerequisite			
	NA				
	Descr	iption of relevance of this course in the Int. M. Tech. Program			
This c	ourse integrates all chemi	cal industrial process and their management.			
	-	Course Contents (Topics and subtopics)	Reqd	. hours	s
1	Basics of management			3	
	The eras of managemen	t			
	Mission and vision of or	rganizations			
2	Micro organizational be	haviour		5	
	Psychoanalytical framev				
	Common personality tra				
	Hofstede cultural dimen				
3	Employee Recruitment	and Selection		6	
	Concept of Role				
	Job description and man	•			
	Some methods of recrui Selection methods	tment			
4				5	
4	Employee performance MBO			3	
	Appraisal methods				
	Review meetings				
5	Employee motivation			5	
	Employee predisposition	n to motivation			
	Goal setting				
	Recent motivation theor	ies			
	How to motivate trouble	e spots			
6	Group dynamics.			6	
	Theories of group forma	ation			
	Pitfalls of a group				
	Conflicts	m.,		20	
	T • 4	Total		30	
_		of Text Books/Additional Reading Material / Reference Books			
1		gement (15e) - Gary Dessler, Biju Varrkey gement(15e)-Robbins			
2	Select HBR articles				
3	Industrial/Organizationa	al Psychology: An Applied Approach- Michael Aamodt			
	,	Course Outcomes (students will be able to)			
CO1	Student would be able to	o understand the process of corporate recruitment.		K2	
CO2	Student would be able to	o use the information while applying for jobs		К3	
CO3	Student would be able to	o gain knowledge on how to perform well in an interview process.		K3	
CO4	Student would be able performance is measure	to gain knowledge on how goals are set in any organization and d.		К3	

Semester VII Page 124 of 185

CO5	Student would be able to learn basic management concepts and laws, marketing skills, and how to prepare policy documents. They can also learn how to manage human resources in industry, including understanding human psychology, attitudes, morals, and stress limits.	K5
CO6	Students would be able to learn how to produce industrial acids, bases, gases, cement, glass, soaps, pulp, paper, sugar, industrial alcohol, paint, dyes, and fertilizers. They can also learn about process flow diagrams, process parameters, and how to identify and solve engineering problems during production.	K6
K1: Re	emembering, K2: Understanding, K3: Applying, K4: Analyzing, K5: Evaluating, K6: Creating	

	Chemical Industrial Management: CET4452 Mapping of Course Outcomes (COs) with Programme Outcomes (POs)											
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	-	-	2	1	-	-	-	3	1	2	2	1
CO2	-	-	2	2	-	-	ı	3	2	1	3	2
CO3	-	-	1	1	-	1	-	2	1	2	1	1
CO4	-	-	1	1	-	1	1	2	1	2	2	2
CO5	-	-	2	1	-	1	ı	3	1	2	2	2
CO6	-	-	2	3	-	3	3	2	3	2	3	2
	3	S-Strong	Contribu	tion; 2-M	Ioderate (Contribut	ion; 1-L	ow Contr	ribution;			

Map	Chemical In ping of Course Outc		ement: CET4452 Programme Ou		
	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	2	1	-	-
CO2	2	3	2	2	1
CO3	2	3	2	1	-
CO4	2	2	3	2	1
CO5	2	3	2	1	1
CO6	2	2	3	1	2
3-5	Strong Contribution; 2	2-Moderate Contr	ibution; 1-Low Co	ontribution;	•

Semester VII Page 125 of 185

	Semester VII					
Course Code:	Course Title:	Credits = 4				
CETXXX	Chemical Engineering Elective V: Environmental Engineering and Chemical Process Safety	L	T	P		
Semester: VII	Total contact hours: 60	3	1	0		
	List of Prerequisite Courses					
Engineering (CET4351) (CET4352), Biochemica	Energy Balance Calculations (CEP4151), Chemical Reaction, Chemical Engineering Operations (CET4254), Momentum transfer al Engineering, Chemical Engineering Thermodynamics (EST4353), 55), Environmental Sciences (CET4258), Biochemical Engineering					
	List of Courses where this course will be prerequisite					
Biochemical Engineerin	g (Hon.)					
Descr	iption of relevance of this course in the Int. M. Tech. Program					

The course 'Environmental Engineering and Process Safety' is highly relevant in all fields of activities, and process industry. The above clearly highlights the necessity and significance of the course. This course will certainly add value to our chemical engineering graduates.

A chemical engineer working in any function of process industry should have working knowledge of all the prevailing safety, environment, and health standards, and may be involved in / responsible for any or all of the following:

- site process safety, environmental affairs
- assisting the Health Safety Environment (HSE) team
- employee safety observations and pre-job risk assessments
- implementation of HSE policies and guidelines to help ensure that all employees, contractors, and visitors enjoy high levels of safety, health and environmental protection; this reduces company's liability exposure.
- improvement of process safety performance and reduction of risk by facilitating Process Hazard Analyses Layer of Protection Analyses
- incident investigations for process safety and environmental incidents
- recognising information that would be pertinent to process safety documentation and follow through with site personnel to ensure information is well documented
- developing and updating site Policies and Procedures related to process safety and environmental.
- capital and other project teams to identify and resolve regulatory issues, analyse process and property hazards, and establish protective measures to mitigate risks to a tolerable level.
- assisting the plant with government interfaces and inspections.
- training using internal and external resources; provides guidance to site management for implementation of programs or controls to comply with environmental requirements.
- managing site environmental programs including but not limited to waste management, spill prevention & response, etc.
- preparation and submission of reports to appropriate agencies to assure compliance with federal, state and local regulations. Responds to corporate requests in a timely manner.
- obtaining new or revised environmental permits that provide operational flexibility within the schedule established for new projects. Ensure that the operating units can meet all provisions and provide tools to enable compliance.
- providing environmental guidance; develop procedures and training, and HSE support as needed.
- participate in site objectives in the areas of community relations.

	Course Contents (Topics and subtopics)	Reqd. hours
1	Introduction to all prevailing international standards of Health, Safety, and Environment (HSE); Environmental laws and regulations; Standards (air quality, noise, water), ISO 14000+	4
2	Environmental impact assessment, Life cycle assessment (LCA)	4
3	Pollution prevention in chemical manufacturing, effluent valorisation	4
4	Air pollution; Air pollutants: sources (specific pollutants), effects, and dispersion modelling, air pollution, air quality, pollutants minimisation and control, fugitive emissions (source and control),	4
5	Noise pollution	6

Semester VII Page 126 of 185

6	Wastewater treatment; Groundwater and surface water pollution, removal of specific water contaminants; Solid waste; Hazardous waste	8
7	Inherent safety; Major disasters (e.g. Flixborough, UK; Bhopal, India; Seveso, Italy; Pasadena, Texas; Texas City, Texas; Jacksonville, Florida; Port Wentworth, Georgia)	6
8	Toxicology; Industrial hygiene	4
9	Source models; Toxic release and dispersion models	4
10	Fires and explosions; Concepts to prevent fires and explosions	2
11	Chemical reactivity	4
12	Reliefs and reliefs sizing; Hazard identification; Risk assessment	4
13	Safety procedures and designs	4
15	Some case histories	2
	Total	60
	List of Text Books/ Reference Books	
1	Chemical Process Safety: Fundamentals with Applications: Daniel A. CROWL and Joseph F. LOUVAR	
2	Guidelines for Process Safety Management, Environment, Safety, Health, and Quality: Center for the Chemical Process Safety of the American Institute of Chemical Engineers (AIChE)	
3	Environmental Engineers' Handbook: Irene LIU (Editor)	
4	Chemical Process Safety Learning from Case Histories: Roy E. SANDERS	
5	Guidelines for Process Safety Documentation: Center for the Chemical Process Safety of the American Institute of Chemical Engineers (AIChE)	
6	Environmental and Health and Safety Management: A Guide to Compliance: Nicholas P. CHEREMISINOFF, Madelyn L. GRAFFA	
7	Environmental Pollution Control Engineering: C. S. Rao	
8	Environmental Engineering: H. S. Peavy	
	Course Outcomes (students will be able to)	
CO1	Calculate BOD / COD for a given composition of effluent stream, Estimation of bio-Kinetics	K5
CO2	Calculate adiabatic lapse rate and determine conditions for suitability of atmospheric dispersion, effective stack height, chimney design	K5
CO3	Calculate concentrative of pollutant at any point in the neighbourhood of emission given atmospheric conditions like wind, dispersion, environmental factors etc.	K5
CO4	Calculate size/time/power required for primary clarifier, secondary treatment, tertiary treatment, sizing of different types of biological treatments etc.	K5
CO5	Identify hazards in a given process and assess the same and provide solutions for operating safely.	K4
CO6	Specify safety requirements for storage and handling of a given chemical.	K2
K1: R	emembering, K2: Understanding, K3: Applying, K4: Analyzing, K5: Evaluating, K6: Creating	

Chemical I	Chemical Engineering Elective V: Environmental Engineering and Chemical Process Safety: CETXXX Mapping of Course Outcomes (COs) with Programme Outcomes (POs)									X		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	1	1	2	2	3	1	3	-	1	-
CO2	3	1	1	1	1	1	1	-	2	-	2	-
CO3	2	1	1	1	2	1	1	-	3	-	1	-
CO4	2	1	1	1	2	2	2	-	3	-	1	-
CO5	1	2	1	-	-	2	1	-	3	-	2	-

Semester VII Page 127 of 185

Integrated Master of Technology, Chemical Engineering (Major) and MDM ICT Marathwada Campus, Jalna

CO6	1	2	2	1	1	1	1	-	2	-	1	-
	3	-Strong (Contribut	ion; 2-M	loderate (Contribut	ion; 1-L	ow Conti	ribution;			

Mapping	of Course Outcomes	(COs) with Prog	gramme Specific (Outcomes (PSOs)	
	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	1	2	3	3	-
CO2	2	1	2	3	1
CO3	1	2	3	3	-
CO4	1	3	3	3	
CO5	2	2	2	2	-
CO6	3	2	1	1	-

Semester VII Page 128 of 185

	Semester VII							
Course Code:	Course Title:	Credits =		= 2				
CEP4451	Chemical Process Equipment Design & Drawing	L	T	P				
Semester: VII	Total contact hours: 60	0	0	4				
	List of Prerequisite Courses							
	T4151), Materials Science and Engineering, Engineering Graphics oject Economics (CET4358), Chemical Process Development and							
	List of Courses where this course will be prerequisite							
NA	NA							
Descri	ption of relevance of this course in the Int. M. Tech. Program							

Knowledge of chemicals and chemical producing equipment and plants are essential for professional Chemical engineer and Technologist. This subject will help students to understand use of basics of applied science in the form of mechanics, strength of materials, selection of materials and suitable manufacturing techniques and the details of operating conditions of equipment and its design procedure. This will help Chemical engineer to understand process equipment and their design concept and section of proper equipment for the designed functions of the plats. It will help them to understand various design codes used for fabrication of these equipment and the various types of destructive and non-destructive tests performed on equipment before and after assembly of equipment defining its capacity, reliability, and its life

equip	ment before and after assembly of equipment defining its capacity, reliability, and its life.	
	Course Contents (Topics and subtopics)	Reqd. hours
1	Basic design concepts, use of standards and design stresses and factor of safety, selection of materials, working conditions, corrosion and its effects on equipment's. Standard design codes	6
2	Design of pressure vessels: stresses acting on pressure vessels, operating conditions, selection of materials, pressure vessel codes, design stress and design criteria's, Design of Shell, Head, Nozzle, Flanged joints for heads and nozzles	6
3	Design of Storage vessels: Storage of various types of fluids and liquids in tanks, Loss mechanism of storage of volatile and non-volatile liquids and gases, Types of storage vessels, Vessels for storing of gases, method of storage of gases, Design of rectangular and cylindrical tank with components such as shell, bottom plate, self-supporting roof design, types of roofs,	6
4	Testing of process equipment, various	4
7 8	Mechanical Design of Reaction Vessels. Design of shells subjected to internal and external pressures. Types of Jackets /Coils used for heating and cooling in reaction vessels and their design. Type of agitators and their design. Design of agitator system components such as shafts, stuffing box etc. Mechanical Design of Heat Exchangers Components of shell and tube type heat exchangers. Design of various components of heat exchangers such as Fixed tube sheet type, U tube, Floating head etc. Various codes for heat exchangers. Mechanical design of distillation columns Various components of columns such as trave, packings, downcomers, bubble can etc.	12
	Various components of columns such as trays, packings, downcomers, bubble cap etc Design of shell for various stress conditions. Tray supports and their design	
	Total	60
	List of Text Books/ Reference Books	
1	Process equipment Design By V V Mahajani, S. B. Umarji	
2	Equipment Design by Dawande	
3	Process equipment Design by Young	
4	Welding Technology by O.P. Khanna, Welding Technoloy by Little	

Semester VII Page 129 of 185

	Course Outcomes (students will be able to)						
CO1	Understand general design procedure for chemical process equipment.	K2					
CO2	Design and draw pressure vessels and its parts subjected to internal pressure.	K6					
CO3	Design and draw reactors and its parts subjected to internal and external pressure.	K6					
CO4	Design and draw shell and tube type of heat exchangers.	K6					
CO5	Design and draw tray columns and its parts.	K6					
CO6	Understand different types of supports for chemical process equipment.	K2					
K1: R	K1: Remembering, K2: Understanding, K3: Applying, K4: Analyzing, K5: Evaluating, K6: Creating						

	Chemical Process Equipment Design & Drawing: CEP4451 Mapping of Course Outcomes (COs) with Programme Outcomes (POs)											
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	1	1	2	3	3	-	-	1	1	1
CO2	3	1	1	2	2	3	3	-	-	2	2	2
CO3	3	1	2	1	1	2	2	-	-	1	1	1
CO4	3	1	1	1	2	2	3	-	-	2	2	-
CO5	2	1	1	-	2	2	2	-	-	1	2	-
CO6	-	-	-	-	1	1	1	-	-	1	2	2
	3	S-Strong	Contribu	tion; 2-M	Ioderate (Contribut	tion; 1-L	ow Contr	ribution;			

	Chemical Process Equipment Design & Drawing: CEP4451 Mapping of Course Outcomes (COs) with Programme Specific Outcomes (PSOs)									
	PSO1	PSO2	PSO3	PSO4	PSO5					
CO1	3	2	3	1	-					
CO2	1	2	3	3	1					
CO3	2	3	3	2	2					
CO4	1	2	3	3	3					
CO5	2	3	2	2	2					
CO6	3	1	-	1	-					
3-S	trong Contribution; 2	2-Moderate Conti	ibution; 1-Low Co	ontribution;						

Semester VII Page 130 of 185

	1	Semester VII	1			
	Course Code:	Course Title:	C	redi	ts =	2
	CEP4452	Literature Review (Research Methodology: I)	L	T		P
	Semester: VII	Total contact hours: 30	1	0		2
		List of Prerequisite Courses				
	NA					
		List of Courses where this course will be prerequisite				
	Design and Analysis and CEP4475)	Experiments (CEP4453), Design Project - I (CEP4461), Thesis (CEP4474				
	Des	scription of relevance of this course in the Int. M. Tech. Program				
variou critica	is activities, document il for polishing the naïv	ous elements of research methods such as problem formulation, literature ation, budgeting, purchase, report/thesis compilation, manuscript writing e research attitude and aptitude in the PG students of the programme. The oncepts of research methodology in stepwise manner to the students.	g, pate course	nt dr is de	afti sigi	ng, i
		Course Contents (Topics and subtopics)	R	eqd.	hou	ırs
1	Introduction of Cours	e		3		
	Academic Honesty Pr					
		f science & Arguing About Knowledge				
	Case studies in science					
2	Motivation and Back			3		
	research papers	ation for Research, Building Background for Research and How to read				
3	Energy Management	Academic and Non-academic time), Effort Management, Plan execution, Issue, Role and expectation of research supervisor and student		4		
4	experiments. Literature survey, Tell How to ask Questions	ow to start? Approaches to find research problems and psychological atbooks, Review, and research papers		4		
5	Finding and Solving What is Research, h experiments. Literature survey, Te.			4		
6	What is worthwhile re How to solve researc	esearch problem, Analytical and synthetic research approaches? th problems, designing work plan, importance of objectives, activity and work. Design of timeline for work plan (Gnatt Chart etc.), Grant Writing		4	•	
7	Learning required ski	ch, Inventory Management, Material Management Ils for research, Documentation and lab notebook guidelines, mical/biological research		4	-	
8	Methods and Tools u organization; Descrip Questionnaire, Opini	nsed in Research: Qualitative studies; Quantitative studies; Simple data stive data analysis; Limitations and sources of error; Inquiries in form of onnaire or by interview; Statistical analysis of data including Variance, tudents 't' test and Analysis of variance (ANOVA), Correlation data and		6	į	
9	discussion, Macro-lev	ments. General issues of presentability. Micro-level discussion.		6		

Semester VII Page 131 of 185

Examples of bad and good writings.

10	Publishing and Reviewing	4
	Publication process, how to publish papers, where to submit, Review process and reacting to a	
	review report.	
	Reviewing scientific papers	
11	Scientific Norms and Conventions	3
	Authorship.	
	Plagiarism. Simultaneous submissions. Reviewing norms. Referring to other papers. Use of data. Collaborative Research Work	
	Total	30
	List of Textbooks/ Reference Books	
1	Menzel, D.; Writing a Technical Paper; McGraw-Hill, United States (1961).	
2	Best, J. W., Kahn, J. V., Jha, A. K.; Research in Education; 10th ed.; Pearson, New Delhi, India (2005)	
	Course Outcomes (students will be able to)	
CO1	Understand the basic concepts of research and the components therein, formally	K2
CO2	Understand and appreciate the significance of statistics in Chemical Technology, Pharmacy and Chemical Engineering	K2
CO3	Understand and apply importance of literature survey in research design and understand an indepth knowledge on the documentation in research	К3
CO4	Evaluate importance of various parts of a research report/paper/thesis in presentation of research results	K5
CO5	Understand the significance of several types of IPRs in research	K1
CO6	Create a model research project	K6
K1: Re	emembering, K2: Understanding, K3: Applying, K4: Analyzing, K5: Evaluating, K6: Creating	

	Literature Review (Research Methodology: I): CEP4452 Mapping of Course Outcomes (COs) with Programme Outcomes (POs)											
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	-	2	3	1	-	-	2	-	-	3	1	-
CO2	2	3	2	1	-	-	1	-	-	2	1	-
CO3	-	3	3	-	1	-	1	-	-	3	2	-
CO4	-	3	3	2	-	-	2	-	-	3	2	-
CO5	2	2	2	2	1	-	1	-	-	3	2	-
CO6	2	3	2	1	1	1	1	1	-	2	1	-
	3	S-Strong	Contribu	tion; 2-M	Ioderate (Contribut	tion; 1-L	ow Contr	ibution;			

	Literature Review (Research Methodology: I): CEP4452 Mapping of Course Outcomes (COs) with Programme Specific Outcomes (PSOs)									
	PSO1	PSO2	PSO3	PSO4	PSO5					
CO1	3	2	3	-	-					
CO2	3	1	2	-	-					
CO3	2	2	2	-	-					
CO4	3	2	2	2	-					
CO5	2	2	1	3	1					
CO6	1	2	2	3	1					
3-Stro	ong Contribution; 2	-Moderate Contr	ibution; 1-Low Co	ontribution;						

Semester VII Page 132 of 185

	Semester VII			
Course Code:	Course Title:	Cro	edits	= 2
CEP4453	Design and Analysis of Experiments (Research Methodology: II)	L	Т	P
Semester: VII	Total contact hours: 30	1	0	2
·	List of Prerequisite Courses			
Literature Review (CE	P4452), Applied Mathematics I (MAT4151 and MAT4152)			
	List of Courses where this course will be prerequisite			
	for graduating engineers to function effectively in Industry, Academia, and eres. This course is in Semester VIII			
Desc	rintion of relevance of this course in the Int. M. Tech. Program			

Description of relevance of this course in the Int. M. Tech. Program

Modern day manufacturing activities and R&D activities need decisions taken with a scientific rigor and should be wellsupported by 'statistics. Chemical engineering graduates who will serve industry as well as postgraduate research students who will serve industry, R&D organizations, or academic research should have a good background of statistical decision making. This also involves extraction of meaningful data from well-designed minimal number of experiments at the lowest possible material costs. This course will also help the students in all domains of their life by imparting them a vision for critical appraisal and analysis of data.

Citical	appraisal and analysis of data.	D 1 1
	Course Contents (Topics and subtopics)	Reqd. hours
1	Fundamental principles of classical design of experiments Strategy of Experimentation, Typical applications of Experimental design, Basic Principles, Guidelines for Designing Experiments.	4
2	Review of Probability and basic statistical inference: Concepts of random variable, probability, density function cumulative distribution function. Sample and population, Measure of Central tendency; Mean median and mode, Measures of Variability, Concept of confidence level. Statistical Distributions: Normal, Log Normal & Weibull distributions, Hypothesis testing.	3
3	Experiments with a Single Factor: The Analysis of Variance Fixed effect model and Random effect model, Model adequacy checking, Contrasts, Orthogonal contrasts, Regression Models and ANOVA, Violation of Normality Assumption: Kruskal-Wallis test. Randomized block designs, Latin square designs, Balanced Incomplete Block Designs	6
4	Factorial designs: Definition, estimating model parameters, Fitting response curves and surfaces.	3
5	The 2 ^k Factorial Design, Blocking and Confounding in the 2k Factorial Design; Focus of 2 ² and 2 ³ designs, Blocking and Confounding in the 2 ^k Factorial Design.	6
6	Plackett Burman methods, Central Composite Design (CCD)	3
7	Descriptive Statistics, Probability Distribution and testing of Hypothesis using R	4
8	Regression techniques, diagnostic checks, ANOVA using R and implementation of contrasts.	4
9	Construction of Balanced Incomplete Block Designs and data analysis using R	4
10	Analysis of factorial designs using R, understanding output and interpretation.	4
11	Factorial designs, Data analysis and interpretation.	4
	Total	30
	List of Text Books / Reference Books	
1	Douglas C. Montgomery, Design and Analysis of Experiments, 8 th Edition, John Wiley & Sons, Inc. 2013	
2	Box, G. E., Hunter, W.G., Hunter, J.S., Hunter, W.G., Statistics for Experimenters: Design, Innovation, and Discovery, 2nd Edition, Wiley, 2005.	
3	John Lawson, Design and Analysis of Experiments with R, CRC Press, 2015	
4	Dieter Rasch, Jürgen Pilz, Rob Verdooren, Albrecht Gebhardt Optimal Experimental Designs with R. CRC Press, 2011.	
5	José Unpingco, Python for Probability, Statistics, and Machine Learning, Springer, 2019	
6	Response Surface Methodology: Process and Product Optimization using Designed Experiments: R. H. Myers, D. C. Montgomery.	

Semester VII Page 133 of 185

7	Introduction to Statistical Quality Control: D. C. Montgomery.					
8	Design of Experiments in Chemical Engineering: Živorad R. Lazić.					
Course Outcomes (students will be able to)						
CO1	Students should be able to understand basic principles of design of experiments.	K2				
CO2	Students should be able to perform statistical analysis of single experiments and do post hoc analysis.	K4				
CO3	Students should be able to conduct experiment and analyze the data using statistical methods.	K5				
CO4	Students should be able to choose an appropriate design given the research problem.	K4				
CO5	Students should be able to perform statistical analysis of different designs using R and interpret the results.	K6				
CO6	Students should be able to identify and apply the basic principles of experimental design, including randomization, replication and control.	K4				
K1: Re	emembering, K2: Understanding, K3: Applying, K4: Analyzing, K5: Evaluating, K6: Creating					

	Design and Analysis of Experiments (Research Methodology: II): CEP4453 Mapping of Course Outcomes (COs) with Programme Outcomes (POs)											
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	1	1	1	2	2	2	-	-	2	1	-
CO2	3	1	2	1	1	1	2	-	-	3	2	-
CO3	3	2	1	-	2	2	1	-	-	2	1	-
CO4	1	1	1	1	-	1	1	-	-	3	1	-
CO5	3	1	2	1	1	2	1	-	-	3	1	-
CO6	3	1	1	1	2	2	2	-	-	3	1	-
	3-Strong Contribution; 2-Moderate Contribution; 1-Low Contribution;											

_	nd Analysis of Expo Course Outcomes				
	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	2	1	2	-
CO2	2	2	2	1	-
CO3	2	1	2	1	-
CO4	3	1	2	1	-
CO5	1	2	3	2	-
CO6	3	2	2	2	-
3-Str	ong Contribution; 2	-Moderate Contri	bution; 1-Low Co	ontribution;	

Semester VII Page 134 of 185

		Semester VII			
	Course Code:	Course Title:	Cr	edits =	- 4
	CEP4461	Design project: I	L	T	P
	Semester: VII	Total contact hours: 120	0	0	8
		List of Prerequisite Courses			
	All				
		List of Courses where this course will be prerequisite			
	Home Paper II				
	Descr	ription of relevance of this course in the Int. M. Tech. Program			
	course enables students to seering Principles.	integrate all the subjects that they have learnt and design plants / process	ses fro	m Che	mical
		Course Contents (Topics and subtopics)	Reqd	. hours	S
	report. Every student will made during the semest Material and Energy Bal examiners. There will be	ation. The design will have to be submitted in the form of a standard-type ll be orally examined. The student will be assessed based on the progress er. There would be two submissions: (i) Process selection and PFD, (ii) lance. The submissions will be presented to a panel of faculty members / e a weightage of 60% for the submissions and 40% for the presentation. be given to the students from time to time by the coordinator.			
		Total		120	
		List of Text Books/ Reference Books			
	T	Course Outcomes (students will be able to)	1		
CO1	•	nent related to a particular chemical		K2	
CO2		agram from a given process description.		K6	
CO3	Select a site for the proje			K5	
CO4	Develop a PFD based or			K6	
CO5	Do material and energy	for all the equipment in PFD.		K6	
CO6	Identify needs and const	raints of product development system and create a prototype model 5.		K6	
K1: R	temembering, K2: Unders	standing, K3: Applying, K4: Analyzing, K5: Evaluating, K6: Creating			

	Design project: I: CEP4461 Mapping of Course Outcomes (COs) with Programme Outcomes (POs)											
	PO1	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12										
CO1	3	1	2	2	3	2	-	-	-	1	1	-
CO2	3	2	2	1	2	1	2	1	2	2	2	-
CO3	-	-	2	-	1	1	2	-	-	1	1	-
CO4	3	2	2	1	2	2	1	-	2	2	2	-
CO5	2	1	1	2	1	1	2	-	-	3	2	-
CO6	3	2	2	2	2	1	2	1	2	3	2	-
	3	S-Strong	Contribu	tion; 2-M	Ioderate (Contribut	ion; 1-L	ow Contr	ibution;			

Design project: I: CEP4461 Mapping of Course Outcomes (COs) with Programme Specific Outcomes (PSOs)								
	PSO1	PSO2	PSO3	PSO4	PSO5			
CO1	2	2	3	3	2			

Semester VII Page 135 of 185

Integrated Master of Technology, Chemical Engineering (Major) and MDM ICT Marathwada Campus, Jalna

CO2	1	2	2	3	3
CO3	1	2	3	3	2
CO4	1	2	2	3	2
CO5	2	1	3	3	3
CO6	2	2	2	3	2
3-Stro	ng Contribution; 2	-Moderate Contri	bution; 1-Low Co	ontribution;	

Semester VII Page 136 of 185

Fourth Year

Semester-VIII

Semester-VIII Page 137 of 185

		Semester VIII			
	Course Code:	Course Title:	Cro	edits =	12
	CEP4474	IPT (4-6 Months)	L	T	P
	Semester: VIII	Total contact hours: 180	0	0	40
		List of Prerequisite Courses			
	All				
		List of Courses where this course will be prerequisite			
	All				
	Descr	iption of relevance of this course in the Int. M. Tech. Program			
	This course enables stude Process from Chemical E	ents to integrate all the subjects that they have learnt and design plants / Engineering Principles			
		Course Contents (Topics and subtopics)	Reqd	. hour	S
1	IPT			180	
		Total		180	
	T	List of Textbooks/ Reference Books	r		
	T	Course Outcomes (students will be able to)			
CO1	Identify market requirem	ent related to a particular chemical		K2	
CO2	Draw a process block dia	gram from a given process description		K6	
CO3	Select a site for the proje	ct		K5	
CO4	Develop a PFD based on	block diagram		K6	
CO5	Do material and energy f	or all the equipment in PFD		K6	
CO6	Students will be knowled presenting problems and	geable about the application of IPT theory and practice with a variety of groups.		K6	
K1: R	Remembering, K2: Underst	anding, K3: Applying, K4: Analyzing, K5: Evaluating, K6: Creating			

	Ma	pping of	Course		IPT: CE es (COs)		ogramm	e Outco	mes (PO	s)		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	-	3	2	1	1	2	2	1	-	1	3	2
CO2	3	2	1	2	-	1	2	-	-	1	2	1
CO3	-	1	1	2	1	1	-	-	2	2	1	2
CO4	3	1	2	1	1	2	1	-	-	1	2	3
CO5	2	2	1	2	1	2	3	-	-	2	3	2
CO6	3	2	2	2	1	2	2	1	2	1	3	2
	3	S-Strong	Contribu	tion; 2-M	Ioderate	Contribut	tion; 1-L	ow Contr	ribution;			

Mapping of C	ourse Outcomes	IPT: CEP4474 (COs) with Prog		Outcomes (PSOs)	
	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	2	3	3	3
CO2	3	3	2	2	2
CO3	2	2	2	3	2
CO4	1	2	3	2	1

Semester VIII Page 138 of 185

Integrated Master of Technology, Chemical Engineering (Major) and MDM ICT Marathwada Campus, Jalna

CO5	1	2	2	3	1			
CO6	2	2	3	3	2			
3-Stroi	3-Strong Contribution; 2-Moderate Contribution; 1-Low Contribution;							

Semester VIII Page 139 of 185

Fifth Year

Semester-IX

Semester-IX Page 140 of 185

	Semester IX			
Course Code:	Course Title:	Cr	edits =	: 3
CET4551	Advanced Transport Phenomena	L	T	P
Semester:	Total contact hours: 45	2	1	0
·	List of Prerequisite Courses			
MAT4151), Applied Physic	omentum Transfer (CET4352), Applied Mathematics (MAT4151 and es (PHT4151), Applied Chemistry (CHT4151), Chemical Engineering paration Processes (CET4356), Process Simulation Lab-I and II			
I	ist of Courses where this course will be prerequisite			
Multiphase Reactor Engine	ering (Hon.)			
Descript	ion of relevance of this course in the Int. M. Tech. Program			

This course introduces advanced concepts of momentum transfer and heat transfer to students. Various concepts such as pressure, momentum, energy, heat transfer, heat exchangers and their design are introduced. Laws related to conservation of momentum; energy are taught. Applications of these laws to various engineering situations and process equipment is explained with the help of several problems.

	Course Contents (Topics and subtopics)	Reqd. hours
1	Turbulent flow: basics, Reynolds average Navier-Stokes equations, closure problem, Boussinesques hypothesis, Prandtl mixing length theory, turbulence models, energy spectrum, turbulent boundary layer, universal velocity profile	10
2	Gas-liquid and solid-liquid fluidized beds: Characteristics of particles, Principle of fluidization and mapping of various regimes, two phase theory of fluidization, Bubbles in fluidized bed, Entrainment and Elutriation, Fast fluidized bed, Mixing, segregation and gas dispersion, Heat and mass transfer in fluidized bed, Solid-liquid fluidized bed and three phase fluidized bed, Design of fluidized bed reactors	10
3	Forced and natural convective heat transfer, analogies of momentum and heat transfer, Heat transfer with phase change	10
4	Design aspects of shell-and-tube heat exchangers (NTU-epsilon method; Bell-Delaware method), plate heat exchangers and spiral heat exchangers; Flow-stream analysis, Design of compact heat exchangers, Design aspects of condensers, reboilers, and evaporators	10
5	Radiation heat transfer concepts, Angle factor calculations, Radiation calculation through gases and vapors, design methods for furnaces.	5
	Total	45
	List of Textbooks/ Reference Books	
1	Transport Phenomena, R.B. Bird, W.E. Stewart, E.N. Lightfoot	
2	Transport Phenomena, R.S. Brodkey	
3	Momentum, Heat and Mass Transfer, Bennet and Myers	
4	Fluid Mechanics, Pijush K. Kundu	
5	Turbulent Flows: Fundamentals, Experiments and Modeling by G. Biswas, V. Eswaran	
6	Heat Transfer: Jack P. Holman	
	Course Outcomes (students will be able to)	
CO1	Calculate pressure drop in pipelines and equipment for different situations such as single- and two-phase flow, fixed and fluidized beds	К3
CO2	Describe and discuss equation of motion for turbulent flows	K2
CO3	Design various components of Heat transfer equipment	K5
CO4	Compare various heat transfer equipment and select an appropriate equipment for a particular situation	K5
CO5	Use information from balance equations to calculate engineering quantities like drag force, rate of heat and mass transfer, and pressure loss.	K4
CO6	Analyze transport problems in simple and complex geometries using simulation software.	K4

Semester IX Page 141 of 185

K1: Remembering, K2: Understanding, K3: Applying, K4: Analyzing, K5: Evaluating, K6: Creating

	Advanced Transport Phenomena: CET4551 Mapping of Course Outcomes (COs) with Programme Outcomes (POs)											
	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12											
CO1	3	2	2	1	-	1	1	ı	-	1	1	-
CO2	3	1	1	2	-	-	-	-	-	2	2	-
CO3	3	2	2	1	2	1	2	-	-	1	1	-
CO4	2	1	1	2	1	-	1	-	-	2	1	-
CO5	3	2	2	2	2	1	1	-	-	2	2	-
CO6	3	2	1	1	-	-	-	-	-	2	2	-
	3-Strong Contribution: 2-Moderate Contribution: 1-Low Contribution:											

Mapping of	Advanced T Course Outcomes	ransport Phenor (COs) with Prog		Outcomes (PSOs)								
	PSO1 PSO2 PSO3 PSO4 PSO5											
CO1	2	3	3	3	-							
CO2	1	2	2	3	-							
CO3	1	2	3	2	2							
CO4	1	1	2	2	1							
CO5	1	2	3	3	1							
CO6	2	3	2	2	1							
3-Str	ong Contribution; 2	-Moderate Contri	bution; 1-Low Co	ontribution;								

Semester IX Page 142 of 185

		Semester IX			
	Course Code:	Course Title:	Cr	edits =	= 3
	CET4552	Advanced Separation Processes	L	T	P
	Semester:	Total contact hours: 45	2	1	0
		List of Prerequisite Courses			
	Chemical Engineering C	Operation (CET4254), Separation Processes (CET4356)			
		List of Courses where this course will be prerequisite			
	Advanced Mass transfer	Operations (CET4554), Multiphase Reaction Engineering (Hon.)			
	Descr	ription of relevance of this course in the Int. M. Tech. Program			
		p on and in continuation with undergraduate level course on mass transf rocess such as membrane-based separation, adsorption, etc. are covered in			ation
		Course Contents (Topics and subtopics)	Rec	qd. ho	urs
1	Principles of azeotropic	cepts of Distillation, Design Aspects of multi-component distillation. and extractive distillation processes, Residue Curve Maps. Use of ternary c and extractive distillation. Designing separation strategy based on		9	
2	design aspects. Liquid- multiple feed streams us	pts of liquid extraction. Several types of extraction equipment and their liquid extraction; stage wise calculations for multicomponent with ing reflux and mixed solvents. Basic concepts and design calculations of asic concepts and calculations of separation factor for dissociation		12	
3	such as ultrafiltration,	Transport processes involved in various membrane separation processes nano-filtration, gas separation, reverse osmosis. Calculations of flux, sign aspects of various membrane processes such as ultrafiltration, nano, reverse osmosis.		12	
4		nange: Thermodynamic aspects of adsorption and ion exchange equilibria. d bed adsorption, ion exchange processes, analysis, and models for		12	
		Total		45	
		List of Textbooks/ Reference Books			
1	Separation Process Prince	ciples, Authors: J.D. Seader, E.J. Henley			
2	Principles of Mass Trans	sfer and Separation Processes, B.K. Dutta			
		Course Outcomes (students will be able to)			
CO1	Describe and discuss prochromatography, distilla	inciples of various advanced separation processes based on membranes, tion, extractions		K2	
CO2	Design various compone	ents of equipment used in advanced separation processes		K5	
CO3	Compare various option	s and select an appropriate process for a particular separation		K5	
CO4	Apply advanced comput	cational techniques to Chemical Engineering systems.		К3	
CO5	Gain an appreciation of	formal problem-solving methodologies.		K4	
CO6		up-based assignments, an understanding of the design process involving ork spirits, leadership and the need for attention to detail.	K5		
K1: R	emembering, K2: Underst	tanding, K3: Applying, K4: Analyzing, K5: Evaluating, K6: Creating			

Advanced Separation Processes: CET4552 Mapping of Course Outcomes (COs) with Programme Outcomes (POs)												
	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12									PO12		
CO1	2	3	2	1	2	2	1	-	-	1	1	-
CO2	3	2	1	2	3	1	2	-	-	1	2	-

Semester IX Page 143 of 185

Integrated Master of Technology, Chemical Engineering (Major) and MDM ICT Marathwada Campus, Jalna

CO3	1	2	2	1	1	1	-	ı	-	2	1	-
CO4	2	3	2	2	2	1	2	-	-	1	1	-
CO5	2	3	2	1	1	1	-	-	-	-	2	1
CO6	2	3	1	2	3	1	-	-	-	-	1	2
3-Strong Contribution; 2-Moderate Contribution; 1-Low Contribution;												

Mapping o	Advanced S of Course Outcomes	Separation Proce (COs) with Prog		Outcomes (PSOs)								
	PSO1 PSO2 PSO3 PSO4 PSO5											
CO1	3	2	1	-	-							
CO2	2	3	3	2	2							
CO3	1	2	3	3	1							
CO4	2	3	3	2	2							
CO5	3	4	1	2	1							
CO6	2	3	2	1	-							
3-S	Strong Contribution; 2	-Moderate Contr	ibution; 1-Low Co	ontribution;								

Semester IX Page 144 of 185

		Semester IX						
	Course Code:	Course Title:	Cr	edits =	= 3			
	CET4553	Advanced Reaction Engineering	L	T	P			
	Semester:	Total contact hours: 45	2	1	0			
		List of Prerequisite Courses			•			
	and MAT4152), Chemi	151), Applied Chemistry (CHT4151), Applied Mathematics (MAT4151 cal Reaction Engineering (CET4351), Material Energy Balance and Process Simulation Lab-I and II (CEP4255 and CEP4256)						
		List of Courses where this course will be prerequisite						
	NA							
	Descr	iption of relevance of this course in the Int. M. Tech. Program						
is trul	y relevant but not limited	g is concerned with the utilization of chemical reactions on a commercial to the following industries: Pharmaceuticals, Petrochemical, Fine chemicals and modelling of chemical reactors are covered in this course.						
		Course Contents (Topics and subtopics)	Rec	qd. ho	urs			
1	Design of ideal reactors	with heat effects, multiple steady states and reactor stability		12				
2	Non-ideal flow in reactors; RTD, Estimation of dispersion/back mixing, dispersed plug flow and tanks in series model, design aspects of reactors with non-ideal flow, micro and meso mixing in reactors							
3	Kinetics of solid-catal Development of rate equ in porous catalyst, Esti- resistances in catalyst pa		12					
4	Fluid: Fluid Reactions: contactors, design aspec	Mass transfer with chemical reaction (regimes and examples), model ts of fluid: fluid reactors		12				
		Total		45				
		List of Textbooks/ Reference Books						
1	Chemical Reaction Engi	neering, O. Levenspiel						
2	Elements of Chemical R	eaction Engineering, H. Scott Foggler						
3	Heterogeneous Reaction	s vol. I and II, L.K. Doraiswamy, M.M. Sharma						
4	Mass Transfer with Cher	mical Reaction, G. Astarita						
		Course Outcomes (students will be able to)						
CO1	Describe and discuss pri	nciples of various types of reactors		K2				
CO2	Calculate rates of reaction	ons based on given reaction scheme		К3				
CO3	Design various compone	ents of reactors used in industrial practice		K5				
CO4	Compare various reactor	rs and select an appropriate reactor for a given situation		K5				
CO5		ctor systems using numerical methods and commercial software and ctor designs for industrial applications.	re and K6					
CO6		of catalysis in heterogeneous catalysis, photocatalysis, and biocatalysis rate limiting steps in catalytic systems.		K5				
K1: R	emembering, K2: Underst	anding, K3: Applying, K4: Analyzing, K5: Evaluating, K6: Creating						

Advanced Reaction Engineering: CET4553 Mapping of Course Outcomes (COs) with Programme Outcomes (POs)												
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	2	3	1	1	2	2	-	-	1	-	-
CO2	3	2	2	2	1	1	1	-	-	-	-	-
CO3	2	2	3	2	3	1	2	-	-	-	1	-

Semester IX Page 145 of 185

Integrated Master of Technology, Chemical Engineering (Major) and MDM ICT Marathwada Campus, Jalna

CO4	2	3	1	2	2	1	2	-	-	-	-	-
CO5	3	2	2	2	2	2	2	-	-	1	1	-
CO6	2	3	2	-	2	2	-	-	-	1	2	2
3-Strong Contribution; 2-Moderate Contribution; 1-Low Contribution;												

Advanced Reaction Engineering: CET4553 Mapping of Course Outcomes (COs) with Programme Specific Outcomes (PSOs)											
PSO1	PSO2	PSO3	PSO4	PSO5							
3	2	3	1	-							
2	2	2	2	-							
1	2	3	2	2							
2	3	1	1	2							
2	3	3	2	1							
2	3	2	-	2							
1	f Course Outcomes	f Course Outcomes (COs) with Prog	f Course Outcomes (COs) with Programme Specific	f Course Outcomes (COs) with Programme Specific Outcomes (PSOs)							

Semester IX Page 146 of 185

		Semester IX			
	Course Code:	Course Title:	Cr	edits =	3
	CET4554	Advanced Mass transfer	L	T	P
	Semester:	Total contact hours: 45	2	1	0
		List of Prerequisite Courses			•
	MAT4151), Applied Phy	Momentum Transfer (CET4352), Applied Mathematics (MAT4151 and vsics (PHT4151), Applied Chemistry (CHT4151), Chemical Engineering eparation Processes (CET4356)			
		List of Courses where this course will be prerequisite			
	Multiphase Reaction Eng	gineering (Hon.)			
	Descr	iption of relevance of this course in the Int. M. Tech. Program			
		on and in continuation with undergraduate level course on mass transfer. chemical reaction is explained in this course.	Model	ing of	mass
		Course Contents (Topics and subtopics)	Red	qd. ho	ırs
1		e and hydrodynamic physical phenomena governing interfacial mass of interfacial transfer area.		10	
2		lumped parameter models and more sophisticated differential equation- mass transfer under various commonly encountered industrial situations.		10	
3	The Stefan-Maxwell Uni	ified approach to mass transfer.		5	
4	Standard algorithms for a	multicomponent counter current mass transfer and their applicability.		8	
5	Mass Transfer equipmen	t of Industrial significance and their quantitative characterization.		12	
		Total		45	
		List of Textbooks/ Reference Books			
1	Principles of Mass Trans	fer and Separation Processes, B.K. Dutta			
2	Mass Transfer Operation	s, R.E. Treybal			
3	Chemical Engineering, V	Volume 2, J.M. Coulson, J.F. Richardson			
4	Transport Processes and	Unit Operations, C.J. Geankoplis			
5	Transport Processes and	Separation Process Principles, C.J. Geankoplis			
6	Separation Processes, C.	J. King			
7	Separation Process Princ	iples, J.D. Seader, E.J. Henley			
8	Equilibrium Stage Separ	ation Operations in Chemical Engineering, E.J. Henley, J.D. Seader			
9	Unified Approach to Ma	ss Transfer: Krishna and Wesselingh			
10	Diffusion: Mass Transfer	r in Fluid Systems, E.L. Cussler			
11	Perry's Chemical Engine	eer's Handbook (latest editions VIII)			
12	Albrights' Handbook of	Chemical Engineering			
	,	Course Outcomes (students will be able to)			
CO1	Describe and discuss prin	nciples of various mass transfer operations		K2	
CO2	Calculate Mass transfer i	rates for given mass transfer operation		K3	
CO3	Design various compone	nts of equipment used in mass transfer operations		K5	
CO4	Compare various option equipment / operation fo	s of mass transfer operations and equipment and select an appropriate r a particular situation		K5	
CO5	To understand the mecha	nnisms of heat transfer under steady and transient conditions.		K2	
CO6	Apply test equipment's i	n electrical projects.		K3	
K1: R	emembering, K2: Underst	anding, K3: Applying, K4: Analyzing, K5: Evaluating, K6: Creating			

Semester IX Page 147 of 185

	Advanced Mass transfer: CET4554 Mapping of Course Outcomes (COs) with Programme Outcomes (POs)											
	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12											
CO1	3	2	2	1	1	2	3	-	-	1	1	-
CO2	3	2	1	2	2	1	2	-	-	2	1	-
CO3	2	2	2	2	1	2	1	-	-	1	2	-
CO4	3	1	2	1	1	2	1	-	-	2	1	-
CO5	3	2	2	2	2	2	2	-	-	2	1	-
CO6	2	3	2	2	1	-	-	-	-	1	2	1
	3	S-Strong (Contribu	tion; 2-M	loderate (Contribut	tion; 1-L	ow Contr	ibution;			

Mapping o	Advanced Mass transfer: CET4554 Mapping of Course Outcomes (COs) with Programme Specific Outcomes (PSOs)											
	PSO1	PSO2	PSO3	PSO4	PSO5							
CO1	3	2	1	1	-							
CO2	2	1	2	1	1							
CO3	1	2	3	2	2							
CO4	1	3	2	3	1							
CO5	2	3	3	2	1							
CO6	2	3	1	2	2							
3-Strong Contribution; 2-Moderate Contribution; 1-Low Contribution;												

Semester IX Page 148 of 185

	Semester IX				
Course Code:	Course Title:	Credits = 10			
CEP4563	Thesis	L T 0 0	P		
Semester: IX	Total contact hours: 150	0	0	40	
	List of Prerequisite Courses				
All					
	List of Courses where this course will be prerequisite				
All					
Desc	ription of relevance of this course in the Int. M. Tech. Program	•			

The research project is concerned with details and critical analysis of literature related to a topic of research.

Develop of research hypothesis

Identification of novel topic

Performing control and critical analyses to test the research hypothesis.

A report to e made and submitted as Thesis as per the guidelines (provided separately)

	Course Contents (Topics and subtopics)	Reqd. hours
	Research	150
	Total	150
	List of Textbooks/ Reference Books	
	All	
	Course Outcomes (students will be able to)	
CO1	Identify the Problem and Evaluate the solution by hypothesis	K5
CO2	Performing the Experiments to collect the data	K6
CO3	Presentation of data and optimization to satisfy the results	K6
CO4	Graphical representation and modelling along with simulation	K6
CO5	Evaluate and estimate the experimental data	K6
CO6	Report making and representing	K6
K1: R	emembering, K2: Understanding, K3: Applying, K4: Analyzing, K5: Evaluating, K6: Creating	

	Thesis: CEP4563 Mapping of Course Outcomes (COs) with Programme Outcomes (POs)												
	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12												
CO1	3	1	2	2	3	2	-	-	1	1	2	2	
CO2	3	2	2	1	2	1	2	1	2	2	3	3	
CO3	3	-	2	-	1	1	2	-	-	1	1	1	
CO4	3	2	2	1	2	2	1	-	2	2	3	2	
CO5	CO5 2 1 1 2 1 1 2 - 1 3 2 2												
CO6	CO6 3 2 2 2 1 2 1 2 3 3												
	3	S-Strong	Contribu	tion; 2-M	Ioderate	Contribut	ion; 1-L	ow Contr	ribution;	•			

Thesis: CEP4563 Mapping of Course Outcomes (COs) with Programme Specific Outcomes (PSOs)										
	PSO1	PSO2	PSO3	PSO4	PSO5					
CO1	1	2	3	2	2					
CO2	2	3	3	3	3					

Semester IX Page 149 of 185

Integrated Master of Technology, Chemical Engineering (Major) and MDM ICT Marathwada Campus, Jalna

CO3	1	2	3	3	2					
CO4	1	3	2	3	3					
CO5	1	3	3	3	2					
CO6	2	3	3	3	3					
3-Strong Contribution; 2-Moderate Contribution; 1-Low Contribution;										

Semester IX Page 150 of 185

Fifth Year

Semester-X

Semester-X Page 151 of 185

	Semester X			
Course Code:	Course Title:	C	redits :	= 22
CEP4564	Thesis	L	T	P
Semester: X	Total contact hours: 330	0	0	40
<u>. </u>	List of Prerequisite Courses	•	•	•
All				
Li	st of Courses where this course will be prerequisite			
All				
Description	on of relevance of this course in the Int. M. Tech. Program	n		

The research project is concerned with details and critical analysis of literature related to a topic of research.

Develop of research hypothesis

Identification of novel topic

Performing control and critical analyses to test the research hypothesis.

A report to made and submitted as Thesis as per the guidelines (provided separately)

	Course Contents (Topics and subtopics)	Reqd. hours
	Research	330
	Total	330
	List of Textbooks/ Reference Books	
	All	
	Course Outcomes (students will be able to)	
CO1	Identify the Problem and Evaluate the solution by hypothesis	K5
CO2	Performing the Experiments to collect the data	K6
CO3	Presentation of data and optimization to satisfy the results	K6
CO4	Graphical representation and modelling along with simulation	K6
CO5	Evaluate and estimate the experimental data	K6
CO6	Report making and representing	K6
K1: R	Lemembering, K2: Understanding, K3: Applying, K4: Analyzing, K5: Evaluating, K6: Creating	

	Thesis –CEP4564 Mapping of Course Outcomes (COs) with Programme Outcomes (POs)													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
CO1	3	1	2	2	3	2	-	-	1	1	2	2		
CO2	3	2	2	1	2	1	2	1	2	2	3	3		
CO3	3	-	2	-	1	1	2	-	-	1	1	1		
CO4	3	2	2	1	2	2	1	-	2	2	3	2		
CO5	2	1	1	2	1	1	2	-	1	3	2	2		
CO6	CO6 3 2 2 2 1 2 1 2 3 3													
	3-Strong Contribution; 2-Moderate Contribution; 1-Low Contribution;													

Thesis –CEP4564 Mapping of Course Outcomes (COs) with Programme Specific Outcomes (PSOs)										
PSO1 PSO2 PSO3 PSO4 PSC										
CO1	1	2	3	2	2					
CO2	2	3	3	3	3					

Semester X Page 152 of 185 Integrated Master of Technology, Chemical Engineering (Major) and MDM ICT Marathwada Campus, Jalna

CO3	1	2	3	3	2					
CO4	1	3	2	3	3					
CO5	1	3	3	3	2					
CO6	2	3	3	3	3					
3-Strong Contribution; 2-Moderate Contribution; 1-Low Contribution;										

Semester X Page 153 of 185

Honors Syllabus

Honors Syllabus Page 154 of 185

		Semester			
	Course Code:	Course Title:	Cr	edits =	4
	CETxxxx	Biochemical Engineering	L	T	P
	Semester:	Total contact hours: 60	3	1	0
		List of Prerequisite Courses			
	Bioengineering, Chemis	ngineering (CET4351), Introduction to Biological Sciences and try (CHT4152), Material and Energy Balance Calculations (CEP4151), Thermodynamics (CET4353), Chemical Engineering Operations			
	,	List of Courses where this course will be prerequisite			
		gineering, Environmental Engineering and Process Safety (CETxxx), opment and Engineering (CET4451)			
	Desci	ription of relevance of this course in the Int. M. Tech. Program			
This c	course integrates biologica	l sciences and chemical engineering and a requisite for Biobased Industry			
		Course Contents (Topics and subtopics)	Reqd	. hour	s
1	Introduction to Biotechn	ology: Role of chemical engineers in biotechnology		3	
2	Basic of Genetic Engine	ering and Tissue Culture: Recombinant DNA technology		3	
3	Structure function relation	ons of enzymes; Classification,		3	
4	Mechanism of Enzyme a	action, Enzyme kinetics, inhibition, and regulation		3	
5	Enzyme purification and	characterization, Coenzymes, cofactors		3	
6	Enzyme reactors, thermo	os-stabilization, immobilization of enzymes		3	
7	Enzymes as industrial ca	talysts- Examples		2	
8	Plant and animal cell cul	tures to produce biochemicals, Immobilized cells.		4	
9	Kinetics of microbial g microbial culture	rowth, models and simulations, Batch and continuous culture, Mixed		8	
10	Biochemical process dev	relopment and bioreactors using biological catalysts		8	
11	Integration of downstrea	m processing with bioprocessing		4	
12	Transport phenomena in	bioreactions and bioreactors		4	
13	Fundamentals of fermen engineering aspects of fe	tation-submerged fermentation, Fermenter design and basic biochemical ermentation		4	
14	_	emical reactions and scale up, Process Design for bioproducts, up of bioreactions/reactors,		8	
		Total		60	
		List of Text Books/ Reference Books			
1	Biochemical Engineering	g Fundamentals, Bailey and Olis, Wiley			
2	Biotransformation and B	ioprocesses, Doble, Anilkumar and Gaikar, Marcel Dekker			
		Course Outcomes (students will be able to)			
CO1	Calculate microbial/enza	ymatic kinetics parameters		K5	
CO2	Design enzyme reactors	•		K6	
CO ₂		ction/substrate requirements		K5	
CO4	-	•		K5	
	1 1		 		
CO5	Estimate energy equipme		—	K5	
CO6		/time for a given microbial/enzymatic process. tanding, K3: Applying, K4: Analyzing, K5: Evaluating, K6: Creating	<u> </u>	K6	

Honors Syllabus Page 155 of 185

	HONORS: Biochemical Engineering Mapping of Course Outcomes (COs) with Programme Outcomes (POs)													
	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12													
CO1	3	1	1	2	2	1	2	-	-	1	1	-		
CO2	2	2	1	1	-	1	3	-	-	2	2	-		
CO3	1	1	2	1	-	-	-	-	-	2	2	-		
CO4	-	2	3	1	-	3	3	-	-	1	1	-		
CO5	3	1	2	2	1	1	2	-	-	1	1	-		
CO6	1	1	-	1	2	1	-	-	-	1	2	-		
	3-Strong Contribution; 2-Moderate Contribution; 1-Low Contribution;													

HONORS: Biochemical Engineering Mapping of Course Outcomes (COs) with Programme Specific Outcomes (PSOs)												
PSO1 PSO2 PSO3 PSO4 PSO5												
CO1	1	2	3	2	-							
CO2	2	3	3	3	1							
CO3	1	2	3	2	2							
CO4	2	2	3	2	2							
CO5	1	2	3	3	1							
CO6	1	2	2	3	-							
3-Strong Contribution; 2-Moderate Contribution; 1-Low Contribution;												

Honors Syllabus Page 156 of 185

	Course Code:	Semester Course Title:	~	d:4~	
	Course Code: CETxxxx	Multiphase Reaction Engineering	L	edits =	= 4 P
	Semester:	Total contact hours: 60	3	1	0
		List of Prerequisite Courses		L	
	(CET4252), Chemical En	neering (CET4351), Momentum Transfer (CET4352), Heat Transfer ngineering Operations (CET4254), Separation Processes (CET4356), termodynamics (CET4353)			
		List of Courses where this course will be prerequisite			
	NA				
	Descrip	ption of relevance of this course in the Int. M. Tech. Program			
This c	ourse integrates reaction er	ngineering and chemical engineering and a requisite for chemical and bio	chemi	cal Ind	ustr
		Course Contents (Topics and subtopics)	Reqd	l. hour	S
1	Classification of multipha	se reactors, qualitative description, examples of industrial importance		8	
2		o, process design and performance of the following major classes of studies and problems, w.r.t:			
2a	Stirred tank reactors,			10	
2b	Bubble columns, packed l	bubble columns, sectionalized bubble columns,		10	
2c	Internal loop and external	loop air-lift reactors, jet loop reactors,		8	
2d	Fluid-fluid reactors such a disc contactors	as spray columns, packed columns, plate columns, static mixers, rotating		8	
2e	Fixed bed reactors, trickle	e bed reactors,		8	
2f	Solid-liquid and gas-solid	fluidized bed reactors, solid-gas transport reactors		8	
		Total		60	
	,	List of Textbooks/ Reference Books			
1	Heterogeneous Reactions	, Vol. I and II: L. K. Doraiswamy, M. M. Sharma			
2	•	spersion in Stirred Reactors: G. B. Tatterson			
3	Bubble Column Reactors:	: W. D. Deckwer			
4	Fluidisation: D. Kunni an	<u> </u>			
5	Gas Liquid Reactions: P.	V. Danckwerts			
6	Fluidisation: J. F. Davidso				
7	Random Packings and Pa	cked Tower Design: R. F. Strigel			
	ı	Course Outcomes (students will be able to)	1		
CO1	Calculate operating regim	7		K5	
CO2		s from the data on model contactors.		K5	
CO3	given multiphase reaction			K5	
CO4	Ability to solve problems	of mass transfer with reaction in solid catalyzed reactions		K4	
CO5	sign and sizing of industri	ial scale reactor on the basis of kinetic data obtained at lab scale		K6	
CO6	Designing experiments in	volving chemical reactors, and analyzing and interpreting data		K6	

HONORS: Multiphase Reaction Engineering													
Mapping of Course Outcomes (COs) with Programme Outcomes (POs)													
PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12												PO12	
CO1	3	1	1	1	2	1	3	-	-	1	1	-	

Honors Syllabus Page 157 of 185

Integrated Master of Technology, Chemical Engineering (Major) and MDM ICT Marathwada Campus, Jalna

CO2	3	2	2	2	3	2	2	-	-	2	2	-
CO3	3	1	1	2	2	1	2	-	-	2	2	-
CO4	3	2	1	2	2	2	2	-	-	2	2	-
CO5	2	3	2	3	2	-	-	-	-	3	2	1
CO6	2	3	2	3	1	2	3	1	-	-	2	3
3-Strong Contribution: 2-Moderate Contribution: 1-Low Contribution:												

Mapping o	HONORS: Multiphase Reaction Engineering Mapping of Course Outcomes (COs) with Programme Specific Outcomes (PSOs)													
	PSO1 PSO2 PSO3 PSO4 PSO5													
CO1	1	2	3	2	1									
CO2	2	1	3	3	2									
CO3	1	2	3	2	2									
CO4	2	2	3	3	2									
CO5	1	2	3	1	-									
CO6	2	3	2	2	2									
3-Strong Contribution; 2-Moderate Contribution; 1-Low Contribution;														

Honors Syllabus Page 158 of 185

		Semester									
	Course Code:	Code: Course Title:									
	CETxxxx	Mathematical Methods & Optimization in Chemical Engineering	L	T	P						
	Semester:	Total contact hours: 60	2	0	4						
		List of Prerequisite Courses	•		•						
	Transfer (CET4352),	I (MAT4151) and Applied Mathematics II (MAT4152), Momentum Chemical Engineering Operations (CET4254), Chemical Engineering T4253), Heat transfer (CET4252), Chemical Reaction Engineering									
		List of Courses where this course will be prerequisite									
	Transport Phenomena Engineering Systems	, Chemical Process Control (CET4354), Optimization of Chemical									
	Desc	cription of relevance of this course in the Int. M. Tech. Program									
Chem Engin	ical Reaction Engineering problems encoun	rically, the techniques learnt in this course will help problem formulation ng, Chemical Process Control, Heat Transfer and Transport Phenomena. Iter trade-offs between two or more parameters and thus formulation are Chemical Engineer to obtain the best solution.	Many nd solu	Chen tion o	nical of an						
-	XX . 1 1 1 1	Course Contents (Topics and subtopics) & vector product (application to fluid flow problems) and Linear algebra.	Reqd. hours								
1		12 8									
2	reaction-diffusion, dispersion model, etc.)										
3		8									
4	Equation scaling, norm	alization, convergence		4							
5	blending, data fitting, o	*	10								
6	Nonlinear programming systems)	g (Reflux ratio optimization, consecutive reaction, reactor-separator recycle		6							
7	Mixed integer linear pr	ogramming (flowsheet optimization, supply chain optimization)		6							
8	Multi-objective optimiz	zation (design and operation of chemical processes)		6							
		Total		60							
		List of Text Books/ Reference Books									
1	Kreyszig, E. Advanced	Engineering Mathematics.									
2	Pushpavanam, S. Math	ematical Methods in Chemical Engineering									
3	Collette, Y. and Siarry,	P. Multi-objective optimization									
4	Vanderbei, R.J. Linear	programming: Foundations and extensions									
5	Jenson, V.G. and Jeffre	eys, G.V. Mathematical Methods in Chemical Engineering									
		Course Outcomes (students will be able to)									
CO1	Formulate a Chemical 1	Engineering problem into a mathematical problem		K4							
CO2	Solve (analytically or n Applications	umerically) ODE and PDE equations encountered in Chemical Engineering		K5							
CO3	Assess stability of Cher	mical Engineering systems	К3								
CO4	Formulate a Chemical l	Engineering problem into an optimization problem		K4							
CO5	Solve (analytically or r Applications	numerically) optimization problems encountered in Chemical Engineering		K5							

Honors Syllabus Page 159 of 185

K3

CO6 Provide knowledge of advanced numerical methods and their applications to chemical engineering

K1: Remembering, K2: Understanding, K3: Applying, K4: Analyzing, K5: Evaluating, K6: Creating

problems

	HONORS: Mathematical Methods & Optimization in Chemical Engineering Mapping of Course Outcomes (COs) with Programme Outcomes (POs)											
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	1	2	1	2	1	2	-	-	1	1	-
CO2	3	2	1	1	1	2	2	-	-	2	2	-
CO3	2	1	1	2	2	1	1	-	-	2	2	-
CO4	3	2	1	1	2	1	1	-	-	1	1	-
CO5	2	1	2	1	2	1	2	-	-	1	1	-
CO6	3	2	2	2	2	1	2	-	-	1	2	-
	3-Strong Contribution; 2-Moderate Contribution; 1-Low Contribution;											

	HONORS: Mathematical Methods & Optimization in Chemical Engineering Mapping of Course Outcomes (COs) with Programme Specific Outcomes (PSOs)											
	PSO1 PSO2 PSO3 PSO4 PSO5											
CO1	1	2	3	2	1							
CO2	2	3	2	2	-							
CO3	3	2	1	2	1							
CO4	2	3	1	3	2							
CO5	1	2	3	2	1							
CO6	2	3	3	3	2							
3-Strong Contribution; 2-Moderate Contribution; 1-Low Contribution;												

Honors Syllabus Page 160 of 185

		Semester				
	Course Code:	Course Title:	Cr	edits =	= 4	
	CETxxxx	Refinery Science and Engineering	L	T	P	
	Semester:	Total contact hours: 60	3	1	0	
		List of Prerequisite Courses				
		Energy Balance Calculations (CEP4151), Chemical Reaction Engineering sfer (CET4252), Chemical Engineering Operations (CET4254)				
		List of Courses where this course will be prerequisite				
	NA					
	Des	cription of relevance of this course in the Int. M. Tech. Program				
		ply their knowledge of mass transfer, heat transfer, equipment design and sses of petroleum refineries.	chemi	cal rea	ction	
		Course Contents (Topics and subtopics)	Reqd	. hour	'S	
1	World oil scenario and	future of oil, Petroleum pricing and economics		4		
2	Fundamentals of crude	distillation		4		
3	Refinery products and	properties, refining chemistry, role of catalysis		6		
4	4 Refinery processes - thermal cracking, fluid catalytic cracking, hydrotreating, catalytic reforming, refinery alkylation, isomerization					
5	Integration of petroche	mical processes with refinery		6		
6	Material selection in re	finery technology		4		
7	Treatment processes, g	as cleaning		4		
8	Safety, health and envi	ronment issues		4		
9	Renewable and alternat	tive fuels		4		
10	Biorefineries			4		
		Total		60		
		List of Text Books/ Reference Books				
1	W. C. Edmister, Applie	ed Hydrocarbon Thermodynamics Vol I and Vol II Gulf Publishing Co.				
2	Joseph Hilyard, Interna	ntional petroleum encyclopedia 2008 (3 Volume).				
		Course Outcomes (students will be able to)				
CO1	To understand refining	trends, challenges, and key issues		K2		
CO2	To analyze the role of a	refining processes in the world energy challenge		K4		
CO3	To propose feasible sol	lutions for energy security in India		K5		
CO4	To understand all the composition	basics about crude oil, including its physical/chemical properties and		K2		
CO5	To explain step-by-step	the processes of refining		K3		
CO6	Understand the flow characteristics.	diagrams of refineries and understand the refinery products and their		K2		
K1: R	Remembering, K2: Under	rstanding, K3: Applying, K4: Analyzing, K5: Evaluating, K6: Creating			_	

	HONORS: Refinery Science and Engineering Mapping of Course Outcomes (COs) with Programme Outcomes (POs)												
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	1	2	3	1	1	3	3	1	1	1	1	-	
CO2	-	1	2	2	2	2	2	-	-	2	2	-	
CO3	-	1	2	1	2	3	3	-	-	2	2	-	
CO4	1	2	3	2	2	3	3	1	1	1	2	-	

Honors Syllabus Page 161 of 185

Integrated Master of Technology, Chemical Engineering (Major) and MDM ICT Marathwada Campus, Jalna

CO5	1	2	3	2	1	2	-	ı	-	-	1	1
CO6	2	2	1	3	2	-	-	-	2	2	1	1
	3-Strong Contribution; 2-Moderate Contribution; 1-Low Contribution;											

HONORS: Refinery Science and Engineering Mapping of Course Outcomes (COs) with Programme Specific Outcomes (PSOs)										
PSO1 PSO2 PSO3 PSO4 PSO5										
CO1	3	2	1	-	-					
CO2	2	3	2	2	1					
CO3	2	2	3	2	2					
CO4	2	2	2	2	1					
CO5	2	3	1	2	1					
CO6	3	2	2	1	2					

Honors Syllabus Page 162 of 185

		Semester			
	Course Code:	Course Title:	Cr	edits =	4
	CETxxxx	Catalytic Science and Engineering	L	T	P
	Semester:	Total contact hours: 60	3	1	0
		List of Prerequisite Courses			
	Applied Chemistry (CI	HT4151), Chemical Reaction Engineering (CET4351)			
		List of Courses where this course will be prerequisite			
	NA				
	Des	cription of relevance of this course in the Int. M. Tech. Program			
		ply their knowledge of catalysis process and it's engineering along with sytic process. This course will also deal the several applications of catalyst			
		Course Contents (Topics and subtopics)	Reqd	. hours	S
1	Relevance and examp heterogeneous catalysis	oles, Atom economy and green chemistry concepts, Homogenous and s		10	
2		nogeneous catalysis and mechanisms and kinetics, Fundamentals of energetics, structural and dynamic considerations,		10	
3	*	nd kinetics of surface reactions, Fractal models, Determination of surface rn methods, Significance of Pore structure and models		10	
4		tion methods: Surface area and pore volume determinations, XRD, various ques, Temperature programmed reduction & oxidation, Electron		10	
5		nistry of catalysis, Quantum mechanical, molecular mechanical and hybrid in through artificial intelligence and computer modelling		5	
6		deactivation and selectivity, Catalytic process engineering, Measurement inetic parameters, Types of reactors		5	
		Total		60	
		List of Text Books/ Reference Books			
1	G. Ertl, H. Knozinger a - VCH.	and J. Weitkamp, "Handbook of Heterogeneous Catalysis" Vol 1-5, Wiley			
2	J.J. Carberry, "Chemic	al and catalytic reaction Engineering", Dover Publications.			
3	C. H. Bartholomew an VCH.	d R. J. Farrauto "Fundamentals of Industrial catalytic Processes", Wiley-			
		Course Outcomes (students will be able to)			
CO1	Understand synthesis,	characterization, activity and deactivation of heterogeneous catalyst		K2	
CO2	Understand the mechan	nisms of homogeneous catalysis		K2	
CO3	Understand the role of	catalysis in industrial processes		K2	
CO4	To plan, develop and to	est catalyst for given application		К3	
CO5	Suggest strategies for c	catalyst development		К3	
CO6	Select and design mult	iphase catalytic reactors		K4	
K1: R	emembering, K2: Unde	rstanding, K3: Applying, K4: Analyzing, K5: Evaluating, K6: Creating	-		

Honors Syllabus Page 163 of 185

	HONORS: Catalytic Science and Engineering Mapping of Course Outcomes (COs) with Programme Outcomes (POs)											
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	2	1	1	2	1	2	-	-	1	1	-
CO2	2	1	2	1	1	1	3	-	-	2	2	-
CO3	1	2	3	1	3	2	3	-	-	2	2	-
CO4	1	3	1	2	2	1	1	-	-	1	1	-
CO5	1	2	1	2	2	1	2	-	-	1	1	-
CO6	2	2	1	2	1	2	2	-	-	-	-	-
	3-Strong Contribution; 2-Moderate Contribution; 1-Low Contribution;											

HONORS: Catalytic Science and Engineering Mapping of Course Outcomes (COs) with Programme Specific Outcomes (PSOs)												
	PSO1 PSO2 PSO3 PSO4 PSO5											
CO1	3	2	1	2	-							
CO2	2	2	2	1	-							
CO3	3	1	1	1	1							
CO4	3	2	1	2	-							
CO5	1	2	3	1	-							
CO6	1	2	1	2	-							
3-Strong Contribution; 2-Moderate Contribution; 1-Low Contribution;												

Honors Syllabus Page 164 of 185

		Semester			
	Course Code:	Course Title:	Cr	edits =	- 4
	CETxxxx	Statistical Thermodynamics	L	T	P
	Semester:	Total contact hours: 60	3	1	0
	T	List of Prerequisite Courses			
	T	List of Courses where this course will be prerequisite			
	NA				
		ption of relevance of this course in the Int. M. Tech. Program			
	course will learn to apply eir problem solution.	their knowledge of statistical mechanics and its application in engineering	g theri	nodyna	ımics
and th	problem solution.	Course Contents (Topics and subtopics)	Red	qd. ho	ırs
1	Introduction to statistical	mechanics: a first look at the Canonical Ensemble. Introduction to the	IC	4	113
•	Boltzmann Distribution	incondines, a russ rook at the Canonical Engeliere. Introduction to the		•	
2	Introduction to the micro	ocanonical, PVT and Grand Canonical Ensembles		4	
3		namic Quantities as Functions of Ensembles with particular emphasis on ference between Heat Transfer and Work Transfer.		4	
4	extended to many particle	Gas Law using Schrodinger's Equation applied to Particle-in-a-box and e systems using statistical mechanics for an Ideal Gas and introduction to the Virial Theorem	8		
5	Introduction to the pair ir	nteraction energy, pair correlation function (radial distribution function) croscopic thermodynamic quantities including derivation of the van der		10	
6	Introduction to Importa Algorithm	ance Sampling, detailed balance and the Metropolis Monte Carlo		4	
7	Writing a code for Monte	e Carlo simulations in 1D using periodic boundary conditions		4	
8	Phase Space, the Liouvill	le Theorem and Molecular Dynamics Simulations		6	
9	Symplectic integrators a periodic boundary condit	and writing a code for molecular dynamics simulations in 1D using tions		4	
10	from MD simulations.	heorem and the Green Kubo relations to determine transport properties the thermodynamic and transport properties of a system from fluctuations eof.		8	
11	Introduction to Transition	n State Monte Carlo Simulations for Phase Equilibria		4	
		Total		60	
		List of Textbooks/ Reference Books			
1.	An Introduction to Statist	tical Thermodynamics by Terrence Hill (Dover Books)			
2.	Understanding Molecular	r Simulations by Daan Frenkel and Berend Smit (Academic Press)			
3.		articles and Systems S.T. Thornton and J. B. Marion (Cengage Learning)			
4.	Statistical Mechanics D.	A. McQuarrie (University Science Books)			
	T	Course Outcomes (students will be able to)			
CO1		o understand and use the concept of microcanonical, canonical, grand- mbles and the partition functions thereof		К3	
CO2	Student would be able to energy to the partition fur	o relate macroscopic thermodynamic quantities like entropy and free nctions	K4		
CO3	Student would be able to simple Monte Carlo Simple	understand the algorithms behind Monte Carlo simulations and write a ulation		K4	

Honors Syllabus Page 165 of 185

CO4	Student would be able to understand the algorithms behind Molecular Dynamics Simulations and write a simple MD simulation	K4				
CO5	Student would be able to understand and use the fluctuation dissipation theorem in conjunction with Monte Carlo simulations to determine transport coefficients using the Green Kubo relations.	K4				
CO6	Students can learn to derive vibrational and translational partition functions, and to derive and compute thermodynamic functions from partition functions.	K6				
K1: Re	K1: Remembering, K2: Understanding, K3: Applying, K4: Analyzing, K5: Evaluating, K6: Creating					

	HONORS: Statistical Thermodynamics Mapping of Course Outcomes (COs) with Programme Outcomes (POs)											
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	1	2	1	1	2	1	-	-	1	2	-
CO2	1	2	1	1	2	1	2	-	-	-	1	-
CO3	2	1	1	2	1	2	1	-	-	-	2	-
CO4	2	1	2	1	2	2	-	-	-	-	-	-
CO5	2	1	2	1	1	2	1	-	-	1	1	-
CO6	2	1	2	1	2	2	1	-	-	1	1	-
	3-Strong Contribution; 2-Moderate Contribution; 1-Low Contribution;											

HONORS: Statistical Thermodynamics Mapping of Course Outcomes (COs) with Programme Specific Outcomes (PSOs)										
	PSO1 PSO2 PSO3 PSO4 PSO5									
CO1	3	2	1	2	-					
CO2	3	3	2	3	1					
CO3	3	2	3	2	2					
CO4	3	1	2	1	1					
CO5	3	2	1	2	2					
CO6	3	2	3	2	2					
3-Stro	3-Strong Contribution; 2-Moderate Contribution; 1-Low Contribution;									

Honors Syllabus Page 166 of 185

Electives Syllabus

Electives Syllabus Page 167 of 185

		Semester			
	Course Code:	Course Title:	Cr	edits =	: 4
	CET 2769E	Process Intensification	L	T	P
	Semester:	Total contact hours: 60	3	1	0
		List of Prerequisite Courses			
		1352), Chemical Engineering operations (CET4254), Heat transfer tion engineering (CET4351), Advanced mass transfer (CET4554), nena (CET4551)			
	L	ist of Courses where this course will be prerequisite			
	Thesis (CEP4563 and CEP4	1564)			
	Descripti	on of relevance of this course in the Int. M. Tech. Program			
		or students in applying intensified reactor and/or separator systems in c			
The co		fied technologies, with particular emphasis on their application in cher			
1		Course Contents (Topics and subtopics)	Rec	qd. hou	ırs
	Strategies and domain based	1		6	
2		ne process intensification: Intensification by fluid flow process, on by mixing, Intensification in Reactive system		4	
3		ation in sustainable development: Problems leading to sustainable es and Challenges, Strategies in process design		4	
4	Acoustic cavitation, Hydrod	cavitation: Introduction and Mechanism of Cavitation-based PI, dynamic cavitation, Cavitation Reactor Configurations, Application astewater treatment, crystallization, emulsification etc.,		10	
5	Micro-reactors, Hydrodynai	micro-reactors: Introduction to microprocess technology, Types of mics, and transport in microchannel based microreactor, Application n, nanomaterial synthesis etc.		10	
6	Microwave-assisted process reaction and nanomaterials.	s intensification technique, Applications of microwaves in extraction,		10	
7	Process intensification by rengineering in process intensification	membrane: Introduction to membrane and its principles, Membrane assification		6	
		Total		60	
		List of Textbooks/ Reference Books			
1.	Process Intensification in Gabriel Segovia, Hernández	Chemical Engineering Design Optimization and Control, by Juan Adrián and Bonilla Petriciolet, 2016, Springer.			
2.	Process Intensification: Eng	tineering for efficiency, sustainability and flexibility, by David Reay, Harvey, 2nd edition, 2013, Elsevier.			
3.	3. The Fundamentals of Pro Georgios Stefanidis, 2019,	ocess Intensification by Andrzej Stankiewicz, TomVan Gerven and Willey VCH.			
	<u> </u>	Course Outcomes (students will be able to)			
CO1	Contemplate new design co	ncepts and analyze design alternatives for any process		К3	
CO2	Propose improvements in a	process by integration of unit operations,		K4	
CO3	Apply their knowledge to thon process intensification process	ne design and implementation of green processing technologies based rinciples.		K5	
CO4		sacrificing product quality by increasing efficiency, reducing energy, and waste as well as improving safety.		K4	
CO5		ion for the enhancement of chemical processes		K2	
CO6	Solve process challenges us process industries.	sing intensification technologies and analyze scale up issues in the		K5	
K1: R	emembering, K2: Understand	ling, K3: Applying, K4: Analyzing, K5: Evaluating, K6: Creating			

Electives Syllabus Page 168 of 185

	Chemical Engineering Elective: CET 2769E Process Intensification Mapping of Course Outcomes (COs) with Programme Outcomes (POs)											
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	3	2	1	2	1	-	-	1	-	1
CO2	2	3	2	3	2	1	-	-	-	2	-	-
CO3	1	2	3	2	1	-	-	-	-	1	2	2
CO4	2	3	3	2	2	1	1	-	-	1	1	1
CO5	2	3	1	2	2	-	-	-	1	2	1	1
CO6	2	2	1	2	2	1	-	-	-	1	2	1
	3-Strong Contribution; 2-Moderate Contribution; 1-Low Contribution;											

	Chemical Engineering Elective: CET 2769E Process Intensification Mapping of Course Outcomes (COs) with Programme Specific Outcomes (PSOs)										
	PSO1	PSO2	PSO3	PSO4	PSO5						
CO1	3	2	3	1	-						
CO2	3	2	2	3	2						
CO3	2	1	3	3	3						
CO4	3	2	3	3	2						
CO5	2	1	2	1	2						
CO6	2	2	1	1	1						
3-S	trong Contribution; 2	2-Moderate Contr	ibution; 1-Low Co	ontribution;							

Electives Syllabus Page 169 of 185

		Semester			
	Course Code:	Course Title:	Cr	edits =	- 4
	CET2161	Chemical Safety and Risk Management	L	T	P
	Semester: IV	Total contact hours: 60	3	1	0
		List of Prerequisite Courses	T		
	Process Safety (CET42	55), Process Development and Engineering (CET4451)			
		List of Courses where this course will be prerequisite			
	NA				
	Desc	ription of relevance of this course in the Int. M. Tech. Program	I.		
To list		management and material hazards.			
		ocedures, standards, and regulations.			
		ted to chemicals, fires, electricity, pathogens etc.			
		ts management in the industry.			
		imental impact of projects and processes			
		rd identification or plant layout etc.			
		Course Contents (Topics and subtopics)	Regd	. hour	s
1	Introduction to Safety	and Risk Management: Major industrial disasters and evolution of safety		12	
•	and risk management	The state of the s			
	Basic OSH: Occupatio	nal hygiene basics			
		S MSD - physical hazard, toxic hazard, and eco-toxicity MSDS (Material			
	Safety Data Sheet), 16	6-point MSDS, uniformity in MSDS, details of MSDS, LD50 & LD10			
		TEL, Flash, Vapour pressure; Globally Harmonized System (GHS), R&S			
	phrases				
	Hazardous Chemicals	: Classification of Hazardous chemicals			
2	•	SM; Overview of 14 elements		12	
		chniques: What-If, Checklist, HAZOP, FEMA etc. Overview of each of			
		Analysis; Cause and Consequence Analysis; FEMA; LOPA; Fault Tree			
	Analysis; QRA	and assessment: 1. Basic Hazard identification, assessment & measures			
		e safety-extinguishers: Fire types, Types of fire extinguishers, Agents for			
	firefighting, Fire hydra				
3		process safety & fire safety-fire hydrant system design: Solvent yard,		12	
		yout with design of fire safety system.			
	Human elements in sa	·			
	Basics of laboratory s	· · · · · · · · · · · · · · · · · · ·			
	Compliance to statut (14000)	ory safety audits: Overview of safety audits based on ISO standards			
4	Management Practic	e in SHE in Plant Operation: Man-management, organization		12	
		anagement; Fundamentals of safety management systems for occupational			
		vsis (confined space, height safety, hot jobs); Chemical and plant security;			
		cable to Chemical Projects; Management of change; Incident reporting and			
		lements in safety, ergonomics and behavioural safety			
		2. Process safety, thermal safety, dust explosion etc. Inherent safety			
		and unit operations; Powder handling hazards - dust explosion ety in electrical power generation units including nuclear, steam boilers,			
	boiler feed water, thern				
	-	d transportation of hazardous substances: Safety provisions during			
		products including LNG and other hazardous materials by ship, rail, air			
		port emergency; isolated storage; warehouses; color coding of pipelines;			
		; packaging and labelling.			
5		et Assessment: Environmental impact and risk assessment (EIRA), risks		12	
		ated, risks, measurement, and monitoring tools			

Electives Syllabus Page 170 of 185

	Emergency response plan: Hazard identification and elements of emergency response plan; OHC categorization, control banding and precautions while handling substances; GMP principles	
	Total	60
1	Chemical Process Safety: Fundamentals with Applications: Daniel A. CROWL and Joseph F. LOUVAR	
2	Guidelines for Process Safety Management, Environment, Safety, Health, and Quality: Centre for the Chemical Process Safety of the American Institute of Chemical Engineers (AIChE)	
3	Chemical Process Safety Learning from Case Histories: Roy E. SANDERS	
4	Guidelines for Process Safety Documentation: Center for the Chemical Process Safety of the American Institute of Chemical Engineers (AIChE)	
	Course Outcomes (students will be able to)	
CO1	Identify hazards in a given process and assess the same and provide solutions for operating safely.	K3
CO2	Specify safety requirements for storage and handling of a given chemical.	K4
CO3	Apply fundamental principles, implement safety and risk management in practice, and demonstrate management skills.	К3
CO4	Recognize hazards, assess risks, minimize and manage risks, and prepare for emergencies.	K5
CO5	To learn about chemical classification, toxicology, labeling, handling, storage, and transportation.	K2
CO6	To learn the fundamentals of chemical process safety and hazards management and discuss important components of a risk management plan.	K2
K1: R	emembering, K2: Understanding, K3: Applying, K4: Analyzing, K5: Evaluating, K6: Creating	

	Chemical Engineering Elective - CET2161 Chemical Safety and Risk Management Mapping of Course Outcomes (COs) with Programme Outcomes (POs)											
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	2	1	-	2	3	-	3	1	-	-
CO2	2	3	3	2	-	2	3	1	2	2	-	-
CO3	3	2	2	1	-	2	3	1	2	2	-	-
CO4	2	3	1	2	1	2	2	-	-	1	1	2
CO5	1	1	1	-	-	-	-	-	1	2	1	-
CO6	1	2	1	2	-	-	-	-	-	1	-	-
	3-Strong Contribution; 2-Moderate Contribution; 1-Low Contribution;											

-	Chemical Engineering Elective - CET2161 Chemical Safety and Risk Management Mapping of Course Outcomes (COs) with Programme Specific Outcomes (PSOs)									
	PSO1 PSO2 PSO3 PSO4 PSO5									
CO1	3	2	2	1	-					
CO2	2	3	1	2	1					
CO3	3	2	2	1	1					
CO4	2	3	2	1	-					
CO5	2	1	2	2	-					
CO6	2	3	1	-	1					
3-Stro	3-Strong Contribution; 2-Moderate Contribution; 1-Low Contribution;									

Electives Syllabus Page 171 of 185

ELECTIVE SUBJECTS The elective subjects may be added from time to time with prior approval from UGPC/Senate.

Sr No.	Elective	Credit
1	PYT 1104E: Molecular Quantum Mechanics (Applied Physics Department)	4
	Revision of Basic Concepts	
	Schrodinger equation for the hydrogen atom, solution in terms of radial and angular wavefunctions, significance of quantum numbers, atomic spectra.	
	The quantum harmonic oscillator, eigenvalues and eigenfunctions (no detailed derivation), significance of 'zero-point' energy.	
	Origin of Molecular Spectra	
	Analysis of diatomic molecules as a rigid rotator, rotational and vibrational energy levels of a simple diatomic molecule.	
	Approximation methods in Quantum Mechanics	
	Brief introduction to perturbation theory with simple examples, variational theorem, analysis of helium atom as an example.	
	Molecular Quantum Mechanics	
	Molecular orbital and valence bond theories for diatomic molecules, Born-Oppenheimer approximation, LCAO method in H_2^+ ion and H_2 molecule, valence bond method	
2	PYT 1105E: Statistical Mechanics (Applied Physics Department)	4
	Basic Statistical Approach to a System	
	Applicability of the statistical approach to a system, equilibrium and fluctuations, irreversibility and approach to equilibrium, counting of system states: microstates and microstates, equiprobability postulate, concept of statistical ensemble, number of accessible states of a system, phase space.	
	Ensemble approach to Thermodynamics of Physical Systems	
	Isolated system: microcanonical ensemble, system in contact with a heat reservoir, canonical ensemble, Maxwell-Boltzmann distribution as an example, mean values in a canonical ensemble, partition function for a canonical ensemble, relation to thermodynamics.	
	Generalised Interactions	
	Grand canonical ensemble, systems with variable number of particles, chemical potential, partition function for a grand canonical ensemble, relation to thermodynamic variables.	
	Applications to Multi-phase Systems	
	Stability conditions for a homogeneous system, equilibrium between phases, phase transformations, general relations for a system with several components, general conditions for chemical equilibrium, chemical equilibrium between ideal gases, the equilibrium constants in terms of partition functions.	
3	CHT 1403E: Advanced Spectroscopy (Applied Chemistry Department)	4
	UV-VIS spectroscopy - Woodward rules, aromatic and heterocyclic compounds	
	IR spectroscopy: FT technique, group frequencies, vibrational coupling. NIR spectroscopy. New applications	
	Raman spectroscopy: Stokes, anti-Stokes and Releigh scattering, rotational and vibrational transitions. Raman vs IR.	
	NMR spectroscopy: Pulse technique, FID, and FT. Relaxation and saturation phenomena, quadrupole relaxation, isotopes	

Electives Syllabus Page 172 of 185

H1 NMR: Chemical shifts and factors affecting the same, spin-spin coupling of different systems, different spin systems, coupling constants. Simplification of complex spectra: Double resonance and decoupling, lanthanide shift reagents,

C13 NMR: Basics, doble resonance,

2D NMR: H1-H1- COSY, H1-C13 HETCOR- APT and DEPT, C13-C13 connectivity:

INADEQUATE F19 and P31 NMR

INDOR technique.

Through space interactions: NOE and NOESY

Solid state NMR and MAS.

Mass spectrometry: Basics, EI and CI techniques. Isotopic abundance, fragmentation, rearrangement of ions, Maclaferty rearrangement, retro Diels-alder reaction.

Hyphenated techniques: GC-MS, LC-MS, LC-MS-MS, GC-IR, GC-AIS, GC-NMR, LC-NMR

ESR spectroscopy: Theory, experimental technique, Hyperfine splitting

Mossbaur spectroscopy

Structure elucidation using combined stereoscopic methods.

Emission: Flame photometry, ICP, Ark-Spark spectra, Phosphorescence, XRF

4 CHT 1205E: Organometallic Chemistry (Applied Chemistry Department)

Nature of C-M bond: Metal-carbon bond with main group and transition elements.

Factors controlling metal-carbon bond formation. Methods of M-C bond formation. Nomenclature and heptacity. Electron counting and 16 and 18 electron rules - applications and exceptions. Stability. Stereochemical nonrigidity in organometallic compounds.

Structure and bonding of metal alkyls and aryls. Complexes with CO and related ligands, olefins, acetylenes, and related unsaturated molecules. Organic transition metal complexes as protective and stabilizing groups for double bond, triple bond, propyl cation and short lives species. Complexes with cyclopentadiene and arenes and other CnHn sandwich and half-sandwich complexes. Hydride, dinitrogen, and dihydrogen complexes

Bimetallic and cluster complexes: Structure and applications in catalysis

Basic organometallic reactions: Ligand substitution, oxidative reactions, migratory reactions, migratory insertion, extrusion, oxidative addition, reductive elimination, reductive elimination – mechanism and stereochemistry.

Nucleophilic regents with C-M bond: Li, Mg, Al, Ti and Ce alkyls; Organocuprates, organic zinc reagents

Alkyne complexes: Pauson Khand reaction. The use of stoichiometric transition metal complexes in the synthesis of complexes organic molecules - enantioselective synthesis via organometallic compounds.

Organo silicon compounds, boranes, carboranes and, metallocarboranes, organo platinum complexes, metallocene

Importance of organometallic compounds in biological systems

Concept of Green Chemistry: Twelve principles of green chemistry, E factor, Waste management

Types of catalysis: Homogeneous and Heterogeneous catalysis. Catalytic cycles

Organometallic compounds used as catalysts: Pd, Rh, and Ru in C-C bond formation. Catalytic properties of mononuclear compounds

Homogeneous catalysis: Hydrogenation, hydroformylation, hydrocyanation, Hydrosilylation, Wilkinson catalysts, Chiral ligands and chiral induction, Ziegler-Natta catalysts

Electives Syllabus Page 173 of 185 4

5 CHT 1206E: Green Chemistry & Catalysis (Applied Chemistry Department)

	Mercuration and oxymercuration	
	Organopalladium catalysts: Suzuki coupling, Heck coupling and related cross coupling reactions.	
	Alkene oligomerization and metathesis.	
	Catalytic oxidations and reductions: Epoxidation, dihydroxylations.	
	including carbonylation, decarbonylation, olefin isomerization, arylation	
	Important catalytic reactions: Monsanto acetic acid process, Wacker process, Heck reaction.	
6	CHT 1303: Theoretical and Computational Chemistry (Applied Chemistry Department)	4
	Basics: Wave character and wave functions, De Broglie equation, normalization and orthogonalization,	-
	Quantum mechanical operators, Schrodinger equation, particle in an infinite square well potential, quantum mechanical harmonic oscillator, angular momentum operator and rigid rotor, Born Oppenheimer approximation, potential energy surfaces, self-consistent field wave functions,	
	Computational methods: Molecular mechanics, MO theory, semi empirical and ab initio methods, SCF theory, Hartree Fock method, DFT.	
7	MAT 1107E: Momentum, Heat and Mass Transfer (Applied Mathematics Department)	4
	Derivation of equation of momentum, energy, mass transfer in curvilinear coordinate system, constitutive equation (Newtonian & Non-Newtonian fluids), Flow in some simple cases - Flow between two concentric cylinders, flow between two concentric rotating cylinders, hydrodynamics of bearings lubrication, steady flow around a sphere (theory of slow motion).	
	Singular perturbation theory, derivation of bounder layer equations (using singular perturbation theory), similar and non-similar solutions for some forced, mixed, and natural convection problems (using bounder layer theory).	
	Flow stability, theory of ordinary diffusion in liquids, diffusion with homogenous chemical reaction, diffusion into a falling liquids film (forced convection mass transfer).	
8	MAT 1108E: Turbulent Flow and CFD (Applied Mathematics Department)	4
	Derivation of equations of momentum and energy for turbulent flows. Modelling of turbulent flows: kinetic energy, algebraic stress model, Low Reynolds number model, LES model etc.	
	Turbulent boundary layer flows and similar solutions	
	Grid generation.	
	Use of Control volume method, Methods of lines, Finite difference, Finite element and various algorithms (SIMPLE, SIMPLER & SIMPLEC etc.) to solve the momentum, energy and mass transfer equations for simulation of some practical problems (Simulation of stirred vessel, Natural convection flow inside a closed chamber etc.)	
9	GET 1303E: Advanced Strength of Materials (General Engineering Department)	4
	Analysis of Trusses - Condition for perfect truss, redundancy, stable, unstable truss. Analysis of truss by method of joints, method of sections.	
	Torsion of a circular shaft - concept, basic derivation, shear stress distribution, simple problem.	
	Short and Long columns (Struts) - Basic concept, crippling load, end conditions. Euler's and Rankine's approach (without derivations)	
	Thick and Thin cylinders - concept of radial, longitudinal stresses, behavior of thin cylinders. Problems on thin cylindrical and spherical shells. Behavior of thick cylinders (theory only).	
	Advance stresses and strains: Representation of stress and strain at a point, Stress stain relationship, plane stress and plane strain. Transformation of stresses and their importance, Principal stresses and strains, maximum shearing stress, Mohr's circle its use and construction.	
	Basics of Engineering Design - Steps in the engineering design, Importance of analysis, 1-D, 2-D and 3-D analysis and interpretation of results. Design philosophies, factor of safety, Force	

Electives Syllabus Page 174 of 185

	displacement relationship, Strain deformation relationship, Introduction to finite element packages. Computer aided analysis and design.	
	Composite Materials: Types of composite materials, fillers for composites, polymer composites, fibres and matrix for a composite material, Types of fibres, their properties, woven and non-woven fibres, manufacturing of polymer composite materials. Mechanics of composite materials, Properties and testing of composite materials, Uses of composite materials.	
	Advance materials for industrial applications - Advances in materials, Materials used for coatings, anticorrosive coatings, special purpose floorings, water proofing compounds, Various polymers and epoxies used for industrial applications. Diverse types of performance enhancing and special purpose construction chemicals. Plasticizers and super-plasticizers, air entraining agents, accelerators and retarders, viscosity modifying agents, corrosion inhibitors.	
10	HUT 1105E: Industrial Economics (Humanities)	4
	Nature and Significance of Economics	
	Demand and supply / elasticity of demand and supply, price determination, demand forecasting.	
	Theory of firm: (A) financial aspects: cost analysis, revenue structure, conditions for profit maximization, different market structures (B) technical aspects: factors of production, role of entrepreneur, laws of return, returns to scale.	
	Money market and capital market, evolution of money and banking, foreign exchange, and currency de-valuation.	
	Budget, taxation, public expenditure, borrowing and deficit financing.	
	Development issues and economic planning in India, Role of public sector/ liberalization/ privatization/ globalization	
11	CET 1506E: Engineering Aspects of Manufacturers of Organic Chemicals (Chemical Engineering Department)	4
	Specific features of process parameters and reactors used for typical organic processes such as hydrogenation, oxidation, alkylation, nitration, sulphonation etc. Different strategies of conducting reactions. Introduction to a few name reactions such as Friedel Crafts reactions, Sandmeyer's reaction, Drazen's condensation, etc. Typical reaction schemes for the synthesis of medium and low volume chemicals, with an emphasis on the alternative flow sheets of the entire process.	
12	CET 1204E: Electrochemical Engineering (Chemical Engineering Department)	4
	Introduction to electrochemical engineering. Theoretical aspects and special features of electrochemical processes. Role of mass transfer in a variety of electrochemical processes. Some aspects of electrochemical reactor design. Scale-up and optimization of reactors.	
13	CET 1712E: Mathematical Methods in Chemical Engineering (Chemical Engineering Department)	4
	Classification of problems in Chemical Engineering. Typical problems from heat transfer, catalysis, mass transfer with chemical reaction, dynamics of process equipment, etc. Numerical evaluation of Laplace Transforms.	
	Separation of variables, Eigen values, Collocation Techniques.	
14	CET 1713E: Statistical Methods in Engineering (Chemical Engineering Department)	4
	Continuous and discrete probability distributions, normal, chi-square, gamma, Poisson distributions. Applications. t-Tests, F-Test, Homogeneity tests, Quality Control. Acceptance sampling Linear regression and lack of fit Contingency tables.	
15	CET 1103E: Heat Transfer Equipment Design (Chemical Engineering Department)	4
	Classification of Heat Transfer Equipment, direct, indirect, boiling, fired, Fluidized, geometry, construction.	
_		-

Electives Syllabus Page 175 of 185

	Thermal design methods of heat exchangers: survey, capital NTU, LMTD concept, temperature approach, etc.	
	Shell and Tube heat exchangers: thermal, mechanical design, hydraulic design and equations, introduction to codes and standards	
	Extended surface heat exchanger design: plates, plate fins, effectiveness factor.	
	Heat transfer equipment with phase change, two phase flow maps, and design of equipment for heat transfer and pressure drop.	
	Fluidized bed and direct heat exchangers design methodology.	
	Synthesis of optimal heat exchanger networks.	
	Worked Examples	
16	CET 1205E: Mixing (Chemical Engineering Department)	4
	Examples of industrial importance	
	Flow pattern, power consumption, classification of impellers, internals.	
	Mechanism of mixing, blending in viscous and turbulent system, Suspension of solid particles, Heat transfer, Gas-liquid dispersion, Liquid-liquid dispersions, three phase dispersions, Solid-solid mixing, emulsions, pastes, Mass transfer at gas-liquid, liquid-liquid, solid-solid and solid-liquid interface	
	Process design and scale-up considerations case studies	
17	CET 1507E: Petroleum Reservoir Engineering (Chemical Engineering Department)	4
	Energy sources, world scenario, oil pricing, Genesis of petroleum and migration, Composition of petroleum and its classification, Petroleum reservoirs, Exploration and drilling technology, Well logging and well completion, Core analysis, Capillarity and wettability, Models of pore structure and multiphase flow, Well stimulation and production strategy, Well pressure behavior, Gas reservoir engineering, Fluid displacement and frontal displacement; Buckley-Leverett theory, Material balance, Decline curve analysis, Well patterns and displacement efficiencies, Primary recovery, Gravity drainage, Waterflooding, Mechanisms of microscopic and macroscopic flow, Transportation of oil and gas, Production rate, reservoir life, Heavy oil and tar sand technologies, Residual oil determination, Computer modelling of reservoirs, Tertiary recovery methods	
18	CET 1508: Enhanced Oil Recovery (Chemical Engineering Department)	4
	Residual oil and tracer studies, Defining enhanced oil recovery, Basic equations for fluid flow in porous media, Petrophysics and petrochemistry, Phase behavior and fluid properties, Efficiency of waterflooding, Pore level mechanisms, Mobility control, capillary number, bond number correlations, Heterogeneity of pore structure and reservoirs, Thermal methods, Steam stimulation, steam flooding and hot water drive, Combustion- forward and reverse, Ancillaries in thermal methods, Miscible flooding, Surfactant flooding, Microemulsion flooding, Foam flooding, Polymer flooding, Micellar-polymer flooding, Alkaline flooding, Carbon dioxide flooding, Inert gas injection, Reactive gas injection, Microbial recovery	
19	CET 1104E: Flow Though Porous Media (Chemical Engineering Department)	4
	Relevance of pore structure in science and technology, Examples from oil reservoirs, catalysis, soil science, membranes, aquifers, foods, polymers, biology, etc., Pore structures and their determination, Capillarity and wettability, Models of pore structure, Wettability and flow histories, Single phase flow, Multiphase flow, Percolation processes and network models, Fractal models, Simulations of macroscopic properties, Pore level mechanisms of flow, Diffusion and dispersion in porous media, Membrane transport, Analysis of trickle and packed beds, Ultrafiltration, Models of catalyst poisoning and deactivation, Geo-statistics	
20	CET 1509E: Refinery Science and Engineering (Chemical Engineering Department)	4
	Terminology, Origin, Kerogen, Occurrence, Recovery, Classification, Composition, Evaluation, Fractionation, Identification, Asphaltic constituents, Refining chemistry, Refining distillation,	

Electives Syllabus Page 176 of 185

	Thermal cracking, Catalytic cracking, Hydro processing, Reforming, Treatment processes, Gas cleaning, Products, Petrochemicals	
21	CET 1206E: Fundamentals of Catalytic Science and Engineering (Chemical Engineering Department)	4
	Relevance and examples, Atom economy and green chemistry concepts, Homogenous and heterogeneous catalysis, Fundamentals of homogeneous catalysis and mechanisms and kinetics, Fundamentals of adsorption, isotherms, energetics, structural and dynamic considerations, Mechanisms, models and kinetics of surface reactions, Fractal models, Determination of surface structure though modern methods, Significance of Pore structure and models, Solid and surface chemistry of catalysis, Quantum mechanical, molecular mechanical and hybrid models, Catalyst design through artificial intelligence and computer modelling, Poisoning, promotion, deactivation and selectivity, Catalytic process engineering, Measurement of catalytic rates and kinetic parameters, Types of reactors	
22	CET 1207E: Homogeneous Catalysis (Chemical Engineering Department)	4
	Examples, Single phase and multiphase catalytic reactions, Acidbase catalysis, Transition metal catalysis, Bio-catalysis: Microbes and enzymes, Phase transfer catalysis, Microemulsion catalysis, Electron transfer catalysis, Heteropoly acid catalysis, Homogeneous polymer catalysis, Heterogenization of homogeneous catalysts, Catalysis by microwaves and ultrasound, Catalyst recovery and reuse	
23	CET 1208E: Catalytic Green Science and Technology (Chemical Engineering Department)	4
	Green synthesis and heterogeneous catalysis, Metal and supported metal catalysis, metal-support interaction, Metal oxides and determination of acidity and basicity, Nature and type of supports, Solid acid catalysis, Solid base catalysis, Catalyst design, preparation and activation, Clay and modified clays, Ion exchange resins, Zeolites and zeotypes, Heteropoly acids, Inorganic-organic catalysts, Immobilized enzymes, zeozymes, complexes, Electrochemical catalysis, Photocatalysis, Microwave catalysis, Ultrasound catalysis, Synergistic catalysis, Important examples from, Refinery industry -FCC, reforming, platforming, hydroforming, polymerization, alkylation, isomerization; hydro-desulfurization, hydro-nitrogenation, Pharmaceutical and fine chemical industry, Dyestuff and intermediate industries, Perfume and flavor industry, Polymer industry, Textile industry, Paint industry, Edible oil industry, Food industry, Waste water treatment, Catalysis for auto-exhaust pollution abatement, DeNox, DeSOx technologies	
24	CET 1602E: Colloid and Interfacial Science (Chemical Engineering Department)	4
	Capillarity: Definition, Existence of surface tension/surface free energy, Laplace equation, Young Equation, Capillarity rise phenomena, Measurement of surface tension, Contact angle Wetting characteristics	
	Surface Thermodynamics: Surface thermodynamic properties, Kelvin Eqn. Gibbs equation, Surface Excess, Monolayer phase	
	Adsorption: Localized vs Mobile adsorption, Adsorption isotherms Langmuir, Freundlich, BET etc., - Potential theory, Adsorption from solution, Electrical Diffuse Double layer theory, Debye Huckel theory scaled particle theory, Stern layer, Surfactant adsorption	
	Micelles: Classes of surfactants, synthesis of surfactants, Micelle structures, Determination of HLB, Models for micelle formation, Swollen micelles, Hydrotropic	
	Solubilization in micelles: Location of solubilize in micelles, Measurement of solubilization, Spectroscopic methods: NMR, Fluorescence, IR etc., Detergency, selective solubilization.	
	Emulsions: Micro and macro emulsions, Stability of emulsions (Mechanical vs. thermodynamic), Bancroft rule, deemulsification, HLB for emulsion, multiple emulsions, applications	
	Foams: Gibbs triangle, Film elasticity, drainage of films, Foam, defoaming, applications of foams	
25	CET 1603E: Interfacial Science and Engineering (Chemical Engineering Department)	4

Electives Syllabus Page 177 of 185

26

27

Biomedical engineering

Definitions: Chemical and physical properties of interfaces, Introduction to surface mechanisms and thermodynamics, capillarity, meniscus shapes, contact angle, surface tension and its measurement, Laplace Equation, Young's equation, Kelvin Equation, Gibbs equation, equilibrium criteria, dividing surface, monolayers and films, mobile and fixed interfaces Interfacial areas and degrees of wetting, aerosols, liquid-liquid and particulate dispersions, Bubbles, and drops aphrons. Microphases: Definitions and dynamics, Micelle formation surfactants CMC, structures of micelles, swollen micelle and microemulsions models, phase diagrams, Macroemulsions, Mechanical vs thermodynamic stability, HLB, Bancroft rule and other systems, Foams Colloids, Film elasticity, drainage, association, Langmuir-Blodgets film production. Experimental techniques of measurement of relevant properties: surface tension, solubilization, thermodynamic properties, spectroscopic techniques Rheological aspects of two phase (involving microphases) flow and transport, visco-elasticity of surfactant solutions. Solubilization and catalysis by microphases: Models, theories and data, surface potential and equations of state, double layer theory, layer Debye-Huckel theory, Thermodynamics of solubilization, Hydrotropy Emulsification and Demulsification, foam breakage, theories of coalescence, and agglomeration, Brownian motion, shear, and other models. Applications: Adsorption, foam fractionation, froth floatation Enhanced oil recovery, Novel separation processes, Coagulation, Flocculation, Microelectronics, surface vapour deposition, other applications with techniques Monte Carlo simulation for molecular dynamics of structures, graphics software for structural display., Diffusion on the surface and in microphases. **CET 1403E: Adsorptive Separations (Chemical Engineering Department)** 4 Separation Processes: overview, alternative separation techniques, Mass separating agents Adsorbents: Molecular sieves activate carbon, zeolites alumina, silica ion exchangers, Polymeric adsorbents Physical and Reactive adsorption: Selectivity engineering in catalysis, Gaseous and liquid adsorption, Thermodynamics of adsorption, Statistical thermodynamics of adsorption phenomena, Surface excess, theories of adsorption. Separations: Bulk separation, purifications, Concentration, and recovery from dilute solutions: metals, organic chemicals, microelectronics Design of adsorbers: Gaseous and liquid phase adsorption Theoretical analysis of diffusion in relation to adsorption in micropores Chromatographic separations: Bulk chemicals separations, Purification, refining operations, Biochemical applications Novel separation techniques using adsorbents, Industrial examples **CET 1209E:** Advanced Biochemical Engineering (Chemical Engineering Department) Biotechnology, Biochemistry and microbiology, Enzymatic reactions, cell culturing Enzyme engineering, enzyme modifications, stability, reactivity, and selectivity considerations Genetics and Genetic engineering, DNA recombinant technology, Hybridoma technology, single cell proteins, gene manufacturing Fermentation and design of fermenters with modified organisms Bioprocess simulations, molecular modelling for protein synthesis and drug design, protein engineering.

Electives Syllabus Page 178 of 185

Applications in fermentation industry, pharmaceutical industry, medical field such as gene therapy,

	Bioreactor design, Scale up of bioreactions/reactors, Downstream processing in biochemical industry.	
	Organic synthesis using enzymes	
28	CET 1404E: Downstream Processing in Biochemical Industry (Chemical Engineering Department)	4
	Separation processes in biochemical industry, Separation processes for bulk chemicals and proteins, special needs, Unit operations on biochemical industry, such as filtration, centrifugation, heat and mass transfer, Solvent extraction: liquid-liquid extractions, phase diagrams, thermodynamics of liquid-liquid extraction, physical vs reactive extraction, liquid ion exchangers, design of extractors, two phase flow in extractors, modelling and simulation of extractors, Aqueous two phase extraction, affinity partitioning, dye ligand partitioning, Reverse micellar extraction of proteins and enzymes, Adsorption: physical and chemical adsorption, theories of adsorption, ion exchange resins and polymeric adsorbents, adsorption of small molecular weight bioproducts such primary and secondary metabolic products of cells, Protein purifications, precipitation, affinity precipitation, adsorptive and chromatographic separations of proteins, design of adsorption columns, Methods of operation., Gel permeation chromatography, metal ligand chromatography, dye ligand chromatography, affinity chromatography, expanded bed chromatography, Applications in biochemical industry.	
29	CET 1405E: Advanced Separation Processes	4
	Membrane Processes: Principles of various membrane processes like Reverse Osmosis, pervaporation, gas separation and electro-dialysis. Design equations and module design. Concentration polarization. Adsorption and Ion Exchange Processes: Adsorption and ion exchange equilibria. Various isotherms. Contact filtration, design of fixed bed adsorber including breakthrough cuurve. Chromatographic Separations: Principles of chromatographic separation, criteria for effective separation, supports and methodology and process design. Separation of Racemic Mixtures: Principles of racemic modification and their application in separation of racemic mixtures with specific examples. Dissociation Extraction, Reactive Extraction	·
30	CET 1210E: Introduction to Polymer Engineering (Chemical Engineering Department)	4
	Introduction to Polymers: Classification based on application and history, Natural and synthetic polymers, and types e.g. fibres, rubbers, adhesives, resins, plastics, etc. Classification based on properties/structures: Thermoplastic, thermosetting, crystalline, amorphous, molecular weights status, transitions, glass transition temperature. Polymer formation/modification: Functionality and reactions, chain, ionic, condensation, coordination, complex polymerization, Kinetic schemes, Orders of reactions, Cross-linking, Copolymerization, Heat effects Polymerization Processes and methods of manufacture: Bulk, Solution, Suspension and emulsion polymerization with examples, polystyrene, polyethylene/propylene, styrene-Butadiene, poly urethane, Epoxy, PET, Kinetics, reaction rates, diffusional limitations, Biodegradable polymers.	
31	CET 1604E: Polymer Processing (Chemical Engineering Department)	4
	Plastic Technology: Moulding, (injection, blow) extrusion, cold-not and vacuum forming multipolymer systems. Equipment design and operating conditions Fibre Technology: Textile processing, fiber spinning and after treatment. Equipment design and operating conditions Flastomer Technology: Vulcanization, Painforcement compounding	
	Elastomer Technology: Vulcanization, Reinforcement compounding Equipment- design & operating conditions, environmental impact	
	24-7 avoign a operating conditions, on monitorial impact	

Electives Syllabus Page 179 of 185

	Recycle of polymers: Reprocessing techniques and limitations	
	Selection of polymers: domestic & engineering usage	
	Rheological and mechanical measurements concept of solution viscosity	
32	CET 1211E: Polymer Reactor Engineering (Chemical Engineering Department)	4
	Kinetic modelling, concept of reactor design, optimization and control of polymerization process, isolation, and separation of monomers/catalyst/by products etc. for Bulk polymerization, Solution polymerization, Emulsion polymerization, suspension polymerization with case studies Kinetic modelling of co-polymerization processes.	
33	CET 1605E: Advanced topics in Polymer Chemistry/Physics Characterization/Analysis of	4
55	Polymers (Chemical Engineering Department)	_
	Structure/property relationship: Morphology & Crystallinity Mechanical and Chemical properties.	
	Structure/Rheology relationships.	
	Rheology, elasticity, Viscoelasticity, yield, and fracture chemical resistance	
	Properties of commercial polymers. PE, PP, Acrylic, amides & peptides phenolic & Urethane resins	
	Role of Additives: Type of additives and their role in altering the properties	
	Polymer composites: Carbon filled; fibre filled etc. Reinforced polymers	
	Analysis of polymer solubility, thermodynamics and phase equilibrium of polymer solutions, End group analysis, Colligative property measurement, Light scattering, Solution viscosity and molecular size and wt. distribution. Spectroscopic methods, microscopy, thermal analysis.	
	Selection of polymers, domestic and engineering usage.	
34	CET 1510E: Fuels Engineering (Chemical Engineering Department)	4
	Classification of fuels: G/L/S	
	Automotive Fuels Bharat Standards II III & IV	
	Gaseous Fuels:	
	Natural Gas: Processing for pipeline specs	
	CO ₂ /H ₂ S/COS Removal	
	Gas dehydration	
	Gas compression for pipeline transport	
	Coal bed methane, Biogas (methane)	
	CNG: As auto fuel	
	Compression, CNG stations	
	LNG: Liquefaction of NG JT effect, closed & open cycle, Storage of	
	LNG, Transportation of LNG, vessels / truck, terminal, Gasification	
	of LNG to NG for pipeline transport	
	Liquid Fuels:	
	- Refinery sources, Reforming for fuels	
	- LPG: Domestic and Auto LPG, Storage and handling,	
	- Manufacture and Storage (Partly in I&EC) Petrol, Diesel, Aviation Turbine Fuel, HSD, LDO. Furnace oil, Fuel oil, LSHS.	
	- Biofuels: bioethanol, biodiesel	
	Solid Fuels: Characterization	
	- Coal	
	- Biomass	
	- Residue from Refinery	

Electives Syllabus Page 180 of 185

	- Plastic waste	
	- Municipal domestic waste	
	Combustion of Fuels:	
	- Basic equation, air requirement norms for excess air.	
	- Heating value: GHV/LHV Calculations for mixture of components	
	- Wobbe number for Gaseous Fuels definition and significance.	
	- Burners: Gas/Liquid/Hydrogen	
	- Flue gas composition, Dew point calculations	
	- Treatment of flue gas to meet local standards, Carbon Credit	
	Gasification of	
	- Coal, Indian Coal	
	- Biomass	
	- Refinery Heavy Residue	
	Power generation, combined cycle, cogeneration	
35	CET 1511E: Plant Utilities (Chemical Engineering Department)	4
	Role of Process Utilities in process industries. Impact on Project economics	
	Water, its characteristics and its conditioning and treatment for process industries e.g. boiler feed water, cooling water. Recycling aspects of water from blow downs.	
	Application of steam systems in chemical process plants, design of efficient steam heating systems, condensate utilization, flash steam, steam traps.	
	Characteristics properties, classification, selection, and industrial applications	
	Characteristics of air and air receivers, instrument air. Inert gas generation	
	Vacuum system engineering.	
	Electrical Power:	
	HT/LT	
	Area classification,	
	Motors/drives selection accordingly.	
	Single line diagram.	
	Emergency Drives Identification	
	Emergency power. Inverters, DG sets. Etc.	
	Estimation of utilities	
	Utilities Audit	
36	CET 1512E: Project Management: Case Study Approach (Chemical Engineering Department)	4
	Project: meaning, Different types, why to manage, cost overruns centers, various stages of project execution: conception to commissioning.	
	Project execution as a conglomeration of technical and non-technical activities.	
	Detailed Engineering activities.	
	Pre project execution main clearances and documents	
	Project team: Role of each member. Importance	
	Project site: Data required with significance.	
	Project contracts. Types and contents.	
	Project execution	
	Project cost control.	
	1 Toject cost control.	L

Electives Syllabus Page 181 of 185

	Bar charts and Network diagram.	
	Project commissioning: mechanical and process.	
37	CET 1606E: Advanced Materials (Chemical Engineering Department)	4
	Nanostructured Materials: Metal nano particles, their structure and properties; Carbon nano tubes: manufacture, properties and applications; Nano materials in catalysis.	
	Composite Materials: Polymer composites, metal-metal composites, polymer-metal composites, metal- ceramic composites.	
	Superconducting Materials: Principles of superconductivity, properties, advantages and limitations of superconductors. Applications of superconductors	
	Smart Materials: Shape memory alloys, Auxetic materials and Biomimmicking materials. Stimuli for sensors and actuators.	
38	CET 1513E: Process Systems Engineering (Chemical Engineering Department)	4
	Introduction to Systems Engineering: Systems and their origin, examples of problems in Systems Engineering	
	Foundations of Systems Engineering: Scope and Formulation of Engineering Problems, Goals, Objectives, Specifications and Constraints, Types of Models; Hierarchical decomposition of systems, Types of Problems: Forward solution and inversion of models	
	Structural Analysis of Systems: Graphs and digraphs: Representation of systems, Partitioning and Precedence Ordering of systems, Structural analysis of modeling equations, Structural controllability and observability of systems, Applications to engineering problems	
	Steady State Analysis of Systems: Formulating steady-state models and simulations, Degrees of freedom and design specifications, The Sequential-Modular Strategy, The Equation-Oriented Strategy, Applications to engineering problems.	
	Optimization of Systems: Theory and Algorithms: Basic concepts and definitions, Linear programming, Unconstrained nonlinear optimization, Nonlinear Programming, Combinatorial optimization, Applications to engineering problems	
	Simulation of Dynamic Systems: Basic concepts: Systems described by ODEs and DAEs, formulating dynamic simulations; consistent initialization, Numerical integration of ODEs and DAEs, Modeling-simulation of hybrid Discrete/Continuous systems, Applications to engineering systems.	
	Model-Based Process Control: The nature of feedback control, The concept of model-based control systems, Design, and analysis of model-based control systems applications	
39	CET 1106: CFD applications in chemical processes (Chemical Engineering Department)	4
	Derivation of equations of momentum and energy for turbulent flows.	
	Finite volume technique	
	One dimensional heat conduction and flow	
	Grid generation.	
	Space and time discretization	
	Pressure velocity coupling (simple, simpler & SIMPLEC)	
	Open FOAM software, simulation of pipe flow, backward step, flow past cylinder	
	Commercial software, simulation of pipe flow, backward step, flow past cylinder, stirred vessel, bubble column, cyclone separator, spray dryer etc.	
	Suggested Books:	
	Versteeg and malalasekera, "An introduction to computational fluid dynamics. The finite volume method", (2007)	
	Patankar S., "Numerical heat transfer and fluid flow", (1980)	

Electives Syllabus Page 182 of 185

40 CET 1407: Process Design of Heat and Mass Transfer Equipment 4 (3 Credits: 2 Lectures + 1 Tutorial: 3 hours per week, 45 hrs. total) Advanced Process design aspects of various process equipment will be considered through several case studies; and will cover hydrodynamic characteristics, heat and mass transfer characteristics, selection criteria, etc. The topics will include some of the following equipment (but not limited to): (1) Equipment for heat transfer: plate heat exchangers, plate fin exchangers, finned tube exchangers, thermo-siphon reboilers, evaporators, condensers, etc. (2) Equipment for Unit operations: plate and packed columns, spray towers, etc. Equipment for Multiphase reactions: Stirred tanks, gas inducing reactors, bubble columns / modified bubble columns, air-lift reactors, packed and plate columns, trickle bed reactors, ejectors, etc. 41 **CET 1408 Advanced Membrane Separations** 4 Introduction: classification and definitions Membrane Processes and their applications: Microfiltration, Ultrafiltration and micelle-enhanced ultrafiltration, Nanofiltration, Reverse osmosis, Dialysis, piezo dialysis, electrodialysis, Pervaporation and membrane distillation, Gas permeation, Liquid membranes, Ion exchange membranes Transport mechanisms, and mathematical modelling. Membranes: Design of membranes, Characterization Polarization and fouling: Polarization phenomena and fouling concentration polarization, Characteristic flux behavior in pressure driven membrane operation, Membrane fouling, Methods to reduce fouling Process design: modules and configurations: Capillary, hollow fiber, tubular, Plate and frame, Spiral wound. Membrane reactors and their applications in biotechnology Textbooks: Mulder, M.H.V. Membrane Separations, Springer. Philip, R., Wankat, C. Rate-Based Separations, Springer. Reference books: Nunes, S.P., Peinemann, K.V. Membrane Technology in the Chemical Industry, Wiley. Rautanbach and R. Albrecht, Membrane Processes, Wiley. Crespo, J.G., Bodekes, K.W. Membrane Processes in Separation and Purification, Kluwer Academic Publications. Geankoplis, C.J. Transport Processes and Unit Operations, Prentice-Hall. 42 **CET 1607 Biomaterials: Biodegradable Materials for Biomedical Applications** Introduction of Biomaterials Biomaterials Surfaces: Structure and Properties, Surface Energy Adsorption and Reconstruction at Surfaces, **Protein-Surface Interactions** Proteins: Structure, Properties, Functions, Protein Adsorption: Complex Phenomena, Measurement Cell-Surface Interactions: Host Response to Biomaterials: Cell adhesion mechanism, coagulation cascade, immune response Surface Characterization: AES, XPS, AFM, Contact Angle Quantifying Cell Behavior: Cell Culture, Cellular Assays Biosensors and Diagnostic devices

Electives Syllabus Page 183 of 185

Drug Delivery: Controlled Release, Diffusion Controlled and Membrane based devices, Mechanical Pumps Biomaterial for Organ Replacement Mechanical Properties, Bone Substitutes Introduction of Tissue Engineering: Cell, Scaffold design, Artificial liver, pancreas, cartilage Regulatory overview Textbooks: Ratner, Buddy D., et al. Biomaterials Science: An Introduction to Materials in Medicine. 2nd ed. Burlington, MA: Academic Press, 2004. ISBN: 9780125824637. 43 **MAT XXXXE: Machine Learning** 4 Machine Learning Concepts: Mean Square Error (MSE), Training Error, Test Error, Bias-variance trade-off, Measuring the quality of fit, Regression Diagnostics, Understanding the concept of model flexibility and prediction accuracy, Universal behavior of Training and Test MSE. Case study of linear regression with K-nearest neighbor regression Model Selection and Regularization: Validation set approach, Leave-One-Out-Cross-Validation, K-fold cross validation, best subset selection, Forward Selection, Backward selection, Hybrid selection, shrinkage methods: Ridge regression, Lasso, Least angle regression. Decision Trees, Bagging and Boosting, Random Forests, Gradient Boosting, Artificial Neural Network Classification problem: Logistic Regression, Support Vector Machines, Receiver operating characteristic (ROC) curves, Area under the curve (AUC) and other related accuracy measures Multivariate methods: Principal Component Analysis, Factor Analysis, Principal component regression, K-means clustering, Hierarchical Clustering, Multi-dimensional scaling. Textbooks: 1. Andreas C. Müller and Sarah Guido, Introduction to Machine Learning with Python: David Barber A Guide for Data Scientists, (2016), O'Reilly Media. 2. Hands on Machine Learning with R by Bradley Boehmke and Brandon Greenwell, CRC Press, 3. Introduction to Statistical Learning with Application in R by James, G., Witten, D., Hastie, T. and Tibshirani, R, 2011. 4. All of Statistics: A concise course on Statistical Inference by Larry Wasserman, 2009. 5. The Elements of Statistical Learning by Jerome H. Friedman, Robert Tibshirani, and Trevor Hastie (2001), Springer. 6. Ethem Alpaydin, Introduction to Machine Learning by (2004), The MIT Press, Cambridge. 7. Ian H. Witten, Eibe Frank, Mark A. Hall, Data Mining: Practical Machine Learning Tools and Techniques by (2011), Elsevier 8. Machine Learning: A Probabilistic Perspective (Adaptive Computation and Machine Learning series) by Kevin P. Murphy (2012) 44 **MAT XXXXE: Optimization Techniques** 4 Review of local maximum/minimum Method of Lagrange Multipliers and KKT methods One dimensional Optimization Techniques: Fibonacci search method, Golden section method and interpolation method. Direct Search unconstrained optimization: Powell's method, Nelder-Mead (simplex) method Gradient Search Optimization Methods: Steepest Descent Method, Newton's Method, Conjugate gradient methods

Electives Syllabus Page 184 of 185

Linear Programming: Simplex Method, Revised Simplex Method and other Advanced Methods, **Integer Programming** Modern Optimization Techniques; Genetic Algorithms, Simulated Annealing, Ant Colony Optimization Textbooks: 1. Engineering Optimization: theory and practices, S.S. Rao, New Age International Pvt. Ltd. 2. An Introduction to Optimization, Edvin K. P. Chong & Stanislab H. Zak, Wiley Publication 3. Optimization for Engineering Design, K. Deb, Prentice Hall, India 45 **HUT 1102E: Perspectives of Society, Science and Technology** 4 History of Science and Technology and its relevance in the respective era Recent developments in technology (chemical, biotechnology energy, telecommunications, etc.) and their influence on society **Economics and Sustainable Development** Value system and Ethics in the profession of Technology, Science and Engineering. Problems before the World and India. Various approaches in solving them. Integrating Issue: Society and Science Industrial disasters and their effect on science, technology, and society Environmental degradation, global warming and their effect on science, technology, and society IPR issues and their relevance to science, technology, and society Some aspects of the future of Society, Technology, Science and Engineering. Interdependence of Theology and Science Impact of climate change on the nexus of water, energy, and water Technology and World Peace Role of Innovation and R&D Industry-Academia Interaction to Enhance Standard of Living Textbooks:

Science, Technology and Society: An Encyclopedia by Sal Restivo, Oxford University Press 2005 Science, Technology and Society: A Sociological Approach by Wenda K. Bauchspies, Jennifer Croissant, Sal P. Restivo

Vision of STS: Counterpoints in Science Technology and Society Studies by Stephan H. Cutcliffe, Carl Mitcham, Sunny Press 2012

Electives Syllabus Page 185 of 185