Syllabus for Integrated Master of Technology (Int. M. Tech.) Major: Chemical Engineering and Multidisciplinary Minor (MDM)

(Under the National Education Policy 2020) (NEP 2020)

in

(2023-2024)

Offered by

INSTITUTE OF CHEMICAL TECHNOLOGY MUMBAI MARATHWADA CAMPUS, JALNA

(University Under Section-3 of UGC Act, 1956)

Elite Status and Center for Excellence Government of Maharashtra

BT-5/6, Biotechnology Park, Additional MIDC Area, Chhatrapati Sambhajinagar (Aurangabad) Road, Jalna: 431 203 (INDIA)

www.ictmumbai.edu.in, www.marj.ictmumbai.edu.in

Tel: (91-22) 3361 1111, Fax: 2414 5614

A. Preamble

The Institute revamped the syllabi of various courses in 2023 as per National Education Policy 2020. All the courses are credit based and the evaluation are grade based. The credit system is a systematic way of describing an educational programme by attaching credits to its components. The definition of credits is based on student workload, learning outcomes and contact hours. It is a student-centric system based on the **student workload** required to achieve the objectives of a programme. Each theory course consists of lectures and tutorials. During tutorial session it is expected that the problem solving, case studies, relevant real-life applications, student presentations, home assignments, or projects (individual or group) are discussed in presence of the teacher. Teacher can have the freedom to interchange lectures / tutorials depending upon the need. Each laboratory course consists of practical hours and/or extra lecture hours depending upon the need. The Institute gives emphasis on continuous evaluation with considerable freedom to the teacher in deciding the mode of evaluation of the students. It is desirable to revise the syllabi of various courses every 5-6 years. Accordingly, the syllabus for Integrated Master of Technology (Int. M. Tech.) program is being revised. The revised syllabus comes into effect for first year students from the academic year 2023-24.

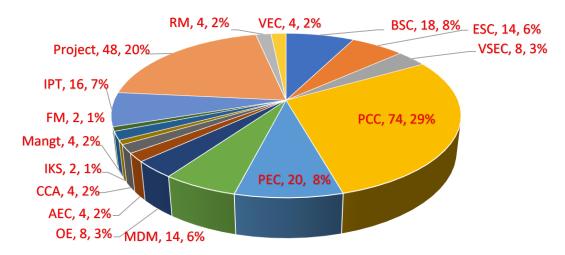


Figure 1. Distribution of various course types (in percentage) for the programme as per the guidelines of NEP 2020. This distribution does not include Honours courses having 18 credits in total.

Detailed discussions were conducted by the joint syllabus revision committee consisting of representative from both ICT Marathwada and ICT-IOC Campuses, and Department of Chemical Engineering, ICT Mumbai, and the following Programme Education Objectives (PEO), Programme Outcomes (PO) and Graduate Attributes (GA) were agreed upon. The revised syllabus is in line with the PEO, PO, and GA as noted below.

B. Programme Education Objectives (PEOs)

PEO1	Create awareness amongst students about the social/industrial demands and role of chemical engineer in the society.
PEO2	Incorporate a culture of research and Innovation by providing students with latest facilities.
PEO3	Provide a platform to the students to interact with leading teachers, scientists, and industry practitioners.
PEO4	Multi-faceted development of students through co-curricular and extra-curricular activities, participation in various events
PEO5	Build technical and managerial capabilities amongst students to meet the needs of society and industry.

C. Programme Outcome (POs)

PO1	Engineering knowledge	Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
PO2	Problem analysis	Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences
PO3	Design/ development of solutions	Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations
PO4	Conduct investigations of complex problems	Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
PO5	Modern tool usage	Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations
PO6	The engineer and society	Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
PO7	Environment and sustainability	Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development
PO8	Ethics	Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice
PO9	Individual and teamwork	Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
PO10	Communication	Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
P011	Project management and finance	Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments
PO12	Life-long learning	Recognize the need for and have the preparation and ability to engage in independent and lifelong learning in the broadest context of technological change.

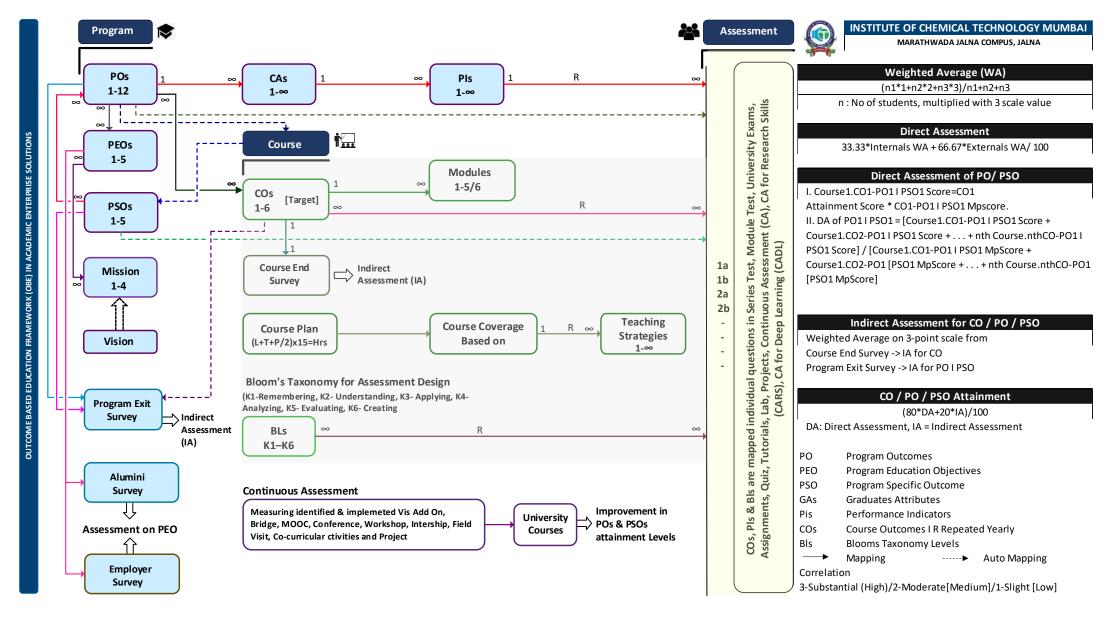
D. Programme Specific Outcome (PSOs)

The graduates will be able to:

PSO1	Factual	Understand terminology, basic concepts of science, mathematics, and
	Knowledge	fundamentals of engineering particularly in Chemical Engineering

PSO2	Conceptual Knowledge	Comprehend theories or models, choose appropriate model, equipment, or process to meet the specified needs considering feasibility, safety, health hazards, societal, economic, environmental or sustainability factors as well as critically analyze relationships between these factors
PSO3	Procedural Knowledge	Investigate, conduct experiments, research, or model as per standards, collect and analyze information based on field visits, analysis, and interpretation of data to prepare the valid technical reports.
PSO4	Metacognitive Knowledge	Apply Chemical Engineering knowledge in various sectors of industry, environment, life, and society, as well as develop solutions to complex problems applying principles and knowledge gained throughout the program or to develop new knowledge or methodologies through research
PSO5	Industrial and Societal Perspective	Cater to the needs of chemical industry, research organizations and academic institutes. set-up their own ventures and generate employment, promote awareness in society about Chemical Engineering profession.

E. Graduate Attributes (GAs)


- 1. Problem analysis and solving skills.
- 2. Familiar with usage of modern tools, techniques
- 3. Communication Skills
- 4. Capacity to analyze new concepts.
- 5. Capacity to analyze and interpret experimental data Capacity to analyze business trends.
- 6. Capacity to design, optimize and operate equipment and plants safely, economically, and effectively.
- 7. Design and Development of solutions to industrial and societal needs.
- 8. Skills related to Project Management and Economics
- 9. Skills to analyze scientific literature including patents.
- 10. Ethics

F. Vision

To be a vibrant educational institute with innovative programs and research culture in the field of chemical and allied sciences.

G. Mission

- 1. Produce trained engineers and problem solver research fellows.
- 2. Develop science and technologies of global standards having relevance to India as well as to local Industry from Marathwada region.
- 3. Develop entrepreneurship and provide incubation centres for encouraging Start-ups in Marathwada region.
- 4. Catalyse the process of generating wealth from knowledge creating bridge among industry, agriculture, environment, and society.

H. Syllabus Structure for Int. M. Tech.

Semester I

Course Code	Subjects	Course Type	Credits	Н	Irs/We	ek	Marks for various Exams					
				L	T	P	C. A.	M. S.	E.S.	Total		
CHT4151	Applied Chemistry	BSC	2	2	0	0	20	30	50	100		
CHP4151	Applied Chemistry Lab	BSC	2	0	0	4	0	50	50	100		
MAT4151	Mathematics - I	BSC	4	3	1	0	20	30	50	100		
PHT4151	Applied Physics	BSC	2	2	0	0	20	30	50	100		
PHP4151	Applied Physics Lab	BSC	2	0	0	4	0	50	50	100		
EST4151	Structural Mechanics	ESC	2	2	0	0	20	30	50	100		
ESP4151	Structural Mechanics Lab	ESC	2	0	0	4	0	50	50	100		
ESP4152	Engineering Graphics with Computer Aided Modelling	VSEC	2	0	0	4	0	50	50	100		
HUP4151	Communication Skills- English	AEC	2	0	0	4	0	50	50	100		
HUPXXXX	OPEN Activity- Sports/ Fine arts/Yoga/ Music/NSS	CCA	2	0	0	4						
	Total		22	09	1	24						

Semester II

Course Code	Subjects	Course Type	Credits	E	Irs/We	ek	Marks for various Exams					
				L	T	P	C. A.	M. S.	E.S.	Total		
CHT4152	Applied Chemistry II	BSC	2	2	0	0	20	30	50	100		
MAT4152	Mathematics: II	BSC	4	3	1	0	20	30	50	100		
EST4153	Electrical Engineering and Basic Electronics	ESC	2	2	0	0	20	30	50	100		
ESP4153	Electrical Engineering and Basic Electronics Lab	ESC	2	0	0	4	0	50	50	100		
EST4152	Mechanical Engineering	ESC	4	3	1	0	20	30	50	100		
EST4154	Introduction to Chemical Engineering	ESC	2	2	0	0	20	30	50	100		
CEP4151	Material Balance and Energy Balance Calculations	PCC	2	0	0	4	0	50	50	100		
ESP4154	Engineering Applications of Digital computers	VSEC	2	0	0	4	0	50	50	100		
HUTXXXX	MOOC- Indian Knowledge System	IKS	2	2	0	0	20	30	50	100		
HUPXXXX	OPEN Activity- Sports/ Fine arts/Yoga/ Music/NSS	CCA	2	0	0	4						
	Total		24	14	2	16						

Note: Universal Human Values (UHV) an audit course to be taken in inter-semester break after Semester-II to be taken as MOOC course.

^{**} Students will undertake these co-curricular activities such as sports / Fine Arts / Yoga / Music / Literature etc administered through various clubs under Technological Association approved by Dean, Students Affairs.

Course Code	Subjects	Course Type	Credits	F	Irs/We	ek	Marks for various Exams				
				L	T	P	C. A.	M. S.	E. S.	Total	
CEP4171	IPT (4-6 months): Only for student opting for exit at certificate Level (Year 1)	IPT	8	0	0	40					
	Total		8			40					

Semester III

Course Code	Subjects	Course Type	Credits	Н	Irs/We	ek	Mar	ks for va	rious E	xams
Couc		Турс		L	T	P	C. A.	M. S.	E. S.	Total
CET4251	Fluid Flow	PCC	2	1	1	0	20	30	50	100
CET4252	Heat Transfer	PCC	2	1	1	0	20	30	50	100
EST4155	Engineering Thermodynamics	PCC	2	1	1	0	20	30	50	100
CET4253	Industrial Chemistry and Reaction Engineering	PCC	4	3	1	0	20	30	50	100
CEP4251	Chemical Engineering Lab-I	PCC	2	0	0	4	0	50	50	100
XXT	From sciences and/or any other Engineering Discipline	MDM	2	2	0	0	20	30	50	100
XXT	From Basic Sciences (Chemistry/ Physics/Biology / Maths)	OE	2	2	0	0	20	30	50	100
XXP	From Basic Sciences (Chemistry/ Physics/Biology / Maths)	OE	2	0	0	4	0	50	50	100
XXT	From Basic Sciences (Chemistry/ Physics/Biology / Maths/ material Science)	OE	2	2	0	0	20	30	50	100
HUPXXXX	Modern Indian Language (Marathi / Hindi or Any other language will be chosen)	AEC	2	0	0	4	0	50	50	100
HUT4156	Basic Principles of Finance & Economics	Management	2	2	0	0	20	30	50	100
CET4257	Environmental Sciences	VEC	2	2	0	0	20	30	50	100
	Total		26	18	4	8				

Semester IV

Course Code	Subjects	Course Type	Credits	F	Irs/We	ek	Mar	ks for va	rious E	xams
				L	T	P	C. A.	M. S.	E. S.	Total
CET4254	Chemical Engineering Operations	PCC	4	2	2	0	20	30	50	100
CET4255	Process Safety	PCC	2	1	1	0	20	30	50	100
CET4256	Instrumentation and Process Dynamics	PCC	2	1	1	0	20	30	50	100
XXT	From sciences and/or any other Engineering Discipline	MDM	2	2	0	0	20	30	50	100
XXP	From sciences and/or any other Engineering Discipline	MDM	2	0	0	2	0	50	50	100
XXT	From Basic Sciences (Chemistry/ Physics/Biology / Maths/ material Science)	OE	2	2	0	0	20	30	50	100
CEP4252	Chemical Engineering Lab-II	PCC	2	0	0	4	0	50	50	100
HUT4157	Industrial Management	Management	2	2	0	0	20	30	50	100
ESP4157	Digital Computation in Emerging areas (AI/ML/DA)	VEC	2	0	0	4	0	50	50	100
HUP4158	Community Projects	Field Project	2	0	0	4	0	50	50	100
CETxxxx	Chemical Engineering Elective: I	PEC	4	3	1	0	20	30	50	100
	Total		26	13	5	14				

[#] Students will undertake community projects as individual or group related to study of societal technological activities through various organization such as Lions club, Teach India, Marathi Vidnyan Parishad, CSR projects outsourced by various industries, ISR activities administered through Technological Association approved by the Dean, Student Affairs.

Course Code	Subjects	Course Type	Credits	Hrs/Week			Marks for various Exams				
				L	T	P	C. A.	M.S.	E. S.	Total	
CEP4272	IPT (4-6 months): Only for student opting for exit at Diploma Level (Year 2)	IPT	8			40					
	Total		8			40					

$Semester \ V$

Course Code	Subjects	Course Type	Credits	E	Irs/We	ek	Marks for various Exams				
				L	T	P	C. A.	M.S.	E. S.	Total	
CET4351	Chemical Reaction Engineering	PCC	2	1	1	0	20	30	50	100	
CET4352	Momentum Transfer	PCC	2	1	1	0	20	30	50	100	
CET4353	Chemical Engineering Thermodynamics	PCC	4	3	1	0	20	30	50	100	
CEP4253	Chemical Engineering Lab: III	PCC	2	0	0	4	0	50	50	100	
CEP4255	Process Simulation Lab: I	PCC	2	0	0	4	0	50	50	100	
CETxxxx	Chemical Engineering Elective-II	PEC	4	3	1	0	20	30	50	100	
CETxxxx	Chemical Engineering Elective-III	PEC	4	3	1	0	20	30	50	100	
XXT	From sciences and/or any other Engineering Discipline	MDM	2	1	1	0	20	30	50	100	
XXP	From sciences and/or any other Engineering Discipline	MDM	2	0	0	2	0	50	50	100	
CETxxxx	Honors Course -1/Research-1	PCC	4	3	1	0	20	30	50	100	
	Total		28	15	7	10					

Semester VI

Course Code	Subjects	Course Type	Credits	F	Irs/We	ek	Mar	xams		
				L	T	P	C. A.	M.S.	E. S.	Total
CET4362	Honors Course 2/Research-2	PCC	4	3	1	0	20	30	50	100
CET4354	Chemical Process Control	PCC	2	1	1	0	20	30	50	100
CET4356	Separation Processes	PCC	2	1	1	0	20	30	50	100
CET4357	Heat Transfer Equipment design	PCC	2	1	1	0	20	30	50	100
CETxxxx	Chemical Engineering Elective-IV	PEC	4	3	1	0	20	30	50	100
CET4363	Honours Course-3/Research-3	PCC	4	3	1	0	20	30	50	100
XXT	From Sciences and/or any other Engineering Discipline	MDM	2	1	1	0	20	30	50	100
CEP4256	Process Simulation Lab-II	PCC	2	0	0	4	0	50	50	100
CEP4254	Chemical Engineering Lab-IV	PCC	2	0	0	4	0	50	50	100
CET4358	Chemical Project Economics	PCC	2	2	0	0	20	30	50	100
CET4373	IPT (after Semester VI exams for Eight weeks)	IPT	4	0	0	0				
	Total		30	15	7	8				

Semester VII

Course	Subjects	Course	Credits	Н	Irs/We	ek	Mar	ks for va	rious E	xams
Code		Туре								
				L	T	P	C. A.	M. S.	E.S.	Total
CET4451	Chemical Process Development and Engineering	PCC	3	2	1	0	20	30	50	100
CET4452	Chemical Industrial Management	PCC	2	2	0	0	20	30	50	100
CETxxxx	Chemical Engineering Elective V	PEC	4	3	1	0	20	30	50	100
CEP4451	Chemical Process Equipment Design and drawing	PCC	2	0	0	4	0	50	50	100
CETxxxx	Honours Course-4/Research-4	PCC	2	2	0	0	20	30	50	100
CETxxxx	Honours Course-5/Research-5	PCC	4	3	1	0	20	30	50	100
XXT	From sciences and/or any other Engineering Discipline	MDM	2	2	0	0	20	30	50	100
CEP4452	Literature Review	RM	2	1	0	2	0	50	50	100
CEP4453	Design and Analysis of Experiments	RM	2	1	0	2	0	50	50	100
CEP4461	Design Project - I	Project	4	0	0	8				
	Total		27	16	3	16				

Semester VIII

Course Code	Subjects	Course Type	Credits	H	Hrs/Week Marks for various I						
			_	L T P			C. A.	M.S.	E.S.	Total	
CEP4474	IPT (4-6 months)	IPT	12	0	0	40					
	Total		12	40							

Semester IX

Course Code	Subjects	Course Type	Credits	s Hrs/Week			Marks for various Exan				
				L T P		C. A.	M. S.	E.S.	Total		
CET4551	Advanced Transport Phenomena	PCC	3	2	1	0	20	30	50	100	
CET4552	Advanced Separation Processes	PCC	3	2	1	0	20	30	50	100	
CET4553	Advanced Reaction Engineering	PCC	3	2	1	0	20	30	50	100	
CET4554	Advanced Mass transfer	PCC	3	2	1	0	20	30	50	100	
CEP4563	Thesis	Research	10	0	0	40					
	Total		22	8 4 40							

Semester X

Course Code	Subjects	Course Type	Credits	Hrs/Week			Marks for various Exam					
			_	L T P			C. A.	M. S.	E.S.	Total		
CEP4564	Thesis	Research	22	0	0	40						
	Total		22	40								

BSC: Basic Science Course
ESC: Engineering Science Course
PCC: Program Core Course
PEC: Program Elective Course

MDM: Multi-disciplinary Minor: Different discipline of engineering or different faculty altogether OE: Open Elective: To be chosen Compulsorily from faculty other than major discipline VSEC: Vocational and Skill Enhancement Course: Hands on training corresponding to major/minor

AEC: Ability Enhancement Course: English 2 credit, Modern Indian Language 2 credit IKS: Indian Knowledge System: Indian Architecture/ Maths/ Medicine/ Technologies

VEC: Value Education Course: e.g. Understanding India, Environmental Science, Education, Digital and Tech solution

RM: Research Methodology

CCA: Co-curricular activities: Health and wellness/ Yoga/ Sports/ Cultural activities/ NSS/ NCC/ Applied visual

performing arts

Bachelor's Eng./ Tech. Honor's Degree

The Bachelor of Chemical Engineering Honours Degree programme with a multi-disciplinary degree Minor degree enables a student to take up five-six additional courses of 18 to 20 credits in the Chemical Engineering and allied disciplines distributed over semesters III to VIII. The decision regarding the distribution of these 18-20 credits over these semesters will be taken by Academic Authorities of University.

Eligibility for Int. M. Tech. with Honors or Research Degree program:

Eligibility for admission to the Bachelor of Chemical Engineering with Double Minor/ Honors /Research shall be a Minimum CGPA of 7.5 after the Fourth semester for Bachelor of Chemical Engineering Degre as per UGC guidelines:

Honors Courses: (ICT Marathwada Campus will recommend Honors courses to be taken by the students. These could typically be the following.

Honors - I: Biochemical Engineering

Honors - II: Multiphase Reaction Engineering

Honors - III: Mathematical Methods & Optimization in Chemical Engineering

Honors - IV: Refinery Science and Engineering Honors - V: Catalytic Science and Engineering Honors: VI: Statistical Thermodynamics

Bachelor's Eng./ Tech. Honours with Research Degree in Chemical Engineering

Under Bachelor of Technology (Major: Chemical Engineering) with Research Degree in chemical Engineering with a Multidisciplinary Minor degree, the students will work on a research project or dissertation for additional 18 credits in the Third and Fourth years in Chemical Engineering and allied subjects. The decision regarding the distribution of 18 credits for Research Project in Semesters VII and VIII of the Fourth Year will be taken by Academic Authorities of University.

Multidisciplinary Minor Degree will be offered to the Chemical Engineering students in

- (a) Food Technology
- (b) Pharmaceutical Chemistry & Technology
- (c) Lipid Engineering
- (d) Polymer and Materials Engineering
- (e) Energy Technology
- (f) Petroleum and Petrochemicals Technology
- (g) Material Physics
- (h) Chemical Sciences

EXIT Options

Based on the National Education Policy guidelines, the students have an option of exiting at each level of their four-year program. Student will get certificate after 1st year, diploma after second year and BSc (Tech/Eng) after third year.

Sr. No.	Exit Year	Activity to be completed for the option of an exit	Credits	Duration (No. of Weeks)
1	1 st Year (After Semester II)	8 Credit course workshop or chemistry lab (after Semester II)	8	8 weeks
2	2 nd Year (After Semester IV)	Certificate Course in Practice of Chemical Engineering (CCPCE)	8	8 weeks
3	3 rd Year (After Semester VI)	In-plant training	8	8 weeks

The exit paths for the program were discussed and resolved to be as follows:

Exit Option (Semesters)	Nomenclature of Exit Outcome
Year 1 (2 Semesters)	Certificate (Chemical Engineering)
Year 2 (4 Semesters + IPT)	Diploma (Chemical Engineering)
Year 3 (6 Semesters + IPT)	B. Sc. (Chemical Engineering)
Year 4 (8 Semester + IPT)	 B. Tech. (Major: Chemical Engineering, MDM minors) B. Tech. with Honors and Minor (Major: Chemical Engineering, MDM minors) with option for 1 year M. Tech. Degree
Year 5 (10 Semesters)	• M. Tech. (Major: Chemical Engineering, MDM minors), one year [+ B. Tech. with Honors and Minor (Major: Chemical Engineering, MDM minors) with option for 1 year M. Tech. Degree]

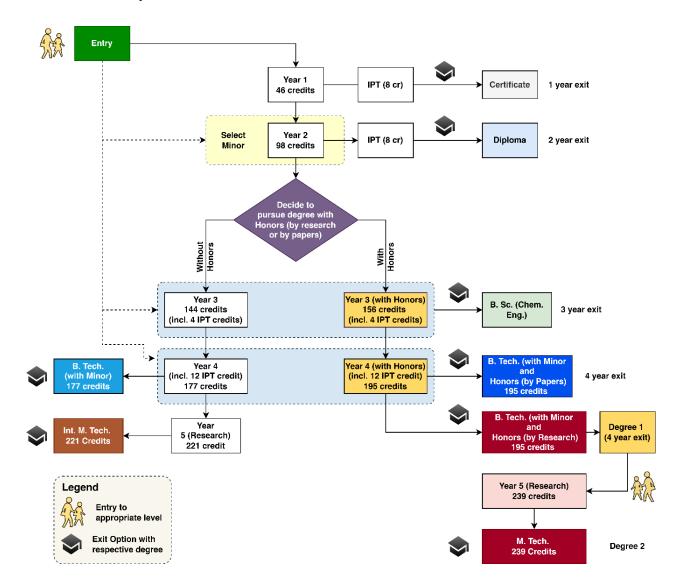


Figure 2. A map of options available for entry to Integrated Master of Technology in Chemical Engineering.

I. Summary of Mapping of Subject Course Outcomes (COs) with Programme Outcomes (POs))

Sem	Course	Course Name	Course		Map	ping of	Course	Outcon	nes (CO	s) with	Prograi	mme Oı	itcomes (POs)	
	Code		Type	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
			Firs	st Year											
I	CHT4151	Applied Chemistry	BSC	3	2	1	1	2	-	-	-	-	1	1	1
	CHP4151	Applied Chemistry Lab	BSC	3	3	1	2	2	1	-	-	-	2	2	1
	MAT4151	Mathematics-I	BSC	3	2	2	2	2	2	2	-	-	2	1	1
	PHT4151	Applied Physics	BSC	3	3	2	1	1	1	-	1	-	1	1	1
	PHP4151	Applied Physics Lab	BSC	3	1	1	2	1	-	-	-	-	1	-	-
	EST4151	Structural Mechanics	ESC	3	2	2	1	1	2	1	-	-	2	-	-
	ESP4151	Structural Mechanics Lab	ESC	3	1	1	-	-	-	-	-	-	1	-	-
	ESP4152	Engineering Graphics with Computer Aided Modelling	VSEC	2	1	1	1	2	-	1	-	-	1	1	1
	HUP4151	Communication Skills- English	AEC	-	-	2	1	1	1	-	-	-	3	1	-
	HUPXXXX	OPEN Activity- Sports/ Fine arts/Yoga/ Music/NSS	CCA	-	-	-	-	-	-	-	3	3	-	3	-
П	CHT4152	Applied Chemistry II	BSC	3	2	1	1	2	-	-	-	-	2	2	-
	MAT4152	Mathematics: II	BSC	3	2	1	2	2	1	-	-	-	-	1	1
	EST4153	Electrical Engineering and Basic Electronics	ESC	3	2	1	1	1	1	1	-	-	1	1	-
	ESP4153	Electrical Engineering and Basic Electronics Lab	ESC	3	2	1	1	1	1	1	-	-	1	-	-
	EST4152	Mechanical Engineering	ESC	3	2	1	1	1	2	2	-	-	-	-	-
	EST4154	Introduction to Chemical Engineering	ESC	2	2	1	2	1	1	1	1	-	2	1	1
	CEP4151	Material Balance and Energy Balance Calculations	PCC	2	2	1	2	1	1	1	1	-	1	1	1
	ESP4154	Engineering Applications of Digital computers	VSEC	-	2	2	2	2	1	-	1	-	1	-	1
	HUTXXXX	MOOC- Indian Knowledge System	IKS	-	-	-	-	-	2	1	3	1	3	-	-
	HUPXXXX	OPEN Activity- Sports/ Fine arts/Yoga/ Music/NSS	CCA	-	_		_	-		-	3	3		3	-
			Secon	nd Year											
III	CET4251	Fluid Flow	PCC	3	3	1	1	1	1	1	1	-	1	2	1

	CET4252	Heat Transfer	PCC	-	3	1	2	2	1	2	1	-	1	1	1
	EST4155	Engineering Thermodynamics	PCC	3	3	-	2	1	1	1	1	-	1	1	-
	CET4253	Industrial Chemistry and Reaction Engineering	PCC	3	2	1	2	2	1	1	-	-	1	1	2
	CEP4251	Chemical Engineering Lab-I	PCC	3	2	2	2	2	1	1	-	-	2	1	1
	XXT	From sciences and/or any other Engineering Discipline	MDM	3	1	-	-	-	2	3	-	1	2	1	1
	XXT	From Basic Sciences (Chemistry/ Physics/Biology / Maths)	OE	3	1	-	1	-	2	2	-	2	1	-	-
	XXP	From Basic Sciences (Chemistry/ Physics/Biology / Maths/ material Science)	OE	3	1	-	2	-	2	2	-	2	1	-	-
	XXT	From Basic Sciences (Chemistry/ Physics/Biology / Maths/ material Science)	OE	3	1	-	1	-	2	2	-	2	1		
	HUPXXXX	Modern Indian Language - (Marathi / Hindi or Any other language will be chosen)	AEC	-	-	-	-	-	-	-	-	-	3	-	-
	HUT4156	Basic Principles of Finance & Economics	Manage ment	-	1	3	2	-	1	1	-	-	1	1	1
	CET4257	Environmental Sciences	VEC	1	1	1	2	1	-	1	-	2	1	1	1
IV	CET4257 CET4254	Environmental Sciences Chemical Engineering Operations	VEC PCC	3	3	3	3	1	1	3	-	2	2	2	1
IV									- 1 1	3 3	- - -	- -		1 2 1	1 -
IV	CET4254	Chemical Engineering Operations	PCC	3	3	3	3	1 - - 2	1 1 2		- - -	- - -		1 2 1 2	1
IV	CET4254 CET4255	Chemical Engineering Operations Process Safety	PCC PCC	3	3	3	3	1 - - 2 1	1 1 2 3		- - - 1	2 - - - 2	2	1	1 - - 2
IV	CET4254 CET4255 CET4256	Chemical Engineering Operations Process Safety Instrumentation and Process Dynamics	PCC PCC PCC	3 3 3	3 3 2	3	3 3 2	1 - - 2 1 2		3	- - - 1 2	- -	2	1 2	1 1 - - 2 2
IV	CET4254 CET4255 CET4256 XXT	Chemical Engineering Operations Process Safety Instrumentation and Process Dynamics From sciences and/or any other Engineering Discipline	PCC PCC PCC MDM	3 3 3 3	3 3 2 2	3 3 2 1	3 3 2	1	3	3 1 2	- - - 1 2	- - - 2	2	1 2 2	
IV	CET4254 CET4255 CET4256 XXT XXP	Chemical Engineering Operations Process Safety Instrumentation and Process Dynamics From sciences and/or any other Engineering Discipline From sciences and/or any other Engineering Discipline From Basic Sciences (Chemistry/ Physics/Biology /	PCC PCC PCC MDM MDM	3 3 3 3	3 3 2 2	3 3 2 1	3 3 2 2 1	1	3	3 1 2 3	- - - 1 2	- - 2 2	2	1 2 2	
IV	CET4254 CET4255 CET4256 XXT XXP XXT	Chemical Engineering Operations Process Safety Instrumentation and Process Dynamics From sciences and/or any other Engineering Discipline From Sciences and/or any other Engineering Discipline From Basic Sciences (Chemistry/ Physics/Biology / Maths/ material Science)	PCC PCC PCC MDM MDM OE	3 3 3 3 3	3 3 2 2 1	3 3 2 1 2	3 3 2 2 1 2	1 2 -	3	3 1 2 3	- - - 1 2 -	- - 2 2	2 1 2 1 1	1 2 2	
IV	CET4254 CET4255 CET4256 XXT XXP XXT CEP4252	Chemical Engineering Operations Process Safety Instrumentation and Process Dynamics From sciences and/or any other Engineering Discipline From sciences and/or any other Engineering Discipline From Basic Sciences (Chemistry/ Physics/Biology / Maths/ material Science) Chemical Engineering Lab-II	PCC PCC MDM MDM OE PCC Manage	3 3 3 3 3 3	3 3 2 2 1 1	3 3 2 1 2 -	3 3 2 2 1 2	1 2 -	3	3 1 2 3	- - - 1 2 -	- - 2 2 2	2 1 2 1 1	1 2 2 2 -	

	CETxxxx	Chemical Engineering Elective: I	PEC	2	3	3	2	2	1	1	-	-	1	1	1
			Thir	d Year											
V	CET4351	Chemical Reaction Engineering	PCC	3	2	2	1	2	2	3	-	-	1	1	-
	CET4352	Momentum Transfer	PCC	3	2	2	2	1	2	2	-	-	1	1	-
	CET4353	Chemical Engineering Thermodynamics	PCC	3	2	1	2	1	2	1	-	-	-	2	-
	CEP4253	Chemical Engineering Lab: III	PCC	3	2	2	2	2	1	1	-	-	2	1	1
	CEP4255	Process Simulation Lab: I	PCC	2	2	2	1	1	1	-	2	-	-	2	-
	CETxxxx	Chemical Engineering Elective-II	PEC	3	2	1	1	2	2	1	1	3	-	2	-
	CETxxxx	Chemical Engineering Elective-III	PEC	3	2	1	1	2	2	1	1	3	-	2	-
	XXT	From sciences and/or any other Engineering Discipline	MDM	3	1	2	1	2	3	3	2	2	1	2	2
	XXP	From sciences and/or any other Engineering Discipline	MDM	3	1	2	1	2	3	3	2	2	1	2	2
	CETxxxx	Honors Course -1/Research-1	PCC	3	2	3	2	2	1	3	-	-	2	2	-
VI	CETxxxx	Honors Course 2/Research-2	PCC	3	2	1	2	2	2	2	-	-	2	2	-
	CET4354	Chemical Process Control	PCC	3	2	2	1	2	2	1	-	1	-	3	-
	CET4356	Separation Processes	PCC	3	2	2	1	2	2	2	-	-	1	2	-
	CET4357	Heat Transfer Equipment design	PCC	3	2	2	1	2	2	2	-	-	1	1	-
	CETxxxx	Chemical Engineering Elective-IV	PEC	3	2	1	1	2	2	1	1	3	-	2	-
	CET4363	Honours Course-3/Research-3	PCC	3	2	2	2	2	1	2	-	-	1	2	-
	XXT	From Sciences and/or any other Engineering Discipline	MDM	3	2	3	2	1	2	2	3	3	3	3	2
	CEP4256	Process Simulation Lab-II	VSEC	2	2	2	1	1	1	-	2	-	-	2	-
	CEP4254	Chemical Engineering Lab-IV	PCC	3	2	2	2	2	1	1	-	-	2	1	1
	CET4358	Chemical Project Economics	PCC	3	1	2	1	2	3	2	-	-	1	2	1
	CET4373	IPT (after Semester VI exams for Eight weeks)	IPT	3	2	2	2	1	2	2	1	2	1	3	2
			Four	th Year											
VII	CET4451	Chemical Process Development and Engineering	PCC	3	1	2	1	2	1	2	-	-	3	2	1
	CET4452	Chemical Industrial Management	PCC	-	-	2	1	-	1	-	3	1	2	2	2

	CETxxxx	Chemical Engineering Elective V	PEC	3	2	1	1	2	2	1	1	3	-	2	-
	CEP4451	Chemical Process Equipment Design and drawing	PCC	3	1	1	1	2	3	3	-	-	2	2	2
	CETxxxx	Honours Course-4/Research-4	PCC	1	2	3	2	2	3	3	1	1	1	2	-
	CETxxxx	Honours Course-5/Research-5	PCC	2	3	2	2	3	2	3	-	-	1	2	-
	XXT	From sciences and/or any other Engineering Discipline	MDM	2	1	1	2	2	3	3	2	2	2	3	3
	CEP4452	Literature Review	RM	2	3	3	2	1	1	2	1	-	3	2	-
	CEP4453	Design and Analysis of Experiments	RM	3	1	1	1	2	2	2	-	-	3	1	-
	CEP4461	Design Project - I	Project	3	2	2	2	2	1	2	1	2	3	2	-
VIII	CEP4474	IPT (4-6 months)	IPT	3	2	2	2	1	2	2	1	2	1	3	2
			Fifth	Year											
IX	CET4551	Advanced Transport Phenomena	PCC	3	2	2	2	2	1	1	-	-	2	2	-
	CET4552	Advanced Separation Processes	PCC	2	3	2	2	2	1	2	-	-	1	1	-
	CET4553	Advanced Reaction Engineering	PCC	3	2	2	2	2	2	2	-	-	1	1	-
	CET4554	Advanced Mass transfer	PCC	3	2	2	2	2	2	2	-	-	2	1	-
	CEP4563	Thesis	Research	3	2	2	2	2	1	2	1	2	2	3	3
X	CEP4564	Thesis	Research	3	2	2	2	2	1	2	1	2	2	3	3

J. Summary of Mapping of Honors Course Outcomes (COs) with Programme Outcomes (POs))

Sem	Course	Course Name			Maj	pping of	Course	Outcor	nes (CO	s) with	Prograi	mme Oı	itcomes (POs)	
	Code		Туре	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
			Hono	rs Syllab	us										
V	Honors	Biochemical Engineering	PCC	3	2	3	2	2	1	3	-	-	2	2	-
VI	Syllabus	Multiphase Reaction Engineering	PCC	3	2	1	2	2	2	2	-	-	2	2	-
VI	VI	Mathematical Methods & Optimization in Chemical Engineering	PCC	3	2	2	2	2	1	2	-	-	1	2	-
VII		Refinery Science and Engineering	PCC	1	2	3	2	2	3	3	1	1	1	2	-

VII	Catalytic Science and Engineering	PCC	2	3	2	2	3	2	3	-	-	1	2	-
VII	Statistical Thermodynamics	PCC	2	1	2	1	2	2	1	-	-	1	1	-

K. Summary of Mapping of Elective Course Outcomes (COs) with Programme Outcomes (POs))

Sem	Course	Course Name	Course		Maj	ping of	Course	Outcon	nes (CO	s) with	Progran	nme Ou	tcomes (POs)	
	Code		Type	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
			Electi	ve Cour	se										
V	CET 2769E	Process Intensification	PEC	2	3	3	2	2	1	1	-	-	1	1	1
V	CET2161	Chemical Safety and Risk Management	PEC	3	2	2	1	-	2	3	1	2	2	-	-

L. Summary of Mapping of Subject Course Outcomes (COs) with Programme Specific Outcomes (PSOs))

Sem	Course Code	Course Name	Course Type		ing of Cou Programn) with
				PSO1	PSO2	PSO3	PSO4	PSO5
		First Year						
I	CHT4151	Applied Chemistry	BSC	2	2	3	2	1
	CHP4151	Applied Chemistry Lab	BSC	3	2	1	1	1
	MAT4151	Mathematics-I	BSC	3	2	3	3	1
	PHT4151	Applied Physics	BSC	2	3	2	2	1
	PHP4151	Applied Physics Lab	BSC	3	3	2	1	1
	EST4151	Structural Mechanics	ESC	3	2	2	2	1
	ESP4151	Structural Mechanics Lab	ESC	3	2	1	1	-
	ESP4152	Engineering Graphics with Computer Aided Modelling	VSEC	3	2	1	2	1
	HUP4151	Communication Skills- English	AEC	2	2	3	1	-
	HUPXXXX	OPEN Activity- Sports/ Fine arts/Yoga/ Music/NSS	CCA	3	-	-	-	-
II	CHT4152	Applied Chemistry II	BSC	2	2	2	1	-
	MAT4152	Mathematics: II	BSC	3	2	2	1	1
	EST4153	Electrical Engineering and Basic Electronics	ESC	3	2	2	1	1
	ESP4153	Electrical Engineering and Basic Electronics Lab	ESC	2	1	1	1	-
	EST4152	Mechanical Engineering	ESC	3	2	1	1	1
	EST4154	Introduction to Chemical Engineering	ESC	3	3	2	2	1
	CEP4151	Material Balance and Energy Balance Calculations	PCC	2	2	2	1	1
	ESP4154	Engineering Applications of Digital computers	VSEC	2	2	1	1	1
	HUTXXXX	MOOC- Indian Knowledge System	IKS	3	2	-	-	-
	HUPXXXX	OPEN Activity- Sports/ Fine arts/Yoga/ Music/NSS	CCA	3	-	-	-	-
		Second Year						
III	CET4251	Fluid Flow	PCC	2	2	2	2	1
	CET4252	Heat Transfer	PCC	3	2	3	3	1
	EST4155	Engineering Thermodynamics	PCC	2	3	2	2	1
	CET4253	Industrial Chemistry and Reaction Engineering	PCC	2	3	2	2	1
	CEP4251	Chemical Engineering Lab-I	PCC	1	2	1	2	2
	XXT	From sciences and/or any other Engineering Discipline	MDM	3	3	3	2	1
	XXT	From Basic Sciences (Chemistry/ Physics/Biology / Maths)	OE	3	2	1	-	-
	XXP	From Basic Sciences (Chemistry/ Physics/Biology / Maths/ material Science)	OE	3	2	1	-	-
	XXT	From Basic Sciences (Chemistry/ Physics/Biology / Maths/ material Science)	OE	3	2	1	-	-
	HUPXXXX	Communication Skills-Marathi (Any other language will be using MOOCS)	AEC	2	-	-	-	-

	HUT4156	Basic Principles of Finance & Economics	Managem ent	3	3	2	1	1
	CET4257	Environmental Sciences	VEC	2	3	3	1	-
IV	CET4254	Chemical Engineering Operations	PCC	3	3	2	1	1
	CET4255	Process Safety	PCC	2	2	2	1	1
	CET4256	Instrumentation and Process Dynamics	PCC	3	2	1	1	1
	XXT	From sciences and/or any other Engineering Discipline	MDM	3	2	1	2	-
	XXP	From sciences and/or any other Engineering Discipline	MDM	3	2	1	2	1
	XXT	From Basic Sciences (Chemistry/ Physics/Biology / Maths/ material Science)	OE	3	2	1	-	-
	CEP4252	Chemical Engineering Lab-II	PCC	1	2	1	2	2
	HUT4157	Industrial Management	Managem ent	2	2	2	1	3
	ESP4157	Digital Computation in Emerging areas (AI/ML/DA)	VEC	2	-	-	-	-
	HUP4158	Community Projects	Field Project	3	2	2	2	3
	CETxxxx	Chemical Engineering Elective: I	PEC	3	2	3	3	2
		Third Year						
V	CET4351	Chemical Reaction Engineering	PCC	2	2	3	3	1
	CET4352	Momentum Transfer	PCC	3	2	2	1	1
	CET4353	Chemical Engineering Thermodynamics	PCC	2	3	2	2	1
	CEP4253	Chemical Engineering Lab: III	PCC	1	2	1	2	2
	CEP4255	Process Simulation Lab: I	PCC	2	2	3	3	1
	CETxxxx	Chemical Engineering Elective-II	PEC	2	3	3	2	1
	CETxxxx	Chemical Engineering Elective-III	PEC	2	3	3	2	1
	XXT	From sciences and/or any other Engineering Discipline	MDM	3	2	1	2	1
	XXP	From sciences and/or any other Engineering Discipline	MDM	3	2	1	2	1
	CETxxxx	Honors Course -1/Research-1	PCC	2	2	3	3	2
VI	CETxxxx	Honors Course 2/Research-2	PCC	2	2	3	3	2
	CET4354	Chemical Process Control	PCC	2	2	3	3	1
	CET4356	Separation Processes	PCC	2	2	1	2	1
	CET4357	Heat Transfer Equipment design	PCC	2	1	2	2	1
	CETxxxx	Chemical Engineering Elective-IV	PEC	2	3	3	2	1
	CETxxxx	Honours Course-3/Research-3	PCC	2	3	3	3	2
	XXT	From Sciences and/or any other Engineering Discipline	MDM	3	2	1	2	1
	CEP4256	Process Simulation Lab-II	VSEC	1	2	3	3	1
	CEP4254	Chemical Engineering Lab-IV	PCC	2	1	2	2	2
	CET4358	Chemical Project Economics	PCC	2	2	3	1	1
	CET4373	IPT (after Semester VI exams for Eight weeks)	IPT	3	2	2	3	3
		Fourth Year						

VII	CET4451	Chemical Process Development and Engineering	PCC	2	2	3	3	2
	CET4452	Chemical Industrial Management	PCC	2	3	2	1	1
	CETxxxx	Chemical Engineering Elective V	PEC	2	3	3	2	1
	CEP4451	Chemical Process Equipment Design and drawing	PCC	3	2	3	2	2
	CETxxxx	Honours Course-4/Research-4	PCC	2	2	2	2	1
	CETxxxx	Honours Course-5/Research-5	PCC	3	1	2	2	1
	XXT	From sciences and/or any other Engineering Discipline	MDM	2	1	2	2	3
	CEP4452	Literature Review	RM	3	2	2	2	1
	CEP4453	Design and Analysis of Experiments	RM	3	2	2	2	-
	CEP4461	Design Project - I	Project	2	2	2	3	2
VIII	CEP4474	IPT (4-6 months)	IPT	2	2	3	3	2
		Fifth Year						
IX	CET4551	Advanced Transport Phenomena	PCC	1	2	3	3	1
	CET4552	Advanced Separation Processes	PCC	2	3	3	2	2
	CET4553	Advanced Reaction Engineering	PCC	2	3	3	2	1
	CET4554	Advanced Mass transfer	PCC	2	3	3	2	1
	CEP4563	Thesis	Research	2	3	3	3	3
X	CEP4564	Thesis	Research	2	3	3	3	3

M. Summary of Mapping of Honors Course Outcomes (COs) with Programme Specific Outcomes (PSOs))

Sem	Course Code	Course Name	Course Type		ng of Cou Programn) with
				PSO1	PSO2	PSO3	PSO4	PSO5
		Honors Syllabus						
V	Honors	Biochemical Engineering	PCC	2	2	3	3	2
VI	Syllabus	Multiphase Reaction Engineering	PCC	2	2	3	3	2
VI		Mathematical Methods & Optimization in Chemical Engineering	PCC	2	3	3	3	2
VII		Refinery Science and Engineering	PCC	2	2	2	2	1
VII		Catalytic Science and Engineering	PCC	3	1	2	2	1
VII		Statistical Thermodynamics	PCC	3	2	3	2	2

N. Summary of Mapping of Elective Course Outcomes (COs) with Programme Specific Outcomes (PSOs))

Sem	Course Code	Course Name		Course Type		ing of Cou Programn) with
					PSO1	PSO2	PSO3	PSO4	PSO5
			Elective Course						
V	CET 2769E	Process Intensification		PEC	3	2	3	3	2

V	CET2161	Chemical Safety and Risk Management	PEC	3	2	2	1	1

First Year

Semester-I

Semester-I Page 24 of 267

		Semester I			
BSC	Course Code:	Course Title:	Cı	redits	2
	CHT4151	Applied Chemistry	L	T	P
	Semester: I	Total contact hours: 30	2	0	0
	•	List of prerequisite courses			
	Standard XII (Cher	nistry)			
		List of courses where this course will be prerequisite			
	Dynamics (CET4 Development and I	4253), Chemical Engineering Operation (CET4254), Instrumentation and Process 4256), Chemical Reaction Engineering (CET4351), Chemical Process Engineering (CET4451), Catalytic Science and Engineering (Hon.)			
	Ι	Description of relevance of this course in the Int. M. Tech. Program			
haloge		signed to familiarize the students with various basic organic reactions such used chemical industry. The emphasis will be on relating the previously taugumples.			
		Course contents (topics and subtopics)	Req	d. hou	ırs
1	Organic Chemistr	y Nomenclature: IUPAC nomenclature of organic compounds		4	
2	explain the reactivi	relationship in organic molecules : Use of bond length and bond energies to ty of functional groups. Acidity & basicity values for organic molecules such as icids, ketones, amines.		4	
3		chilic substitution: Activating and deactivating functional groups on aromatic ating structures, reactions such as Halogenation, Nitration, Friedel Crafts ation, sulfonation.		10	
4	_	ands: Problems associated with SNAr reactions and how to overcome them. matic nucleophilic substitutions.		8	
5	I .	Aldol and related reactions, Henry reactions, Evens, and Mukaiyama reactions. ce of names reactions.		4	

2	explain the reactivity of functional groups. Acidity & basicity values for organic molecules such as	4
	alkynes, alcohols, acids, ketones, amines.	
3	Aromatic electrophilic substitution: Activating and deactivating functional groups on aromatic compounds, resonating structures, reactions such as Halogenation, Nitration, Friedel Crafts alkylation and acylation, sulfonation.	10
4	Aromatic compounds: Problems associated with SNAr reactions and how to overcome them. Mechanism for aromatic nucleophilic substitutions.	8
5	Name reactions: Aldol and related reactions, Henry reactions, Evens, and Mukaiyama reactions. Industrial importance of names reactions.	4
	Total	30
	List of Textbooks/ Reference Books	
1	Organic Chemistry, Paula Y. Bruice, Pearson Education	
2	Organic Chemistry – T. W. G Solomons, C. B. Fryhle, John Wiley and Sons	
3	Organic Chemistry, Clayden, Greeves, Warren, Oxford publication	
4	March's Advanced Organic Chemistry: Reactions, Mechanisms, and Structure 7 Edition (English, Paperback, Michael B. Smith)	
	Course Outcomes (students will be able to)	
CO1	Learn and understand how to write and name the organic compounds	K3
CO2	Understand reactions and structure activity relationship in organic molecules	K1
CO3	Understand the concept of nucleophilic and electrophilic substitution reactions	К3
CO4	Understand simple mechanisms of aromatic reactions	K4
CO5	Understanding the role and importance of name reactions and address the limitation and challenges of current protocols.	K4 + P
K1: R	emembering, K2: Understanding, K3: Applying, K4: Analyzing, K5: Evaluating, K6: Creating	

	Ma	pping of	Course		Chemis es (COs)	•		e Outco	mes (PO	s)		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	-	-	1	1	-	-	-	-	2	1	1
CO2	-	2	1	1	2	-	-	-	-	1	1	-

Semester I Page 25 of 267

CO3	3	2	1	1	-	-	i	-	-	1	-	-
CO4	3	2	1	1	2	-	-	-	-	1	1	1
CO5	3	3	2	2	1	-	-	-	-	1	-	-
	3	3-Strong	Contribu	tion; 2-M	loderate (Contribut	tion; 1-Lo	ow Contr	ribution;			

Mapping of	Appl Course Outcomes	ied Chemistry: (COs) with Prog		Outcomes (PSOs)	
	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	2	1	1	-
CO2	2	1	2	1	-
CO3	1	2	3	2	1
CO4	2	2	3	2	1
CO5	3	2	2	1	-

Semester I Page 26 of 267

		Semester I					
BSC	Course Code:	Course Title:	Cr	Credits =			
	CHP4151	Applied Chemistry Laboratory	L	T	P		
	Semester: I	Total contact hours: 60	0	0	4		
	List of Prerequisite Courses						
	Standard XII Chemistr	y					
		List of Courses where this course will be prerequisite					
	Applied Mathematics:	II (MAT4151)					
	Desc	ription of relevance of this course in the Int. M. Tech. Program					

- Description of relevance of this course in the Int. M. Tech. Program
- 1. Introduce students to the basics of organic chemistry in terms of synthesis of important molecules and reaction monitoring through chromatographic techniques.
- 2. Introduce students to various techniques such as extraction, chromatography and crystallization for purification, and isolation of pure compounds.
- 3. Students will understand characterization methods to identify the structure of unknown compounds.
- 4. To develop skills to identify nature and type of different unknown compounds through qualitative analysis.

	Course Contents (Topics and subtopics)	Reqd. hours
1	1. Organic Synthesis:	20
	1.1. One-pot synthesis of organic compounds	
	1.2. Common synthetic method applied for the synthesis of pharmaceutical and biological	
	importance molecules and optimization of reaction conditions while highlighting several	
	green and sustainable principles.	
	1.3. Progress of the reactions monitoring by thin layer chromatography (TLC).	
2	2. Separation and isolation of Final Products:	20
	2.1 Purification of organic compounds, liquid-liquid, inorganic-organic, solid-liquid mixtures.	
	2.1 Purification of solid products by crystallization process	
	2.2. Purification of impure organic compounds by column chromatography	
3	3. Identification of organic molecules based on physicochemical properties: Organic	20
	compounds contain different functional groups which undergo characteristic reactions:	
	3.1. Physical properties such as solubility and chemical reactivity in known reactions will also be used in the identification.	
	3.2. Identification of an organic compounds by physical constants methods (melting point and boiling point).	
	Laboratory: Any 12 experiments will be conducted	
	1. A solvent free approach for chalcone synthesis via aldol condensation and reaction progress monitoring through thin layer chromatography (TLC)	
	2. Isolation of aldol product (chalcone) by recrystallization and product analysis by TLC	
	3. Recrystallization and melting point determination of benzoic acid	
	4. Purification of catechol from its impure mixture using solvent extraction technique	
	5. Separation of organic compound (catechol) from solvent (ethyl acetate) by evaporation using rotary evaporator	
	6. Separation of organic compound by using silica gel column chromatography	
	7. Organic qualitative analysis and functional group determination of given unknown organic compound (Oxalic acid and Benzophenone)	
	8. Organic qualitative analysis and functional group determination of given unknown organic compound (Cinnamic acid and beta-Naphthol)	
	9. Organic qualitative analysis and functional group determination of given unknown organic	
	compound (p-Nitroaniline and p-Toluidine)	
	10. Organic qualitative analysis and functional group determination of given unknown organic compound (Succinic acid)	
	11. Organic qualitative analysis of monosaccharide's containing "6-C" atoms (Glucose and Fructose)	
	12. To determine the functional groups in given organic compounds by Fourier Transform Infrared Spectroscopic (FTIR) analysis	

Semester I Page 27 of 267

	Total	60			
	List of Textbooks/ Additional Reading Material / Reference Books				
1	Vogel's Textbook of Practical Organic Chemistry by Brian S. Furniss, Anthony J. Hannaford, Peter W. G. Smith & Autin R. Tatchell: Fifth Edition				
2	Practical Organic Chemistry, by I.L. Finar				
3	Practical physical Chemistry: B. Viswanathan and P.S. Raghavan				
4	Practical physical Chemistry- Alexander Findlay				
Course Outcomes (students will be able to)					
	Students will be able to				
CO1	Able to prepare condensation products via one-pot synthesis/solid phase synthesis	К3			
CO2	Identify simple organic compounds systematically.	K1			
CO3	Identify the various functional groups by simple tests.	К3			
CO4	Identify structure of unknown compounds.	K4			
CO5	Purify organic compounds based on their physical properties.	K4			
K1: Re	emembering, K2: Understanding, K3: Applying, K4: Analyzing, K5: Evaluating, K6: Creating				

	Applied Chemistry Laboratory: CHP4151 Mapping of Course Outcomes (COs) with Programme Outcomes (POs)											
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	-	1	-	2	1	-	-	-	1	2	1
CO2	2	2	1	1	1	-	-	-	-	2	1	-
CO3	3	2	1	2	2	-	-	-	-	-	-	-
CO4	3	3	1	2	2	1	-	-	-	2	2	1
CO5	2	2	2	1	1	-	-	-	-	-	-	-
	3-Strong Contribution; 2-Moderate Contribution; 1-Low Contribution;											

Applied Chemistry Laboratory: CHP4151 Mapping of Course Outcomes (COs) with Programme Specific Outcomes (PSOs)										
	PSO1 PSO2 PSO3 PSO4 PSO5									
CO1	3	1	1	1	-					
CO2	2	2	1	-	-					
CO3	3	2	1	-	1					
CO4	3	2	1	1	1					
CO5	2	3	2	-	-					
3-Stro	3-Strong Contribution; 2-Moderate Contribution; 1-Low Contribution;									

Semester I Page 28 of 267

		Semester I			
BSC	Course Code:	Course Title:	Credits =		
	MAT4151	Mathematics - I	L T		P
	Semester: I	Total contact hours: 60	4	0	0
		List of Prerequisite Courses			
	HSC Standard Mathematics	S			
	Lis	at of Courses where this course will be prerequisite			
	Industrial Chemistry and R II, III and IV (CEP4251, Dynamics (CET4256), C (CET4352), Process Simu Control (CET4354), Separa	MAT4152); Material and Energy Balance Calculations (CEP4151), eaction Engineering (CET4253), Chemical Engineering Laboratory I, CEP4252, CEP4253 and CEP4254), Instrumentation and Process hemical Reaction Engineering (CET4351), Momentum Transfer lation Lab - I and II (CEP4255 and CEP4256), Chemical Process ation Processes + Membrane (CET4356), Heat Transfer Equipment matical Methods & Optimization in Chemical Engineering (Hon.), is (Hon.)			

This is a basic Mathematics course. This knowledge will be required in almost all subjects later. This knowledge is also required for solving various mathematical equations that need to be solved in several chemical engineering courses such as MEBC, momentum transfer, reaction engineering, separation processes, thermodynamics, etc.

	Course Contents (Topics and subtopics)	Reqd. hours
1	Calculus of one variable: Review of Mean Value theorems, Higher order differentiation and Leibnitz Rule for the derivative, Taylor's and Maclaurin's theorems and applications to error estimates, convexity of functions, Local Maxima/Minima.	8
2	Multivariable calculus: Functions of two or more variables, Limit and continuity, Partial differentiation, Directional derivatives, Total derivatives, Chain Rules of partial derivatives, Taylor's theorem for multivariable functions and its application to error calculations, Local and absolute Maxima/Minima	10
3	Integral Calculus: Beta and Gamma functions, Differentiation under the integral sign, Multiple Integrals, Line and surface integrals and applications to Greens, Gauss-Divergence and Stokes theorem	12
4	Linear Algebra-I: Systems of linear equations, matrices and Gauss elimination, Vectors in \mathbb{R}^n , notion of linear independence and dependence. Vector subspaces of \mathbb{R}^n , basis of a vector subspace, row space, null space, and column space, rank of a matrix. Determinants and rank of matrices. Abstract vector spaces, linear transformations, matrix of a linear transformation, change of basis and similarity, rank-nullity theorem, and its applications	8
5	Linear Algebra-II: Inner product spaces, orthonormal bases, Gram-Schmidt orthogonalization process, Eigenvalues and eigenvectors, characteristic polynomials, eigenvalues of special matrices (orthogonal, unitary, Hermitian, symmetric, skew- symmetric, normal), Orthogonal projection and its application to least methods Diagonalization of matrices and its applications stochastic matrices, Matrix Factorization, Applications such as SVD, PCA etc.	8
6	Ordinary Differential Equations: Review of first and second order ODEs (constant coefficient), Existence and Uniqueness theorems for first order ODEs. Higher order Linear ODE with constant and variable coefficient, Solutions of Initial and Boundary value problems, Solving initial value system of linear ordinary differential equations.	8
7	Ordinary Differential Equations -II: Power series method of solving ODE's and special functions, Legendre Polynomials Bessel functions and applications.	6
	Total	60
	List of Textbooks / Reference Books	
1	G. Strang, Linear Algebra and its Applications (4th Edition), Thomson (2006).	
2	W. Keith Nicholson, Linear Algebra with Applications, Lyryx Learning Inc	
3	Howard Anton, Elementary Linear Algebra, Wiley (2016)	
4	Arnold J. Insel, Lawrence E. Spence, and Stephen H. Friedberg, Linear Algebra, Pearson	

Semester I Page 29 of 267

5	E. Kreyszig, Advanced Engineering Mathematics (8th Edition), John Wiley (1999). (Officially prescribed)	
6	S. R. K. Iyengar, R. K. Jain, Advanced Engineering Mathematics Narosa.	
7	Marsden, J.E., Tromba, Anthony, Weinstein, Alan, Basic Multivariable Calculus.	
	Course Outcomes (students will be able to)	
CO1	Understand the notion of differentiability and apply these concepts to find maxima and minima of functions of one and several variables	K4
CO2	Understand different techniques for evaluating single and multiple integrals and apply them compute surface and volume integrals.	K4
CO3	Demonstrate their understanding on different concepts in vector spaces in solving computational problems related to matrices and determinants, such as solving systems of linear equations, etc.	К3
CO4	Understand the computational and geometrical concepts related to eigenvalues and eigenvectors and apply them to solve computational problems arising from chemical engineering	К3
CO5	Build mathematical models governed by differential equations to formulate chemical engineering problems and solve the equation using appropriate analytical techniques	K6
CO6	Solve ordinary differential equations using power series method and understand the utility and applications of various orthogonal functions in different chemical engineering problems	K5
K1: Re	membering, K2: Understanding, K3: Applying, K4: Analyzing, K5: Evaluating, K6: Creating	

	Mathematics - I: MAT4151 Mapping of Course Outcomes (COs) with Programme Outcomes (POs)											
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	1	1	2	-	-	2	-	-	1	2	1
CO2	3	1	1	1	1	-	2	-	-	2	1	1
CO3	3	1	2	1	1	-	1	-	-	2	-	1
CO4	3	2	1	2	1	-	-	-	-	1	1	1
CO5	3	2	2	2	1	1	-	-	-	1	2	1
CO6	3	1	2	1	2	2	2	-	-	1	1	1
	3	S-Strong	Contribu	tion; 2-M	Ioderate	Contribu	tion; 1-L	ow Conti	ribution;			

Mathematics - I: MAT4151 Mapping of Course Outcomes (COs) with Programme Specific Outcomes (PSOs)										
	PSO1	PSO2	PSO3	PSO4	PSO5					
CO1	3	1	1	1	-					
CO2	3	2	2	1	-					
CO3	2	2	2	1	-					
CO4	2	1	3	3	1					
CO5	1	2	3	3	2					
CO6	1	2	3	3	1					
3-Stro	ng Contribution; 2	-Moderate Contri	bution; 1-Low Co	ontribution;						

Semester I Page 30 of 267

		Semester I				
BSC	Course Code:	Course Title:	Cre	dits =	= 2	
	PHT4151	Applied Physics	L	Т	P	
	Semester: I	Total contact hours: 30	2	0	0	
		List of Prerequisite Courses				
	Standard XI and XII Phy	ysics course; Standard XII Chemistry course				
		List of Courses where this course will be prerequisite				
	VI, VII, VIII) (Code); Cand PST4252); Material	tory (PHP 4151); Materials Science Minor program courses (Sem-III, IV, V, Open Elective courses from Physics Department (Sem-II, IV, V) (PST4251 and Energy Balance Calculations (CEP4151), Instrumentation and Process Momentum Transfer (CET4352), Process Simulation Lab - I and II (5)				
	Descr	ription of relevance of this course in the Int. M. Tech. Program				
course	e will provide the students	play a key role in the field of chemical engineering and technology. The a with the necessary fundamentals to develop a broad understanding of variou them with the ability to apply it wherever required in their course of study.				
		Course Contents (Topics and subtopics)	Req	d. ho	urs	
		Solid State Physics				
1		ids: A revision of concepts of a lattice, a basis, unit cell, different crystal C, HCP), co-ordination number and packing fractions. Single crystalline, orphous materials.		3		
2	Crystallographic planes and directions: concept of Miller indices and its determination, examples; calculation of inter-planar spacing in terms of Miller indices.					
3	Determination of crystal structure using X-rays: Bragg's law of X-ray diffraction, types of diffractometers, Indexing diffraction peaks and calculation of various lattice parameters and crystallite size					
4	function, Intrinsic and	nd classification of solids, the concept of Fermi level and Fermi distribution described extrinsic semiconductors, Transport properties of semiconductors: aductors and its dependence of carrier concentration and mobility.		5		
	•	Electric and Magnetic properties of materials				
1		electrostatics and magnetostatics with illustrative examples. Introduction to , and curl operators. The current density vector and the continuity equation.		4		
2	displacement and polarize	t of free and bound charges, polarization, introduction to the electric zation vectors, dielectric constant, and electric susceptibility. Gauss's law in Claussius-Mossotti equation.		6		
3		vin theory of Diamagnetism and Paramagnetism: deriving the magnetic e's law. An introduction to the Weiss theory of paramagnetism and		5		
		Total		30		
		List of Textbooks/Reference books				
1	Fundamentals of Physic	s - Halliday, Resnick, Walker - 6 th Edition - John Wiley				
2	Sears and Zeemansky's	University Physics - Young and Freedman - 12th Edition - Pearson Education	n			
3	A Textbook of Engineer Publishers	ing Physics - M N Avadhanulu, P G Kshirsagar, TVS Arun Murthy - 11th Ec	lition -	S. Cl	ıand	
4		O. Pillai - 10 th Edition - New Age Publishers				
5	Solid State Physics - A.	J. Dekker - MacMillan India				
6	Engineering Physics - V	Rajendran - 6 th Edition - McGraw Hill Publishers				
7	Electricity and Magnetis	sm - Edward Purcell and David Morin - 3 rd Edition - Cambridge University F	Press			
8		sm - R. Murugeshan - 3 rd Edition - S Chand Publishers				
9	Introduction to Electrod	ynamics - David Griffiths - 3 rd Edition: Pearson Education				

Semester I Page 31 of 267

	Course Outcomes (students will be able to)					
CO1	CO1 Understand structures of solids and semiconductors, apply Bragg's law.					
CO2	Apply Bernoulli equation in simple pipe flows.	К3				
CO3	Calculate resolving power of optical instruments.	K5				
CO4	Describe principles of optical fibre communication.	K2				
CO5	Introduced to the principles of lasers, types of lasers and applications.	K2				
CO6	Understand application of acoustic cavitation of Chemical Engineering Processes	K2				
K1: R	K1: Remembering, K2: Understanding, K3: Applying, K4: Analyzing, K5: Evaluating, K6: Creating					

	Applied Physics - I: PHT4151 Mapping of Course Outcomes (COs) with Programme Outcomes (POs)											
	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12										PO12	
CO1	3	2	1	1	-	-	-	-	-	2	1	-
CO2	3	2	1	1	1	-	-	-	-	-	-	-
CO3	2	-	-	-	2	-	-	-	-	-	-	-
CO4	1	3	2	2	-	1	-	-	-	1	-	1
CO5	3	2	2	1	1	-	-	-	-	1	1	-
CO6	3	2	2	1	1	-	-	1	-	1	1	1
	3-Strong Contribution; 2-Moderate Contribution; 1-Low Contribution;											

Applied Physics - I: PHT4151 Mapping of Course Outcomes (COs) with Programme Specific Outcomes (PSOs)										
	PSO1	PSO2	PSO3	PSO4	PSO5					
CO1	3	2	1	-	-					
CO2	3	2	2	1	-					
CO3	1	2	3	2	1					
CO4	2	3	3	3	-					
CO5	2	3	2	2	-					
CO6	2	3	3	3	-					
3-St	3-Strong Contribution; 2-Moderate Contribution; 1-Low Contribution;									

Semester I Page 32 of 267

		Semester I			
BSC	Course Code:	Course Title:	Cr	edits :	= 2
	PHP4151	Applied Physics Laboratory	L	T	P
	Semester: I	Total contact hours: 60	0	0	4
		List of Prerequisite Courses			
	10+2th Physics; Ap	plied Physics (PHT 4151)			
		List of Courses where this course will be prerequisite			
	Characterization L	es of polymers (SYT4353), Engineering Physics (PST 4251), Materials aboratory (SYP4352), Introduction to Nanophysics and Applications bering Properties of Materials (SYT4352)			
		scription of relevance of this course in the Int. M. Tech. Program			
experim	ental skills related to	ined by the students in the Applied Physics laboratory course will equip o measurement of various important physical quantities. These skills will by and theory courses in their area of specialization.			
		Course Contents (List of Experiments)			
1.	+	o-efficient of Viscosity by Poiseuille's method		4	
2.	Thermistor characte		1	4	
3.		ompressibility of liquids using an ultrasonic interferometer		4	
4.	Durometer testing of			4	
5.		: Determination of h/e		4	
6.	+	ination of carrier type and concentration in a semiconductor		4	
7.		termination of wavelength of light		4	
8.		tion: using diffraction grating	4		
9.		ension of liquid using capillary rise method	4		
10.		n by Thompson method	4		
11.		istics of pn-junction diode		4	
12.		characterization in different mode		4	
13.		mi energy of copper		4	
14.	•	y oscilloscope (CRO)		4	
15.	Determine the RI of			4	
		Total		60	
		List of Textbooks/Reference books			
1		rysics - Halliday, Resnick, Walker - 6 th Edition - John Wiley			
2		ky's University Physics - Young and Freedman - Pearson Education			
4		s - V Rajendran - 6 th Edition - McGraw Hill Publishers			
5	-	n Physics - A. Beiser, McGraw-Hill.			
6		ds and Applications - J. Blitz, Butterworth.			
7	+	ak - 7 th Edition - McGraw Hill ptics - F. Jenkins and H. White - 4 th Edition McGraw Hill			
8	•				
9	ICT Physics Labora	atory Manual (supplied to students)			
	Students will be ab	Course Outcomes (students will be able to)			
CO1		nromatic light source and its applications.		K3	
CO2	+	ering applications of lasers		K2	
CO3		enductivity, photoelectric current, effect of magnetic field on electric current		K2	
CO4		te the experimental data		K5	

Semester I Page 33 of 267

CO5	Evaluate the experimental value by analysing the experimental data	K5
CO6	Prepare and write the report	K6
K1: Ren	nembering, K2: Understanding, K3: Applying, K4: Analyzing, K5: Evaluating, K6: Creating	

Applied Physics Laboratory: PHP4151 Mapping of Course Outcomes (COs) with Programme Outcomes (POs)												
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	1	1	-	1	-	-	-	-	1	-	-
CO2	3	1	2	-	1	-	-	-	-	1	-	-
CO3	2	1	1	2	1	-	-	-	-	-	-	-
CO4	3	1	1	2	1	-	-	-	-	1	-	-
CO5	3	2	2	-	-	-	-	-	-	-	-	-
CO6	2	1	2	-	-	-	-	-	-	-	-	-
	3	S-Strong	Contribu	tion; 2-M	Ioderate (Contribu	tion; 1-L	ow Conti	ribution;	•	-	•

Mapping o	Applied Physics Laboratory: PHP4151 Mapping of Course Outcomes (COs) with Programme Specific Outcomes (PSOs)										
	PSO1 PSO2 PSO3 PSO4 PSO5										
CO1	3	2	2	1	-						
CO2	2	2	1	-	-						
CO3	2	3	2	2	1						
CO4	3	3	2	1	1						
CO5	3	2	1	-	-						
CO6	2	1	2	-	-						
3-S	trong Contribution; 2	-Moderate Contr	ibution; 1-Low Co	ontribution;							

Semester I Page 34 of 267

		Semester I							
ESC	Course Code:	Course Title:	Credits = 2						
	EST4151 Structural Mechanics								
	Semester: I Total contact hours: 30								
		List of Prerequisite Courses							
	Engineering Mathem	atics (MAT4151); Materials in Engineering							
		List of Courses where this course will be prerequisite							
	Chemical Process Equipment Design and Drawing (CEP4451); Material Technology								
	Des	scription of relevance of this course in the Int. M. Tech. Program	•						

This subject will help students to understand use of basics of Applied Mechanics and Strength of Materials. In engineering equipment and structures, which different types of forces are to be considered and how to quantify them? What are different conditions of equilibrium? How to apply equilibrium condition to analyse the problems? Importance of centre of gravity and moment of Inertia in Engineering Design. Advantages and disadvantages of various geometric sections available for engineering design. Study of different types of stresses and strains occurring in various components of the structure. Understanding and calculating Shear force and Bending moment in the beams with simple and complex loading. Determination of Bending stresses and shear stresses in the beams. Evaluation of slopes and deflections in the beams with simple and complex loading. This is the foundation course for a good Design Engineer.

simple	and complex loading. This is the foundation course for a good Design Engineer.	D 11
	Course Contents (Topics and subtopics)	Reqd. hours
1	Concepts of forces, their types, Resolution of forces, Composition of forces, Steps in Engineering Design, Different types supports and free body diagram.	3
2	Equilibrium of rigid bodies - Conditions of equilibrium. Determinant and indeterminate structures. Equilibrium of beams, trusses, and frames problems on analysis of beams and truss.	5
3	Concept of moment of Inertia (Second moment of area) its use. Parallel axis theorem. Problems of finding centroid and moment of Inertia of single figures, composite figures. Perpendicular axis theorem, Polar M.I., Radius of gyration.	4
4	Shear Force and Bending Moment - Basic concept, S.F. and B.M. diagram for cantilever, simply supported beams (with or without overhang). Problems with concentrated and U.D. loads.	5
5	Stresses and Strains - Tensile and compressive stresses, strains, modulus of elasticity, modulus of rigidity, bulk modulus. Relation between elastic constants. Lateral strain, Poisson's ratio, volumetric strain. Thermal stresses and strains. Problems based on stresses and strains. Stresses and Strains Relationship and Strain Deformation relationship.	4
6	Theory of Bending - Assumptions in derivation of basic equation, Basic equation, section modulus, bending stress distribution. Advantages of various geometric sections from bending consideration.	3
7	Problems on shear stress - Concept, Derivation of basic formula. Shear stress distribution for standard shapes. Problems of Shear stress distribution. Conditions under which shear stress is the governing criteria of design.	3
8	Slope and Deflection of beams - Basic concept, Slope and Deflection of cantilever and simply supported beams under standard loading. Macaulay's method. Simple problems of finding slopes and deflections.	3
	Total	30
	List of Text Books/ Reference Books	
1	Engineering Mechanics Vol I Statics by B. N. Thadani, Publisher Wenall Book Corporation	
2	Introduction to Mechanics of Solids by Egor Popov, Prentice Hall of India Pvt. Ltd	
3	Mechanics of Materials by Ferdinand Beer and E. Russel Johnston, Tata McGraw Hill Publishing Co. Ltd.	
4	Fundamentals of applied Mechanics by Dadhe, Jamdar and Walavalkar, Sarita Prakashan Pune	
5	Engineering Mechanics by S. Timoshenko and D. H. Young, McGraw Hill Publications	
6	Strength of Materials by Ferdinand Singer and Andrew Pytel, Harper Colins Publishers	
	Course Outcomes (students will be able to)	
CO1	Understand the use of basic concepts of Resolution and composition of forces.	K2
CO2	Analysis of the beams, truss or any engineering component by applying conditions of equilibrium.	K2

Semester I Page 35 of 267

CO3	Understand the advantages and disadvantages of various geometric sections used in engineering design.	K2				
CO4	Understand the different stresses and strains occurring in components of structure various standard loadings and in case of any complicated loading.	K2				
CO5	Determination of shear stress, bending stresses in the beams with simple and complex loading.	K4				
CO6						
K1: Re	emembering, K2: Understanding, K3: Applying, K4: Analyzing, K5: Evaluating, K6: Creating					

	Structural Mechanics: EST4151 Mapping of Course Outcomes (COs) with Programme Outcomes (POs)											
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	2	2	1	2	-	-	-	1	-	-
CO2	3	2	1	-	1	1	-	-	-	-	-	-
CO3	2	1	2	1	-	1	-	-	-	1	-	-
CO4	3	2	1	1	2	3	2	-	-	1	-	-
CO5	3	2	1	2	1	2	1	-	-	2	-	-
CO6	2	1	-	1	1	1	-	-	-	-	-	-
	3-Strong Contribution; 2-Moderate Contribution; 1-Low Contribution;											

Structural Mechanics: EST4151 Mapping of Course Outcomes (COs) with Programme Specific Outcomes (PSOs)										
	PSO1	PSO2	PSO3	PSO4	PSO5					
CO1	3	2	1	-	-					
CO2	3	2	1	-	-					
CO3	3	2	2	1	-					
CO4	3	2	1	2	-					
CO5	1	2	2	3	1					
CO6	2	2	-	3	-					
3-Stro	3-Strong Contribution; 2-Moderate Contribution; 1-Low Contribution;									

Semester I Page 36 of 267

	Semester I											
ESC	Course Code:	Course Title:	Credits = 2									
	ESP4151	Structural Mechanics Laboratory	L T P									
	Semester: I Total contact hours: 60											
	List of Prerequisite Courses											
	XIIth Standard Physics, Mathematics, Applied Mathematics I and II (MAT4151-52), Structural Mechanics (EST4151)											
	Lis	st of Courses where this course will be prerequisite										
	Equipment design and Drawing I and II (CEP4451)											
	Description	on of relevance of this course in the Int. M. Tech. Program										

This subject will help students to understand the basics of Applied Mechanics and Strength of Materials. In engineering equipment different types of forces are to be considered and how to quantify them. What are different conditions of equilibrium and how to apply them analyze the problems. Importance of center of gravity and moment of Inertia in Engineering Design. Study of different types of stresses and strains occurring in various components of the structure. Advantages and disadvantages of various geometric sections available for engineering design. This is the foundation course for a good Design Engineer.

	Course Contents (Topics and subtopics)	Reqd. hours
1	Suitable number of experiments from the above list will be performed (Minimum 5):	4
2	To study simple lifting machine and determine Law of Machine for (Screw Jack and Differential wheel and axle).	4
3	To study graphical methods of analysis.	4
4	To study the Universal testing machine and tests. (Demonstration)	4
5	To study Non-destructive testing methods in Engineering	4
6	Demonstration of Smith Hammer test, Ultrasonic pulse velocity test	4
7	To study corrosion of reinforcement. (Demonstration)	6
8	To study properties of cement composites and its applications.	6
9	To study effect of performance enhancing admixtures and additives for cement composites.	4
10	To study methods of manufacturing for Fiber Reinforced Polymer Composites	6
11	To study various materials used for flooring.	6
12	To study various materials used for Pipes for different engineering applications.	4
	Total	60
	List of Textbooks/ Reference Books	
1	Engineering Mechanics Vol I Statics by B. N. Thadani, Publisher Wenall Book Corporation	
2	Introduction to Mechanics of Solids by Egor Popov, Prentice Hall of India Pvt. Ltd	
3	Mechanics of Materials by Ferdinand Beer and E. Russel Johnston, Tata McGraw Hill	
4	Fundamentals of applied Mechanics by Dadhe, Jamdar and Walavalkar, Sarita Prakashan Pune	
5	Engineering Mechanics by S. Timoshenko and D. H. Young, McGraw Hill Publications	
6	Strength of Materials by Ferdinand Singer and Andrew Pytel, Harper Colins Publishers	
	Course Outcomes (students will be able to)	
CO1	Further understanding of the concepts in the Theory course of Structural Mechanics	K2
CO2	Understand structural mechanics principles	K3
CO3	Measure stress, strain, testing, reinforcement and its applications	K4
	Analyze and estimate the experimental data	K4
CO4	· · ·	
CO4 CO5	Evaluate the experimental value by analyzing the experimental data Prepare and write the report	K5

Semester I Page 37 of 267

	Structural Mechanics Laboratory: ESP4151 Mapping of Course Outcomes (COs) with Programme Outcomes (POs)															
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12				
CO1	3	1	1	-	-	-	-	-	-	1	-	-				
CO2	3	1	2	-	1	-	-	-	-	1	-	-				
CO3	2	1	1	2	1	-	-	-	-	-	-	-				
CO4	3	1	1	2	1	-	-	-	-	1	-	-				
CO5	3	2	2	-	-	-	-	-	-	-	-	-				
CO6	2	1	2	-	-	-	-	-	-	-	-	-				
	3	S-Strong	Contribu	tion; 2-M	loderate (3-Strong Contribution; 2-Moderate Contribution; 1-Low Contribution;										

Mapping o	Structural Mechanics Laboratory: ESP4151 Mapping of Course Outcomes (COs) with Programme Specific Outcomes (PSOs)											
	PSO1	PSO2	PSO3	PSO4	PSO5							
CO1	3	2	1	1	-							
CO2	3	2	1	1	-							
CO3	2	3	2	2	1							
CO4	3	3	2	1	1							
CO5	3	2	1	-	-							
CO6	2	1	2	-	-							
3-S	3-Strong Contribution; 2-Moderate Contribution; 1-Low Contribution;											

Semester I Page 38 of 267

	Semester I										
VSEC	Course Code:	Course Title	Credits = 2								
	ESP4152 Engineering Graphics and Computer Aided Drafting (CAD)										
	Semester: I Total contact hours: 60										
		List of Prerequisite Courses									
	Basic Geometry										
		List of Courses where this course will be prerequisite									
	Engineering Graphics: II (ESP4152), Equipment Design and Drawing (CEP4451), Structural Mechanics (EST4151)										
	Descri	ntion of relevance of this course in the Int. M. Tech. Program	•								

Description of relevance of this course in the Int. M. Tech. Program

A student of Chemical Engineering is required to know the various processes and the equipment used to carry out the processes. Some of the elementary processes like filtration, size reduction, evaporation, condensation, crystallization etc., are common to all engineers and technologists. These and many other processes require machines and equipment. One should be familiar with the design, manufacturing, working, and maintenance of such machines and equipment. The subject of "drawing" is a medium through which one can learn all such matters, because the "drawings" are used to represent objects and processes on paper. Through the drawings, a lot of accurate information is conveyed which will not be practicable through a spoken word or a written text. Drawing is a language used by engineers and technologists. This course is required in many subjects as well as later in the professional career.

	Course Contents (Topics and subtopics)	Reqd. hours
1	Orthographic projections:	12
	Basics of Engineering drawing, Different lines in the drawing and their applications, Methods of	
	projection, Different planes of projection, first and third angle of projections of drawing, four	
	quadrants and concept of orthographic projections.	
2	Sectional views and Missing views:	08
	Need for the drawing sectional views, concept of sectioning and section lines, sectional drawings	
	of different solids and machine components, auxiliary planes, and views.	
	Concept of recognizing missing views and their interpretation, drawing of missing views from	
	given orthographic drawings.	
3	Projections, Sections, Development of surfaces and Interpenetration of solids:	12
	Introduction to basic shapes of Solids, Projections of Solids in different planes as per the given	
	conditions, Sectional planes for cutting solids and respective drawings,	
	Concept of surface development of respective solids, Development of surfaces of cylinders,	
	prisms, pyramids, cones etc.	
	Interpenetration of two or more solids and their respective drawings	0.0
4	Introduction to Computer Aided Drafting (CAD):	08
	Basic introduction to CAD software, 2D and 3D drawings, drawing modification and	
5	dimensioning, different components of an engineering drawing in the industry.	08
3	Isometric projections using CAD:	08
	Concept of isometric views, isometric projections and isometric scale, Iso metric projections of different solids and machine components using CAD software.	
		12
6	Assembly drawing using CAD:	12
	Basics of Assembly drawing, preparation of 3d components and assembling on CAD software, labelling and table creation for bill of materials	
	Total	60
	List of Textbooks/ Reference Books	
1	Engineering Drawing by N.D.Bhat	
2	Engineering Drawing by N.H.Dubey	
3	CAD/CAM: Theory and Practice by Ibrahim Zeid and R Sivasubramanian	
	Course Outcomes (students will be able to)	
CO1	Students will be able to read Drawing	K2
CO2	Can understand Different drawing views and its interpretation.	K2
	. r · · · · · ·	L

Semester I Page 39 of 267

Integrated Master of Technology, Chemical Engineering (Major) and MDM ICT Marathwada Campus, Jalna

CO3	Can draw 3d drawing on a CAD software	K3					
CO4	Assembly of different machine parts and its working. K3						
CO5	Estimate and evaluate the computer data with modeling	K5					
CO6	Create the file and data reporting K6						
K1: Remembering, K2: Understanding, K3: Applying, K4: Analyzing, K5: Evaluating, K6: Creating							

	Engineering Graphics and Computer Aided Drafting (CAD): ESP4152 Mapping of Course Outcomes (COs) with Programme Outcomes (POs)											
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	-	2	1	2	-	-	-	-	-	1	1
CO2	2	1	1	2	1	-	-	-	-	1	1	1
CO3	2	1	1	1	1	-	1	-	-	-	2	1
CO4	1	-	1	1	2	-	-	-	-	-	1	-
CO5	2	1	1	1	2	-	1	-	-	1	1	1
CO6	3	1	2	2	1	-	-	-	-	-	-	-
	3	S-Strong	Contribu	tion; 2-M	Ioderate (Contribut	ion; 1-L	ow Contr	ribution;	•		•

Engineering Graphics and Computer Aided Drafting (CAD): ESP4152 Mapping of Course Outcomes (COs) with Programme Specific Outcomes (PSOs)										
	PSO1	PSO2	PSO3	PSO4	PSO5					
CO1	3	2	1	-	-					
CO2	3	2	1	-	-					
CO3	2	1	-	2	1					
CO4	2	1	2	3	1					
CO5	3	2	1	2	1					
CO6	3	2	1	-	-					
3-Strong Contribution; 2-Moderate Contribution; 1-Low Contribution;										

Semester I Page 40 of 267

		Semester I						
AEC	Course Code:	Course Title:	Credits = 2					
	HUP4151	Communication Skills - English	L	Т	P			
	Semester: I	Total contact hours: 30	0	0	4			
		List of Prerequisite Courses		l .	I			
	Basic English Langu	uage of the XII Grade Level						
		List of Courses where this course will be prerequisite						
	NA							
	1	escription of relevance of this course in the Int. M. Tech. Program						
This is		for the effective functioning of an Engineer. Communication skills are required	in all /	201120	NC.			
11115 15	an important course							
		Course Contents (Topics and subtopics)	Keq	d. hou	ırs			
1	Communication as a			6				
	Process of communication and its elements							
	Functions of communication and importance in future careers							
	Essentials of good c							
2	The communication	· ·		4				
	The 5-step commun	ication cycle:						
	Idea formation							
	Message encoding.							
	Message transmission.							
	Decoding							
	Feedback							
3	_	Fective communication.		3				
	Planning for effective communication							
	Modes of communic							
4	Non-verbal commun	nication		4				
	Gestures							
	Facial expressions							
	Posture and moveme	ent.						
	Paralinguistics							
	Eye contact							
	Image management							
5	Presentation skills			8				
	What makes good p	resentation?						
	Presenting the mess	age						
	Presenting oneself							
	Visual Communicat	ion						
6	Introduction to resea	arch study		5				
	Introduction to datal	bases						
	Introduction to citat	ion and referencing styles.						
	How to conduct liter	rature review						
	Preparation of a repo	ort based on literature review						
		Total		30				
		List of Text Books						
1		F EFFECTIVE COMMUNICATION: Improve Your Social Skills and Small isma and Learn How to Talk to Anyone- Ian Tuhovsky						
2	_	Way to Effective Speaking- Dale Carnegie						
	1 (List of Additional Reading Material / Reference Books	l .					
1	The Hindu Business							
2	National Newspaper							
	manonai mewspapei	15 CHIOTIGIS						

Semester I Page 41 of 267

	Course Outcomes (students will be able to)							
CO1	CO1 Student would be able to illustrate the 5-step communication process							
CO2	Student would be able to explain the end goal of communication	K2						
CO3	Student would be able to explain barriers to clear communication	K2						
CO4	Student would be able to articulate the role of visual communication within society and implement the creative process to express himself/herself.	К3						
CO5	Student would be able to identify the most relevant textbooks, reviews, papers and journals	K4						
CO6	Reporting and communicate the idea and thoughts	K6						
K1: R	emembering, K2: Understanding, K3: Applying, K4: Analyzing, K5: Evaluating, K6: Creating							

	Communication Skills - English: HUP4151 Mapping of Course Outcomes (COs) with Programme Outcomes (POs)											
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	-	-	3	1	1	-	-	-	-	2	-	-
CO2	-	-	2	1	-	-	-	-	-	2	1	-
CO3	-	-	3	1	1	1	-	-	-	2	-	-
CO4	-	-	2	1	2	2	ı	-	-	3	-	-
CO5	-	-	2	1	1	1	-	-	-	3	1	-
CO6	-	-	2	1	1	1	i	-	-	3	1	-
	3	S-Strong (Contribu	tion; 2-M	Ioderate	Contribut	ion; 1-L	ow Contr	ribution;			

Mapping of	Communication Skills - English: HUP4151 Mapping of Course Outcomes (COs) with Programme Specific Outcomes (PSOs)											
	PSO1	PSO2	PSO3	PSO4	PSO5							
CO1	3	2	1	-	-							
CO2	2	2	3	-	-							
CO3	2	3	3	-	-							
CO4	2	2	3	1	-							
CO5	-	2	3	2	-							
CO6	2	2	3	1	-							
3-Str	ong Contribution; 2	2-Moderate Contr	ibution; 1-Low Co	ntribution;								

Semester I Page 42 of 267

		Semester I						
CCA	Course Code:	Course Title:	Credits = 2					
	HUP4152 OPEN Activity - Sports - I Semester: I Total contact hours: 60 List of Prerequisite Courses Students with Science 12th level preferable with Sports Background	OPEN Activity - Sports - I	L					
	Semester: I	0	0	4				
		List of Prerequisite Courses	•					
	Students with Scien	ce 12th level preferable with Sports Background						
	1	List of Courses where this course will be prerequisite	•					
	Not Applicable							
	n	escription of relevance of this course in the Int. M. Tech. Program	ı.					

Description of relevance of this course in the Int. M. Tech. Program

The course aims to improve knowledge, skills, and different health practices related to selected sports disciplines and promote Health and wellness through Healthy Lifestyle.

Evaluation of the students

1. Minimum 80 % attendance is required. 50% marks will be given to regular attendance.

2. Evaluation through Skill Test/ Practical Record File: 50%.

	Course Contents (Topics and subtopics)	Reqd. hours
1.	Playfield Technology – Marking and Construction of the playfields in the selected sports discipline	2
2.	Rules and their interpretation in the selected sports discipline	2
3.	Basic Fitness, Training, and Assessment • General and specific warm-up and limbering down related to sport • Training for Health-related fitness - Muscular Endurance, Muscular Strength, Flexibility, Body Composition.	2 Hrs./Week
4.	Kabaddi/Badminton/Volleyball: Basic skills/practices	2 Hrs./Week
5	Regular Practice	2 Hrs./Week
	Total	60
	Course Outcomes (students will be able to)	
CO1	To understand the basic training and practices required in the selected sports discipline.	K2
CO2	To know the basic specifications of court/ground, and general rules and demonstrate the basic skills in the selected sports discipline.	K2
CO3	To develop a set of core skills in the selected sports discipline for overall growth and development	К3
CO4	To create a foundation for professionals in the selected sports discipline.	К3
K1: R	emembering, K2: Understanding, K3: Applying, K4: Analyzing, K5: Evaluating, K6: Creating	•

	OPEN Activity - Sports - I: HUP4152 Mapping of Course Outcomes (COs) with Programme Outcomes (POs)											
	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12											
CO1	-	-	-	-	-	-	-	1	2	-	-	-
CO2	-	-	-	-	-	-	-	1	3	-	-	-
CO3	-	-	-	-	-	-	-	1	2	-	-	-
CO4	-	-	-	-	-	-	-	1	3	-	-	-
	3	3-Strong	Contribu	tion: 2-M	Ioderate (Contribut	tion: 1-L	ow Conti	ibution:			

OPEN Activity - Sports - I: HUP4152 Mapping of Course Outcomes (COs) with Programme Specific Outcomes (PSOs)										
	PSO1	PSO2	PSO3	PSO4	PSO5					
CO1	-	-	-	-	1					
CO2	-	-	-	-	1					

Semester I Page 43 of 267

Integrated Master of Technology, Chemical Engineering (Major) and MDM ICT Marathwada Campus, Jalna

CO3	-	-	-	-	1						
CO4	-	-	-	-	1						
3-Stror	3-Strong Contribution; 2-Moderate Contribution; 1-Low Contribution;										

Semester I Page 44 of 267

CO3

CO4

CO5

respect of others

Be creative with improved emotional expression

Develop social harmony and appreciation of diversity.

		Semester I			
CCA	Course Code:	Course Title:	Cro	edits :	= 2
	HUP4155	OPEN Activity - Fine arts - I	L	T	P
	Semester: I	Total contact hours: 60	0	0	4
		List of Prerequisite Courses			
	Basic Drawing Cour	rse, Primary Extracurricular Activities course			
		List of Courses where this course will be prerequisite			
	NA				
	De	escription of relevance of this course in the Int. M. Tech. Program			
comple person deeper	ete as people. They cality. They come into	gral part of the development of human beings since the arts are what make us monoffer us the experience of wholeness because they touch us at the deepest level to being not when we move beyond necessity but when we move to a deeper not te order, beauty and meaning out of chaos. They are the expressions of deepes	els of necessi	mind ity, to	and the
		Course Contents (Topics and subtopics)	Req	d. hou	urs
1	other art forms. Students will be give	a range of courses in different art forms: music, dance, theatre, painting, and en an option to choose a particular art form and learn and practice it under an the end of the course, a student should be able to demonstrate basic proficiency		60	
	in that particular art				
	•	Total		60	
		List of Text Books/ Reference Books			
1	Gardner's Art Throu 2011 vol. 1-2	ugh the Ages: A Global History. (13th Ed.), ed. F.S. Kleiner, Ref. N5300. G25			
2	The Grove Encyclop 2007 vol. 1-2	pedia of Classical Art and Architecture. ed. Gordon Campbell. Ref. N5610. G76			
3	Art and Music: A St	tudent's Guide (Reclaiming the Christian Intellectual Tradition)			
		Course Outcomes (students will be able to)			
					_
CO1	Enhance perceptual	and cognitive skills		K3	

	OPEN Activity - Fine arts - I: HUP4155 Mapping of Course Outcomes (COs) with Programme Outcomes (POs)												
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	-	-	1	-	2	1	1	2	2	2	1	2	
CO2	-	-	1	-	2	1	1	2	2	2	1	2	
CO3	-	-	1	-	2	1	1	2	2	2	1	2	
CO4	-	-	2	-	1	1	1	2	2	1	1	2	
CO5	-	-	2	-	1	1	1	2	2	1	1	2	
	3	3-Strong	Contribu	tion: 2-M	Ioderate (Contribu	tion: 1-L	ow Contr	ibution:	•		•	

Develop an understanding and sharing of culture, with social skills that enhance the awareness and

K1: Remembering, K2: Understanding, K3: Applying, K4: Analyzing, K5: Evaluating, K6: Creating

K3

K3

K3

Semester I Page 45 of 267

Mapping of	OPEN Activity - Fine arts - I: HUP4155 Mapping of Course Outcomes (COs) with Programme Specific Outcomes (PSOs)												
	PSO1	PSO2	PSO3	PSO4	PSO5								
CO1	-	-	-	-	1								
CO2	-	-	-	-	1								
CO3	-	-	-	-	1								
CO4	-	-	-	-	1								
CO5	-	-	-	-	1								
3-Stro	ong Contribution; 2	-Moderate Contri	bution; 1-Low Co	ontribution;									

Semester I Page 46 of 267

		Semester I			
CCA	Course Code:	Course Title:	Cr	edits:	= 2
	HUP4159	OPEN Activity - Yoga - I	L	T	P
	Semester: I	Total contact hours: 60	0	0	4
		List of Prerequisite Courses			
	status, academic sch because of any situa they have proper nu	to gather some basic information about the students, such as their age, marital edules, and recreational activities, whether they have any sleep issues and stress ation. It shall be better to know how the students deal with stress, and whether trition. We also might need information about any injuries past or current and pondition that may interfere in the program.			
	T	List of Courses where this course will be prerequisite	I		
		out professional and personal lives			
		escription of relevance of this course in the Int. M. Tech. Program			
by doi potenti	ng Yoga Aasanas. A ial. Professional and p	rney. The benefits of Yoga are many. It brings in calmness of mind besides the part from flexibility developed by regular physical activities, it makes one awarersonal lives are full of situations that can be stressful. Yoga helps the students to actations and demands of their own lives.	are o	f his	own
		Course Contents (Topics and subtopics)	Req	d. hot	ars
2	be practiced for each observing the stream. The students shall be elicit a state of deep or changing the symmetch are exercised to experiences. The students shall be preoccupations and realization. The students shall be flexibility, strength record will form the Yoga helps to develocompassion. It's mand poses during the compassion. It's mand poses during the compassion of Regular attendance paper Assessment: philosophy of yoga Verbal Assessment of the students of the students of the proof of the students	foundations of yoga. Both concentrative and insight meditation techniques may h session. Behavioural techniques of self-monitoring should also be practiced of consciousness from the perspective of a vigilant but detached observer. Be trained to practice different models of mindfulness and meditation so as to physical and behavioural relaxation. They may work on selectively influencing metry in hemispheric brain activity. Positive addiction, meta-cognitive practices of make the students experience the universal human capacity through spiritual adents may learn to turn-off or bypass the cognitive processing of usual daily concerns, allowing access to mindful, spiritual and meditative state of self-keep a small journal to write down their own journey/progress on physical building and most importantly, how they deal with stressful conditions. This paper assessment of the student. Op many mental skills like mindfulness, self-control, focus, and even self-inly a physical practice. The students are taken through different movements by yoga sessions. Illowing assessments are recommended: A paper assessment may include assessing student's understanding of the basic on the basis of his/her ability to assimilate the philosophy of yoga and practicing		20	
	in daily life. Mobility & Flexibili	ity assessment is to assess the strength and flexibility, like twist.			
		Total		60	
	<u> </u>	List of Text Books/ Reference Books]		
1	Yoga Sutra of Patan	jali, Ramakrishna Mission, Kolkata			
2	_	Consciousness Psychotherapy and Yoga Practices, Vidyanidhi Prakashan, Delhi			
		Course Outcomes (students will be able to)			
CO1	Keep physically fit a	and mentally agile		K2	
CO2	Manage stress in stu	dies and later in life		K2	
CO3	Coordinate body and	d mind together		K2	
CO4		otions and maintain healthy daily routine		K2	

Semester I Page 47 of 267

CO5	Understand and apply the importance of Yoga and Self-development in personal life	К3
K1: R	emembering, K2: Understanding, K3: Applying, K4: Analyzing, K5: Evaluating, K6: Creating	

	OPEN Activity - Yoga - I: HUP4159 Mapping of Course Outcomes (COs) with Programme Outcomes (POs)												
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	-	1	2	-	1	-	1	2	2	1	-	2	
CO2	-	1	2	-	1	-	1	2	2	1	-	2	
CO3	-	1	2	-	1	-	1	2	2	1	-	2	
CO4	-	1	2	-	1	-	1	2	2	1	-	2	
CO5	-	2	2	-	1	-	2	2	3	2	-	3	
	3	3-Strong	Contribu	tion; 2-M	Ioderate (Contribut	ion; 1-L	ow Contr	ibution;				

Mapping	OPEN A of Course Outcomes	Activity - Yoga - (COs) with Prog		Outcomes (PSOs)	
	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	-	-	-	-	1
CO2	-	-	-	-	1
CO3	-	-	-	-	1
CO4	-	-	-	-	1
CO5	-	-	-	-	1

Semester I Page 48 of 267

First Year

Semester-II

Semester-II Page 49 of 267

		Semester II					
BSC	Course Code:	Course Title:	Cre	edits :	= 2		
	CHT4152	Applied Chemistry II	L	Т	P		
	Semester: II	Total contact hours: 30	2	0	0		
		List of Prerequisite Courses	ı				
	Standard XII Chemistry	, Applied Chemistry (CHT4151)					
	•	List of Courses where this course will be prerequisite	ı				
	Engineering (CET425: Process Dynamics (CE Development and Engin Engineering (Hon.)	Balance Calculations (CEP4151), Industrial Chemistry and Reaction 3), Chemical Engineering Operation (CET4251), Instrumentation and T4256), Chemical Reaction Engineering (CET4351), Chemical Process neering (CET4451), Biochemical Engineering (Hon.), Catalytic Science and applied of relevance of this course in the Int. M. Tech. Program					
+2 leve	n the students about reacted. The course will ena	ion kinetics, thermodynamics, electrochemistry, interfacial chemistry and cable the students to understand and apply the principles of thermodynamistry and catalysis for engineering applications.					
	3 7	Course Contents (Topics and subtopics)	Req	d. hou	ırs		
1	reaction: concentration	eview of rate of reaction, rate constant, effects of the following on rate of , temperature. Derivation of rate expression for Second order reactions, allel, consecutive, reversible reaction.	1	8			
2	Thermodynamics: a) Enthalpy and heat of Hess lab b) 2nd law of thermodynamics for reversional reversio	capacities, first law of thermodynamics and application, thermochemistry ynamics, Clausius inequality, entropy as a state function, entropy, entropy ble and irreversible processes, free energy, Gibbs Helmholtz equation,		8			
3	Maxwell's relations, effect of T and P on free energy Surfaces and interfaces: Surface/interfacial energy and surface/interfacial tension. Measurement of surface tension, Contact angle, its measurement, adhesion, cohesion and wetting phenomena, adsorption.						
4	Catalysis: Homogeneo	us catalysis (specific and general acid catalysis), Heterogeneous catalysis, a solid surfaces, Enzyme catalysis (Michelis Menten kinetics).		3			
5	Kinetics of reactions on solid surfaces, Enzyme catalysis (Michelis Menten kinetics). Electrochemistry: Ionic Conductance, Ion mobility, Transport number, Variation of specific and equivalent conductance with dilution for strong and weak electrolytes; Kohlrausch's law of independent migration of ions; Ion atmosphere: asymmetric effect, relaxation effect, and electrophoretic effect, Wien effect, Debye Falkenhagen effect; Debye-Huckel limiting law-brief qualitative description. Application of conductance measurement, Conductometric titrations, Walden's rule., Basic concept of cell and cell contraction.						
		Total		30			
		List of Textbooks/ Reference Books					
1	Physical Chemistry, At	kins, Peter W.; Paula, Julio de; Keeler, James. Oxford University Press.					
2	Physical Chemistry, K	J. Laidler and J.M. Meiser, CBS Publishers					
3	A Textbook of Physical	Chemistry, K L Kapoor, McGraw Hill Education					
4	Physical Chemistry by	G.W Castellan, Narosa					
5	Physical Chemistry by	P. C. Rakshit, Sarat Book House					
		Course Outcomes (students will be able to)					
CO1	on kinetics.	, write rate expressions and predict mechanism of simple reactions based		K3			
CO2	applications.	per the law of thermodynamics, apply the concept for engineering		К3			
CO3	tension of some unknow			K4			
CO4	Understand electrochem	nical phenomena and application of analytical methods based on them.		K4			

Semester II Page 50 of 267

	CO5	Learn the principles, kinetics, design, and applications of catalysis.	K4
]	K1: Rer	nembering, K2: Understanding, K3: Applying, K4: Analyzing, K5: Evaluating, K6: Creating	

	Applied Chemistry II: CHT4152 Mapping of Course Outcomes (COs) with Programme Outcomes (POs)												
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	3	2	1	1	1	3	1	-	1	1	3	-	
CO2	3	1	1	1	1	3	-	1	1	1	2	3	
CO3	3	3	1	-	2	3	1	3	3	2	-	2	
CO4	2	3	1	1	2	2	1	1	2	2	2	1	
CO5	3	3	1	2	3	3	2	3	3	3	3	2	
	3	3-Strong	Contribu	tion; 2-M	Ioderate (Contribu	tion; 1-L	ow Contr	ibution;	-			

PSO2 2	PSO3	PSO4	PSO5
2	1	1	1
		1	1
1	1	1	1
3	1	2	2
3	1	1	2
3	1	2	3
	3 3 on: 2-Moderate Co	3 1 3 1 on: 2-Moderate Contribution: 1-Low	3 1 1 2 on; 2-Moderate Contribution; 1-Low Contribution;

Semester II Page 51 of 267

		Semester II						
BSC	Course Code:	Course Title:	Cr	edits	= 4			
	MAT4152	Mathematics: II	L	T	P			
	Semester: II	Total contact hours: 60	4	0	0			
		List of Prerequisite Courses						
	HSC Standard Mathematics,	Applied Mathematics: I (MAT4151)						
	List	of Courses where this course will be prerequisite						
	Engineering (CET4253), Che CEP4253 and CEP4254), C (CET4352), Process Simula Control (CET4354), Separat	Balance Calculation (CEP4151), Industrial Chemistry and Reaction emical Engineering Laboratory I, II, III and IV (CEP4251, CEP4252, Chemical Reaction Engineering (CET4351), Momentum Transfer tion Lab - I and II (CEP4255 and CEP4256), Chemical Process ion Processes + Membrane (CET4356), Heat Transfer Equipment natical Methods & Optimization in Chemical Engineering (Hon.), (Hon.)						
	Description	of relevance of this course in the Int. M. Tech. Program						
		This knowledge will be required in almost all subjects later on. This						
		tical equations that need to be solved in several chemical engineering	course	es suc	:h as			
MEBC		engineering, separation processes, thermodynamics, etc. se Contents (Topics and subtopics)	,	Hour				
	T.	<u> </u>		nour	<u>S</u>			
1	Probability Theory and Sampling Distribution: Review of probability, Random variables and cumulative distribution function; probability mass function and probability density function; Some common univariate distributions: Binomial, Poisson, Geometric and Uniform, exponential, Normal, Gamma, beta etc; Expectation and Moments (central and raw moments); Generating functions: moment generating function and characteristic function; Multiple random variables and Joint distribution; marginal distributions, independence; Covariance and Correlation; method of least squares and simple linear regression; nonlinear regression							
2	Partial Differential Equations: Introduction to Partial Differential Equations (PDE), Classification of higher order PDEs, Solution of PDEs using separation of variable techniques							
3	(Gauss-elimination, LU-deco	tem of Linear Equations: Solutions of system of linear equations omposition etc.), Numerical solution set of linear algebraic equations: der / over relaxation method	5					
4	Numerical Roots: Numerical Newton's method, Secant and	cal methods for solving non-linear algebraic / transcendental etc.: ad Regula Falsi		6				
5		n and extrapolation for equal and non-equal spaced data (Newtons d and Lagrange), Numerical integration (trapezoidal rule, Simpson's		6				
6	values and boundary value pr	fumerical methods for solution of first and higher order ODEs (initial roblems) using single step methods (RK, Euler's explicit and implicit ls (predictor: corrector methods etc.)		8				
7	Backward difference, and	BVP and PDE: Finite difference methods: Forward difference, Central differences application of finite difference methods to ODE and PDE (parabolic, elliptic and hyperbolic)		10				
		Total		60				
	1	List of Textbooks / Reference Books						
1	•	y, Sheldon Ross, Pearson Prentice Hall, 9th Edition (2018)						
2	Engineering, John Wiley &							
3	Alexander M. Mood, Duane Statistics, McGraw Hill; 3rd	e C. Boes, and Franklin A. Graybill, Introduction to the Theory of edition (1974).						
4	An Introduction to Statistic Haslwanter, 2016, Springer	s with Python with Applications in the Life Sciences by Thomas						

Semester II Page 52 of 267

E. Kreyszig, Advanced Engineering Mathematics, 8th Ed., John Wiley (1999).

6	S. R. K. Iyengar, R. K. Jain, Advanced Engineering Mathematics, Narosa						
7	Learning Statistics with R by Daniel Joseph Navarro, 2015						
8	Sastry S. S., Introductory Methods of Numerical Analysis, 5th Ed., PHI (20120						
9	M. K. Jain, S R K Iyengar and R K Jain, Numerical Methods: For Scientific and Engineering Computation, New Age International Publication (2003)						
10	Kenneth J Beers Numerical Methods for Chemical Engineering Application Using MATLAB (2007), Cambridge University Press						
11	Mark E. Davis, Numerical Methods and Modelling for Chemical Engineers, Dover Publications (2003)						
12	Sandip Mazumder, Numerical Methods for Partial Differential Equations (2015), Elsevier						
	Course Outcomes (students will be able to)						
CO1	Understand the concepts of various probability distributions and apply them to analyse various engineering problems and make inference about the system	K4					
CO2	Understand the method of linear and nonlinear least squares method and apply it to choose appropriate mathematical functions for modelling real data sets, arising from chemical engineering applications	K4					
CO3	classify higher of partial differential equation and solve parabolic equation using separation of variables.	К3					
CO4	Understand the principles of various numerical approximation techniques and apply them to solve system of linear equations and nonlinear algebraic equations	K4					
CO5	Approximate appropriate mathematical functions from equal an unequally spaced data and perform integration using various numerical methods	K4					
CO6	Choose appropriate numerical techniques to solve initial and boundary value problems on ordinary and partial differential equations arising from various chemical engineering applications	K5					
K1: Re	membering, K2: Understanding, K3: Applying, K4: Analysing, K5: Evaluating, K6: Creating						

	Mathematics - II: MAT4152 Mapping of Course Outcomes (COs) with Programme Outcomes (POs)												
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	3	2	1	-	2	1	-	-	-	-	1	-	
CO2	3	2	2	-	1	2	-	-	-	-	1	1	
CO3	3	2	1	1	2	-	-	-	-	-	-	1	
CO4	3	1	-	2	1	-	-	-	-	-	1	-	
CO5	2	3	1	2	1	-	-	-	-	-	-	-	
CO6	2	1	1	1	-	1	-	-	-	-	1	-	
	3	S-Strong	Contribu	tion; 2-M	Ioderate	Contribut	tion; 1-L	ow Contr	ribution;				

Mapping	Mathematics - II: MAT4152 Mapping of Course Outcomes (COs) with Programme Specific Outcomes (PSOs)											
	PSO1	PSO2	PSO3	PSO4	PSO5							
CO1	3	3	2	2	-							
CO2	2	2	2	1	-							
CO3	2	2	3	1	-							
CO4	1	2	2	-	-							
CO5	3	3	2	1	1							
CO6	2	3	1	1	1							

Semester II Page 53 of 267

		Semester II							
ESC	Course Code:	Course Title:	Cı	redits	= 2				
	EST4153	Electrical Engineering and Basic Electronics	L	T	P				
	Semester: II	Total contact hours: 30	2	0	0				
		List of Prerequisite Courses							
	XIIth Standard Physics	and Mathematics courses, Applied Physics: II (PHT4151)							
		List of Courses where this course will be prerequisite							
	Chemical Process Conlab-II	trol (CET4354), Chemical Engineering Laboratory (CEP4251), Energy							
	Descrip	ption of relevance of this course in the Int. M. Tech. Program							
of electr on the n	ricity, changing the voltag	importance of Electrical Energy in Chemical Plants. The students will under levels to match with the appliances through transformers. Students will accent logic gates with the fundamentals of digital electronics. They will get a in industries.	quire	know	ledge				
		Course Contents (Topics and subtopics)	Req	d. hou	ırs				
1	DC Circuits : Circuit Co Sources – Voltage divi independent sources.		4						
2		AC Circuits: Average value, RMS Value, form factor and peak factor. A.C. through resistance inductance and capacitance. Instantaneous power, real power, reactive power and apparent							
3		mers : Necessity of transformer, Principle of operation, Types and rmers, EMF equation, losses, definition of regulation and efficiency.		3					
4	Number systems and t	Number system and codes: Binary, octal, hexadecimal and decimal hen inter conversion. ID, OR, NOT, NAND, NOR, Ex-OR, Ex-NOR and their truth tables.		3					
5	Power Electronics dev Thyristors, Application	vices-Thyristor: Construction and Static I-V characteristics of ns.		2					
		Total		30					
	T	List of Textbooks/ Reference Books	1						
1	Edward Hughe "Electr. 2019.	ical and Electronic Technology", 10th Edition, Pearson Education Asia,							
2	Kothari DP and I.J Na McGraw Hill Education	grath, "Basic Electrical and Electronics Engineering", Second Edition, n, 2020							
3	Chapman, "Electric Ma	achinery Fundamentals", McGraw-Hill Higher Education.							
4	William H. Gothmann,	"Digital Electronics", second edition, PHI publishers.							
5	M.D. Singh, K B Khan	chandani, 'Power Electronics', second edition, TATA McGraw Hill.							
6	Electronic devices and	circuits by Boylstead, Nashelsky							
7	Principles of Electronic	es by V.K.Mehta and Rohit Mehta							
8	Electrical Technology l	by B.L.Theraja, A.K.Theraja Vol I,II,IV							
9	A Anand Kumar, "Fund	damentals of Digital Circuits", fourth edition, PHI publishers.							
		Course Outcomes (students will be able to)							
CO1	Apply the concept of D	O.C. electrical circuit to Solve the basic electrical circuits.		К3					
CO2	Apply the concept of A	C. electrical circuit to Solve the basic electrical circuits.		K3					
	II. 1		К3						
CO3	Understand the transfor	rmer working principle and its basic concepts.		110					
CO3		t of number systems and logic gates in digital electronics.		K3					

Semester II Page 54 of 267

K1: Remembering, K2: Understanding, K3: Applying, K4: Analyzing, K5: Evaluating, K6: Creating

	Electrical Engineering and Basic Electronics: EST4153 Mapping of Course Outcomes (COs) with Programme Outcomes (POs)													
	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12													
CO1	3	2	1	1	-	-	-	-	-	1	1	-		
CO2	3	3	3	2	1	-	-	-	1	1	-	-		
CO3	3	1	2	-	-	-	-	-	-	-	1	-		
CO4	3	1	1	1	2	2	-	-	-	1	1	-		
CO5	3	2	3	2	1	-	-	-	-	1	1	-		
	3	-Strong	Contribut	tion; 2-M	loderate (Contribut	tion; 1-L	ow Contr	ribution;					

Mapping o	Electrical Engineering and Basic Electronics: EST4153 Mapping of Course Outcomes (COs) with Programme Specific Outcomes (PSOs)											
	PSO1	PSO2	PSO3	PSO4	PSO5							
CO1	3	3	2	2	-							
CO2	2	2	2	2	-							
CO3	2	3	2	1	1							
CO4	2	2	1	-	-							
CO5	3	2	2	1	1							
3-S	trong Contribution; 2	-Moderate Contr	ibution; 1-Low Co	ontribution;								

Semester II Page 55 of 267

		Semester II			
ESC	Course Code:	Course Title:	Cr	edits :	= 2
	ESP4153	Electrical Engineering and Basic Electronics Laboratory	L	T	P
	Semester: II	Total contact hours: 60	0	0	4
		List of Prerequisite Courses		•	
	XIIth Standard Mat Engineering and Elec	hematics and Physics courses, Applied Physics I (PHT4151), Electrical			
	Engineering and Lice	List of Courses where this course will be prerequisite			
	Chemical Process Co				
		scription of relevance of this course in the Int. M. Tech. Program			
basics	nts will get an insight in of electricity, and the s	into the importance of Electrical Energy in Chemical Plants. The students wil election of diverse types of drives for a given application process. They will get be			
as rega	ards to Power supplies,	instrumentation amplifiers and thyristor application in industries.	D		
1		Course Contents (Topics and subtopics)	Rec	ıd. ho	urs
1	Electrical Engineeri 1. To verify KCL a			4	
	 To verify RCL a To verify Thever 			4 4	
	3. To verify Superp			4	
		e phase power by using two wattmeter method		3	
	5. Study of RLC cir			3	
	6. Load test on tran			3	
	7. Load test on indu			3	
		circuits with Star connected load		3	
2	Electronics Enginee	circuits with Delta connected load		3	
2		and its applications.		5	
	 Measurement of 			5	
		ve, full wave and bridge rectifier circuits		5	
	-	nd output characteristics of a transistor.		5	
	-	onal amplifier circuits.		5	
	6. Basic Logic Gate	es (NOT, OR, AND, NOR, NAND): Characteristics Trainer		5	
		Total		60	
		List of Textbooks/ Reference Books	1		
1	Electrical Engineerin	g Fundamentals by Vincent Deltoro			
2		d circuits by Boylstead, Nashelsky			
3	Electrical Machines b	by Nagrath, Kothari			
4	Electrical Machines b	by P.S. Bhimbra			
5	Electrical Technology	y by B. L. Theraja, A. K. Theraja vol I, II, IV			
		Course Outcomes (students will be able to)			
CO1	Understand the basic basic electrical circui	concepts of D.C., single phase and three phase AC supply and circuits Solve t problems		K2	
CO2	Understand the basic	concepts of transformers and motors used as various industrial drives.		K2	
CO3	Understand the basic amplification, and ins	c concepts of electronic devices and their applications in power supplies, strumentation		K2	
CO4	Understand the basic	concepts of Data acquisition, signal conditioning		K2	
CO5	Estimating and evalu	ate the data		K5	
CO6	Prepare the report and	d create the idea and thoughts		K6	
K1: Re	emembering, K2: Unde	erstanding, K3: Applying, K4: Analyzing, K5: Evaluating, K6: Creating			

Semester II Page 56 of 267

	Electrical Engineering and Basic Electronics Laboratory: ESP4153 Mapping of Course Outcomes (COs) with Programme Outcomes (POs)														
	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12														
CO1	3	1	1	1	-	1	1	-	-	1	1	-			
CO2	3	2	1	2	1	1	1	-	-	-	1	-			
CO3 1 2 1 1 1 1								-	-	1	-	-			
CO4	3	-	-	1	-	-	2	-	-	-	-	-			
CO5	3	2	1	1	1	1	1	-	-	1	-	-			
CO6	CO6 2 1 2 1														
	3	-Strong	Contribu	tion; 2-M	Ioderate (Contribut	tion; 1-L	ow Contr	ribution;						

	Electrical Engineering and Basic Electronics Laboratory: ESP4153 Mapping of Course Outcomes (COs) with Programme Specific Outcomes (PSOs)												
PSO1 PSO2 PSO3 PSO4 PSO5													
CO1	2	1	2	1	-								
CO2	2	2	3	2	-								
CO3	2	1	1	1	-								
CO4	1	2	1	2	-								
CO5	2	1	1	1	-								
CO6	2	1	2	1	-								
3-5	Strong Contribution; 2	2-Moderate Contr	ibution; 1-Low Co	ontribution;									

Semester II Page 57 of 267

		Semester II			
ESC	C Course Code: Course Title:				- 4
	EST4152	Mechanical Engineering	L	T	P
	Semester: II	Total contact hours: 60	3	1	0
		List of Prerequisite Courses			
	Applied Physics (PH	TT4151), Applied Mathematics: I and II (MAT4151 and MAT4152)			
		List of Courses where this course will be prerequisite			
	(CEP4151), Chemica	ng Thermodynamics-I (CET4155), Material and Energy Balance Calculations all Process Design and Engineering (CEP4451), Process Safety (CET4255) gineering and Economics (CET4358)			
	De	escription of relevance of this course in the Int. M. Tech. Program			
	nts will be able to und nission system.	erstand various equipment's like steam turbine, gas turbine, pumps, compresso	rs, an	d pow	er
transn	nssion system.	Course Contents (Topics and subtopics)	Rec	d. ho	urs
1	Introduction to Ther	modynamics, First and Second law of thermodynamics.		4	
2		T-S Diagram, Calculation of entropy, enthalpy, specific volume of steam,		4	
3	Introduction to Steam Turbine,	n Power Plant, Rankine cycle, Reheat cycle, Regenerative cycle, Back Pressure		6	
4	of Steam Turbine	sification, Calculation of Power Developed by Steam Turbine, Compounding		6	
5		on, Study of various Boilers such as Babcock & Wilcox Boiler, Cochran Boiler, Benson Boiler, Boiler Mountings and Accessories, Boiler Performance, am Quality			
6	Steam Nozzles, Dive	erse types of Steam Nozzles, Variation of area, velocity, and specific volume		2	
7	Elements of Steam c	4			
8		fication of Compressors, Reciprocating Compressors, Single stage compressor pressor, P-V diagram, Application of Compressors, Rotary Compressors, al compressors			
9	Pumps, Classification Pumps, Maintenance	on of Pumps, Reciprocating Pumps, Centrifugal Pumps, Axial Pumps, Gear of Pumps		4	
10	properties desired by	of refrigerator and heat pumps, classification of refrigerants, Nomenclature, y refrigerants. Vapor compression refrigeration cycle. Methods of increasing or absorption refrigeration systems.		6	
11		engines: Thermodynamic cycles such as otto, diesel and dual cycles. Methods l efficiency and performance of internal combustion engines		4	
12		ant pressure and constant volume gas turbines, open and closed cycle gas increasing thermal efficiency and specific work output of gas turbines.		4	
13		ver: Introduction to various drives such as belt, rope, chain, and gear drives. nanical elements such as keys, couplings, and bearings in power transmission.		6	
		Total		60	
		List of Textbooks/ Reference Books			
1	Thermodynamics by				
2	•	y HiH Saravanamutoo			
3		conditioning by C.P. Arora			
4	Power plant by Mors				
5	Heat Engines by P.L				
6	Hydraulic Machines	by Jagdish Lal			
7	Theory of Machines	by Rattan. S.S			
		Course Outcomes (students will be able to)			
CO1	Understand the first	law and second law of thermodynamics with its implications.		K2	

Semester II Page 58 of 267

Integrated Master of Technology, Chemical Engineering (Major) and MDM ICT Marathwada Campus, Jalna

CO2	Describe the properties of steam and working of various steam boilers.	K2							
CO3	Explain the working principles of power developing systems such as steam turbines, gas turbines and internal combustion engines.	K2							
CO4	Describe the working principle of vapor compression and vapor absorption refrigeration systems.	K2							
CO5	Discuss several types of power transmission systems and their typical applications.	K2							
CO6	Explain the working principles of power absorbing devices such as pumps and compressors.	K2							
K1: R	K1: Remembering, K2: Understanding, K3: Applying, K4: Analyzing, K5: Evaluating, K6: Creating								

	Mechanical Engineering: EST4152 Mapping of Course Outcomes (COs) with Programme Outcomes (POs)														
	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12														
CO1	3	1	1	2	ı	ı	ı	-	-	1	-	-			
CO2 2 1 1 1 - 1												-			
CO3 3 1 1 1 1 - 2										-	-				
CO4	2	2	2	-	1	-	1	-	-	-	-	-			
CO5	1	2	1	1	2	2	-	-	-	-	-	-			
CO6	-	2	1	2	-	-	1	-	-	-	-	-			
	3	S-Strong (Contribut	tion; 2-M	oderate (Contribut	ion; 1-L	ow Contr	ribution;						

Mapping of	Mechanical Engineering: EST4152 Mapping of Course Outcomes (COs) with Programme Specific Outcomes (PSOs)												
	PSO1	PSO2	PSO3	PSO4	PSO5								
CO1	3	2	2	1	-								
CO2	3	3	2	1	-								
CO3	3	2	1	2	-								
CO4	2	1	2	1	-								
CO5	2	2	1	1	-								
CO6 2 1 1 1 1 1													
3-Stro	3-Strong Contribution; 2-Moderate Contribution; 1-Low Contribution;												

Semester II Page 59 of 267

		Semester II	ı		
ESC	Course Code:	Course Title:	Cro	edits =	= 2
	EST4154	Introduction to Chemical Engineering	L	T	P
	Semester: II	Total contact hours: 30	2	0	0
		List of Prerequisite Courses			
	Standard X+XII (Che	emistry, Physics, Mathematics)			
		List of Courses where this course will be prerequisite	1		
		Balance Calculations (CEP4151); Fluid Flow (CET4151); Heat Transfer			
	Engineering (CET42 (CET4254); Process	ering Thermodynamics (EST4155); Industrial Chemistry and Reaction 53); Environmental Science (CET4258); Chemical Engineering Operations Safety (CET4255); Instrumentation and Process Dynamics (CET4256); Engineering (CET4351); Momentum Transfer (CET4352); Chemical Process			
	Control (CET4354);	Separation Processes (CET4356); Chemical Process Development and			
		51); Chemical Process Equipment Design and Drawing (CEP4451), Chemical bry: I (CEP4251), Chemical Process Development and Engineering (CET4451)			
	De	escription of relevance of this course in the Int. M. Tech. Program			
	nts will be able to und lesign and economics.	derstand role of chemical engineering and chemical engineering principle and	operat	ion al	ong
		Course Contents (Topics and subtopics)	Req	d. hou	rs
1	Chemical Engineer as	nd Chemical Engineering Profession		4	
2		stry: (a) Petroleum and petrochemical industry (b) Pharmaceutical industry d Pesticides industry (d) Specialty Chemicals industry (e) Inorganic Chemicals		8	
3		g Principles: Chemical reaction engineering, separation processes, automation		4	
4	Overview of chemica handling	l process equipment: Reactors, Distillation, Absorption, Filters, Dryer and solid		4	
5	Global trends of chen	nicals		4	
6	Life cycle assessmen	t and environmental impact		4	
7	Modern Chemical En	gineering Plants: Batch to Continuous processing		2	
		Total		30	
		List of Textbooks			
1		nical Engineering: Tools for Today and Tomorrow: A First-Year Integrated English, Paperback, Kenneth A. Solen, John N. Harb), Wiley, 2014			
2	Introduction To Cher	nical Engineering (English, Paperback, S. Pushpavanam)			
3	Chemical Engineerin University Press)	ng: An Introduction (Cambri(Paperback) by Morton Denn (Cambridge			
		List of Additional Reading Material / Reference Books			
1	Ministry of Commerc	ee and Industry reports			
2	A History of The Inte	ernational Chemical Industry by Fred Aftalion			
		Course Outcomes (students will be able to)	ı		
	Students will be able				
CO1	•	nemical engineer in industry and society		K2	
CO2		process and Unit Operation in chemical Engineering		K2	
CO3		n of industrial process and equipment		K2	
CO4		neering basic calculations		K3	
CO5	Perform basic proces			K3	
CO6	•	ne idea and thought in problem solving in chemical engineering principles			
K1: R	emembering, K2: Und	erstanding, K3: Applying, K4: Analyzing, K5: Evaluating, K6: Creating			

Semester II Page 60 of 267

	Introduction to Chemical Engineering: EST4154 Mapping of Course Outcomes (COs) with Programme Outcomes (POs)														
	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12														
CO1	3	2	1	1	-	-	1	-	2	1	1	1			
CO2	2	1	1	2	2	ı	1	ı	1	2	2	-			
CO3	2	1	1	2	1	1	-	1	-	1	1	-			
CO4	2	2	1	-	1	-	-	-	-	2	1	-			
CO5	2	1	-	-	1	-	1	-	-	2	1	2			
CO6	CO6 2 2 1 2 1 1 1 1 - 2 1 1														
	3	S-Strong (Contribut	tion; 2-M	loderate (Contribut	tion; 1-L	ow Contr	ibution;						

Mapping o	Introduction to Chemical Engineering: EST4154 Mapping of Course Outcomes (COs) with Programme Specific Outcomes (PSOs)												
	PSO1	PSO2	PSO3	PSO4	PSO5								
CO1	3	3	2	1	-								
CO2	3	2	1	2	-								
CO3	2	1	1	1	-								
CO4	2	2	-	1	-								
CO5	1	3	2	3	1								
CO6	3	3	2	2	1								
3-8	3-Strong Contribution; 2-Moderate Contribution; 1-Low Contribution;												

Semester II Page 61 of 267

		Semester II			
PCC	Course Code:	Course Title:	Cro	edits	= 2
	CEP4151	Material Balance and Energy Balance Calculations	L	T	P
	Semester: II	Total contact hours: 60	0	0	4
		List of Prerequisite Courses			
	Chemistry: I (CHT4	hematics, Chemistry, Physics, Applied Mathematics: I (MAT4151), Applied 151 and CHT4152), Applied Physics: I (PHT4151); Introduction to Chemical 54); Mechanical Engineering (EST4152) List of Courses where this course will be prerequisite			
	4254); Chemical R. Chemical Engineerin Separation Processes Economics (CET435 Engineering (Hon.),	and Reaction Engineering (CET4253), Chemical Engineering Operation (CET eaction Engineering (CET4351); Chemical Project Economics (CET4358), ag Laboratory I, II, III and IV (CEP4151, CEP4252, CEP4253 and CEP4254), as (CET4356), Heat Transfer Equipment design (CET4357), Chemical Project (88), Chemical Process Development and Engineering (CET4451), Biochemical Refinery Science and Engineering (Hon.)			
		escription of relevance of this course in the Int. M. Tech. Program			
This is	s a basic Chemical Eng	gineering Course. This knowledge will be required in ALL subjects later on.			
		Course Contents (Topics and subtopics)	Req	d. ho	urs
1		emical Engineering: Chemical Process Industries, Chemistry to Chemical on of Units and Dimensions		4	
2	Mole concept, compo	osition relationship and Stoichiometry, Behavior of gases and vapors		6	
3	Material balances for bypass and purge	reacting and non-reacting chemical and biochemical systems including recycle,		20	
4	Introduction to psych	nrometry humidity and air-conditioning calculations.		10	
5	Introduction to Energ	gy Balances, Energy Balances in systems with and without reactions		10	
6	Unsteady State Mate	rial and Energy Balances		6	
7	Material and Energy	Balances for multistage processes and complete plants		4	
		Total		60	
		List of Textbooks/ Reference Books			
1	Chemical Process Pr	inciples, Hougen O.A., Watson K. M.			
2	Basic Principles and	Calculations in Chemical Engineering, Himmelblau,			
3	Stoichiometry, Bhatt	B.I. and Vora S.M.			
		Course Outcomes (students will be able to)			
CO1	Students will be able	to convert units of simple quantities from one set of units to another set of units		K3	
CO2		e to calculate quantities and /or compositions in various processes and process actors, filters, dryers, etc.		К3	
CO3	Students will be able as reactors, filters, dr	to calculate energy usages, etc. in various processes and process equipment such yers, etc.		K3	
CO4	Able to apply the n principle.	nass and energy balance etc, in various application of chemical engineering		K4	
CO5	Able to evaluate the	calculate the final predicted results		K5	
CO6	Create and develop is	dea and thoughts in chemical engineering principles		K6	
K1: R	emembering, K2: Und	lerstanding, K3: Applying, K4: Analyzing, K5: Evaluating, K6: Creating			-

Semester II Page 62 of 267

	Material Balance and Energy Balance Calculations: CEP4151 Mapping of Course Outcomes (COs) with Programme Outcomes (POs)														
	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12														
CO1	3	2	1	1	-	-	1	-	2	1	1	1			
CO2 2 1 1 2 2 - 1 - 1 2											-				
CO3	2	1	1	2	1	1	-	1	-	2	1	-			
CO4	2	2	1	2	1	1	1	1	-	1	1	1			
CO5	3	2	1	1	1	-	-	-	-	-	-	-			
CO6	CO6 2 3 1 2 1														
	3	S-Strong (Contribu	tion; 2-M	loderate (Contribut	tion; 1-L	ow Contr	ibution;						

Material Balance and Energy Balance Calculations: CEP4151 Mapping of Course Outcomes (COs) with Programme Specific Outcomes (PSOs)											
	PSO1	PSO2	PSO3	PSO4	PSO5						
CO1	3	2	2	1	1						
CO2	2	2	2	2	-						
CO3	1	3	1	1	-						
CO4	2	2	2	1	1						
CO5	3	2	1	-	-						
CO6	2	3	1	-	-						
3-5	Strong Contribution;	2-Moderate Contr	ibution; 1-Low C	ontribution;							

Semester II Page 63 of 267

	Ι ~ ~ .	Semester II						
VSEC	Course Code: ESP4154	Course Title: Engineering Applications of Digital Computers		edits :	_			
	Semester: II	Total contact hours: 60	L 0	T 0	P 4			
	Semester. II	List of Prerequisite Courses	U	U				
	XIIth Standard Mat MAT4152)	hematics and Physics Courses, Applied Mathematics: I and II (MAT4151 and						
	- /	List of Courses where this course will be prerequisite	ı					
	Digital Computation	n in Emerging areas (AI/ML/DA)						
		escription of relevance of this course in the Int. M. Tech. Program	ı					
Student	s will be able to unde	erstand engineering applications of digital computers and data interpretation and	d pres	entatio	on.			
		Course Contents (Topics and subtopics)		d. hou				
1	Spreadsheet calcula seek, solver, curve programming		20					
2	Any programming iterative loops, func	ming language (preferably python): Basics, array types, conditional statements, functions						
3	Programming case s as Van der Waal, F Drag Coefficient etc		6					
4	Solution of ordinary	differential equations (IVP and BVP)	8					
5	Data visualization (2D plots, 3D plots, contours, surface plots)		6				
		Total		60				
		List of Text Books/ Reference Books						
1	Microsoft Office he	lp						
2	Python: The Compl	ete Reference, Martin Brown						
3	Unit Operations of	Chemical Engineering, McCabe, Smith and Harriott (for case studies)						
		Course Outcomes (students will be able to)						
CO1	Students would be a	able to carry out Spreadsheet calculations for chemical engineering problems		К3				
CO2	Students would be a	able to develop programming logic and code it in software		K4				
CO3	Student would be al	ble to apply the software skill in making code		K4				
CO4	Student would be al	ble to analyze the result using data solving		K4				
CO5	Student would be al	ble to evaluate result using formulae in computer		K5				
CO6	Student would be al	ble to create and write the program		K6				
K1: Re	membering, K2: Und	erstanding, K3: Applying, K4: Analyzing, K5: Evaluating, K6: Creating						

	Engineering Applications of Digital Computers: ESP4154 Mapping of Course Outcomes (COs) with Programme Outcomes (POs)											
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	-	-	-	1	2	-	-	1	-	1	-	-
CO2	-	2	2	1	1	1	-	-	-	1	-	-
CO3	-	2	2	2	2	1	-	1	-	1	-	1
CO4	-	1	2	-	-	-	-	-	-	-	-	-
CO5	-	2	1	-	-	-	-	-	-	-	-	-
CO6	-	1	2	-	-	-	-	-	-	-	-	-
	3	S-Strong (Contribu	tion: 2-M	loderate (Contribu	tion; 1-L	ow Conti	ibution:		•	

Semester II Page 64 of 267

	Engineering Applications of Digital Computers: ESP4154 Mapping of Course Outcomes (COs) with Programme Specific Outcomes (PSOs)											
	PSO1	PSO2	PSO3	PSO4	PSO5							
CO1	2	2	1	2	-							
CO2	3	2	2	1	1							
CO3	2	2	1	1	1							
CO4	2	1	2	-	-							
CO5	2	1	1	-	-							
CO6	1	1	1	-	-							
3-Str	rong Contribution; 2	-Moderate Contr	ibution; 1-Low Co	ontribution;								

Semester II Page 65 of 267

Methods and Techniques

Natural dyes and pigments

Waxes, Gums, Carbohydrates

Materials used in Preservation

Traditional Indian Food Technology

Bibhag, centenary edition, Kolkata, 2002

Traditional Indian Preservation Technology

- Methods of preservation: Food, monuments and artifacts

Sources, Methods of dying

5

6

7

8

10

11

1

		Semester II			
IKS	Course Code:	Course Title:	Cr	edits :	= 2
	HUT4153	MOOC- Indian Knowledge System- Chemical Technology	L	T]
	Semester: II	Total contact hours: 30	1	1	
		List of Prerequisite Courses	•	•	•
	NIL				
		List of Courses where this course will be prerequisite	•		
	NIL				
	De	scription of relevance of this course in the Int. M. Tech. Program			
leepe		being not when we move beyond necessity but when we move to a deeper to e order, beauty and meaning out of chaos. They are the expressions of deeper to contact (Torica and Laboration)	st hun	nan ur	rge
		Course Contents (Topics and subtopics)	Req	d. hou	ur
1		ian Knowledge System (IKS):		2	
	- Introduction, Defini				
	- Need to study it in of Chemists and texts of				
	Chemists and texts of	i the ancient era			
2	Traditional Indian F	Pharmaceutical Sciences and Technology:			
2		Pharmaceutical Sciences and Technology: s of Medicine/ Welfare of the society: Principles of Ayurveda			
2		s of Medicine/ Welfare of the society: Principles of Ayurveda			
2	Alternative systemMedicinal plants atReappraisal of Ayu	s of Medicine/ Welfare of the society: Principles of Ayurveda nd crude drugs urvedic Phytochemistry		6	
2	Alternative systemMedicinal plants atReappraisal of AyuAyurvedic Dosage	s of Medicine/ Welfare of the society: Principles of Ayurveda nd crude drugs urvedic Phytochemistry forms and similarity to that of modern dosage forms		6	
2	 Alternative system Medicinal plants at Reappraisal of Ayu Ayurvedic Dosage Extraction of herbs 	s of Medicine/ Welfare of the society: Principles of Ayurveda nd crude drugs urvedic Phytochemistry forms and similarity to that of modern dosage forms s in Ayurvedic System and comparison to that of modern extraction process		6	
2	 Alternative system Medicinal plants at Reappraisal of Ayu Ayurvedic Dosage Extraction of herbs Detoxification of p 	s of Medicine/ Welfare of the society: Principles of Ayurveda and crude drugs arvedic Phytochemistry forms and similarity to that of modern dosage forms in Ayurvedic System and comparison to that of modern extraction process poisonous plants (Shodhan Prakriya)		6	
	 Alternative system Medicinal plants at Reappraisal of Ayu Ayurvedic Dosage Extraction of herbs Detoxification of p Ancient perspective of 	s of Medicine/ Welfare of the society: Principles of Ayurveda and crude drugs survedic Phytochemistry forms and similarity to that of modern dosage forms in Ayurvedic System and comparison to that of modern extraction process poisonous plants (Shodhan Prakriya) of Adulterants and Substitutes		6	
3	 Alternative system Medicinal plants at Reappraisal of Ayu Ayurvedic Dosage Extraction of herbs Detoxification of p Ancient perspective of Traditional Indian I 	s of Medicine/ Welfare of the society: Principles of Ayurveda and crude drugs curvedic Phytochemistry forms and similarity to that of modern dosage forms in Ayurvedic System and comparison to that of modern extraction process coisonous plants (Shodhan Prakriya) of Adulterants and Substitutes Knowledge on Oils, Perfumery and Flavoring agents			
	 Alternative system Medicinal plants at Reappraisal of Ayu Ayurvedic Dosage Extraction of herbs Detoxification of p Ancient perspective of Traditional Indian F Essential oils and f 	s of Medicine/ Welfare of the society: Principles of Ayurveda and crude drugs arvedic Phytochemistry forms and similarity to that of modern dosage forms in Ayurvedic System and comparison to that of modern extraction process coisonous plants (Shodhan Prakriya) of Adulterants and Substitutes Knowledge on Oils, Perfumery and Flavoring agents fixed oils		3	
	 Alternative system Medicinal plants at Reappraisal of Ayu Ayurvedic Dosage Extraction of herbs Detoxification of p Ancient perspective of Traditional Indian F Essential oils and f Applications in perfu 	s of Medicine/ Welfare of the society: Principles of Ayurveda and crude drugs curvedic Phytochemistry forms and similarity to that of modern dosage forms in Ayurvedic System and comparison to that of modern extraction process coisonous plants (Shodhan Prakriya) of Adulterants and Substitutes Knowledge on Oils, Perfumery and Flavoring agents			
3	 Alternative system Medicinal plants at Reappraisal of Ayu Ayurvedic Dosage Extraction of herbs Detoxification of p Ancient perspective of Traditional Indian F Essential oils and f Applications in perfu 	s of Medicine/ Welfare of the society: Principles of Ayurveda and crude drugs survedic Phytochemistry forms and similarity to that of modern dosage forms in Ayurvedic System and comparison to that of modern extraction process sociosonous plants (Shodhan Prakriya) of Adulterants and Substitutes Knowledge on Oils, Perfumery and Flavoring agents Eixed oils sumery and flavoring-fragrance industry		3	
3	 Alternative system Medicinal plants at Reappraisal of Ayu Ayurvedic Dosage Extraction of herbs Detoxification of p Ancient perspective of Traditional Indian F Essential oils and f Applications in perfu Traditional Indian F 	s of Medicine/ Welfare of the society: Principles of Ayurveda and crude drugs survedic Phytochemistry forms and similarity to that of modern dosage forms in Ayurvedic System and comparison to that of modern extraction process doisonous plants (Shodhan Prakriya) of Adulterants and Substitutes Knowledge on Oils, Perfumery and Flavoring agents fixed oils sumery and flavoring-fragrance industry Knowledge on Textile and Fibers			

Traditional Indian Knowledge on Dyes, Pigments, mordents and specialty chemicals

Traditional Indian Knowledge on Polymers and surface coatings

Traditional Indian Knowledge about Metallurgy and Materials Science

Science associated with traditional Indian practices during festivals

Connecting The traditional Indian Knowledge with Modern Science

2

2

2

3

3

2

3

30

Total

Semester II Page 66 of 267

List of Text Books/ Reference Books

Acharya Prafulla Chandra Ray, A History of Hindu Chemistry, 1902, republ., Shaibya Prakashan

2	B. Mahadevan and Vinayak Rajat Bhat, Introduction To Indian Knowledge System: Concepts And Applications, PHI Learning publication, 2022	
3	The Positive Sciences of the Ancient Hindus; Brijendra Nath Seal; 4th Edition; 2016	
4	Fine Arts & Technical Sciences in Ancient India with special reference to Someśvara's Mānasollāsa; Dr. Shiv Shekhar Mishra, Krishnadas Academy, Varanasi 1982	
5	A Concise History of Science in India, ed. D M Bose, S N Sen and B V Subbarayappa; INSA; 2009	
6	Science and Technology in Medieval India - A Bibliography of Source Materials in Sanskrit, Arabic and Persian by A Rahman, M A Alvi, S A Khan Ghori and K V Samba Murthy; 1982.	
7	<u>Vaidya Navnitlal B. Pandya</u> , Fundamental principles of ayurveda part – 1. October 1982 Ancient Science of Life.	
8	Vasant Lad, Textbook of Ayurveda: Fundamental Principle, reprint 2010	
9	Lakshmi chandra Mishra (Editor), Scientific Basis for Ayurvedic Therapies, CRC Press LLC 2003	
10	H.Panda, Handbook on Speciality Gums, Adhesives, Oils, Rosin & Derivatives, Resins, Oleoresins, Katha, Chemicals with other Natural Products, Asia Pacific Business Press Inc., 2022	
11	Achyut Godbole, Anna, Madhushree Publication, 2022, Marathi edition	
	Course Outcomes (students will be able to)	
CO1	List the key achievements of Ancient India in different areas of Chemical Technology	К3
CO2	Describe the various features of traditional Indian knowledge in different areas of Chemical Technology	K2
CO3	Describe Key Principles of Traditional Indian Health Systems	K2
CO4	Describe the various products and key technology aspects based on traditional Indian Knowledge in context of Modern science	K2
CO5	Understanding the applications of IKS in current practices.	К3
K1: Re	emembering, K2: Understanding, K3: Applying, K4: Analyzing, K5: Evaluating, K6: Creating	

	MOOC- Indian Knowledge System- Chemical Technology: HUT4153 Mapping of Course Outcomes (COs) with Programme Outcomes (POs)											
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	2	1	1	3	-	1	3	3	1	-
CO2	3	2	2	1	1	3	1	1	3	3	1	-
CO3	3	2	2	1	1	3	1	1	3	3	1	-
CO4	3	2	2	1	1	3	-	1	3	3	1	-
CO5	2	1	1	3	1	1	1	1	1	3	1	1
	3	S-Strong	Contribu	tion; 2-M	Ioderate	Contribut	ion; 1-L	ow Contr	ribution;			

	MOOC- Indian Knowledge System- Chemical Technology: HUT4153 Mapping of Course Outcomes (COs) with Programme Specific Outcomes (PSOs)											
	PSO1	PSO2	PSO3	PSO4	PSO5							
CO1	2	1	1	3	2							
CO2	2	2	1	1	1							
CO3	2	1	1	3	2							
CO4	2	1	1	1	2							
CO5	2	2	1	1	2							
3-S	trong Contribution; 2	2-Moderate Contr	ibution; 1-Low Co	ontribution;								

Semester II Page 67 of 267

		Semester II							
IKS	Course Code:	Course Title:	Credits = 2						
	HUT4154 MOOC- Indian Knowledge System- Introduction to Ancient Indian Mathematics								
	Semester: II Total contact hours: 30								
		List of Prerequisite Courses							
	NIL								
		List of Courses where this course will be prerequisite							
	NIL								
	D	escription of relevance of this course in the Int. M. Tech. Program	•						

- 1. Introduce students to major chronological developments in Indian mathematical inventions for science, engineering, and technology.
- 2. Explore ancient discoveries and research including number systems, Vedic mathematics, measurements, and binary systems.
- 3. Encourage students to identify and engage with ancient knowledge systems to contribute meaningfully to modern science.
- 4. Foster respect and pride in Indigenous Knowledge, aiding learners in verifying ancient Indian knowledge on modern scientific and technological grounds.
- 5. Explain the historicity of the Indian Knowledge System, particularly focusing on Ancient Indian Mathematics.

	Course Contents (Topics and subtopics)	Reqd. hours
	Introduction to Indian Knowledge System (IKS):	
1	Introduction, Definition and Historical evidences	4
1	Need to study it in current times – Legacy and relevance	т
	Salient aspects of Indian Mathematics – Indian Mathematicians	
	History of Indian Mathematics: Part – I	
2	Brahmhagupta, algebra and zero	4
	Bhaskara and development of early calculus	
_	History of Indian Mathematics: Part – II	_
3	Madhava's Infinite Series, Sine series derivation	4
	Ramanujan's Discoveries - Making sense of 1+2+3+ = -1/12	
4	Mathematicians and their contributions: Part – I	4
	Number theory and advanced mathematics – relevance to programming and algorithms	
_	Mathematicians and their contributions: Part – II	4
5	• Contributions of Aryabhatta: The mathematical – Astronomical genius of Ancient India	4
	Contributions of Bhaskara: The mathematical – Astronomical genius of Ancient India Proofs in Indian Mathematics	_
5	Proofs in Indian Mathematics	5
	Total	30
	List of Text Books/ Reference Books	
1	Mathematics in India – NPTEL course by IIT Bombay, 2023	
2	Gérard G. Emch, R. Sridharan, M. D. Srinivas (eds.) Culture and History of Mathematics 3 -	
	Contributions to the History of Indian Mathematics-Hindustan Book Agency (2005)	
3	C. K. Raju - History of Science, Philosophy and Culture in Indian Civilization X.4 - Cultural	
	Foundations Of Mathematics-Pearson (2007)	
4	George Gheverghese Joseph - Indian Mathematics - Engaging with the World from Ancient to	
	Modern Times, World Scientific Publishing (UK) (2016)	
5	B Mahadevan, V R Bhat, and Nagendra Pavana R N; An Introduction to Indian Knowledge Systems:	
	Concepts and Applications, 2022 (Prentice Hall of India).	
6	Nachum Dershowitz, Edward M. Reingold (auth.), B.S. Yadav, Man Mohan (eds.) - Ancient Indian	
	Leaps into Mathematics-Birkhäuser Basel (2011)	
7	S. Balachandra Rao, Vedic Mathematics and Science in Vedas, Navakarnataka Publications,	
	Bengaluru, 2019	
8	Bibhuti bhushan Datta & Avadhesh Narayan Singh, History of Hindu Mathematics, 1935, repr.	
	Bharatiya Kala Prakashan, Delhi, 2004	

Semester II Page 68 of 267

9	Thanu Padmanabhan, (ed.), Astronomy in India: A Historical Perspective, Indian National Science Academy, New Delhi & Springer (India), 2010	
10	P. P. Divakaran, The Mathematics of India Concepts Methods Connections, Hindustan Book Agency 2018. Rep Springer New York 2018.	
11	S. Balachandra Rao, Indian Mathematics and Astronomy: Some Landmarks, 3rd Ed. Bhavan's Gandhi Centre, Bangalore 2004.	
12	SWAYAM – MOOC courses and YouTube videos	
	Course Outcomes (students will be able to)	
CO1	List the key achievements of Ancient India in different areas of Mathematical Sciences	К3
CO2	Describe the various features of traditional Indian knowledge in different areas of Mathematics	K2
CO3	Describe Key Principles of Traditional Indian Mathematics	K2
CO4	Describe the various applications and key aspects based on traditional Indian Knowledge in context of Modern science	K2
K1: R	emembering, K2: Understanding, K3: Applying, K4: Analyzing, K5: Evaluating, K6: Creating	

MOO	MOOC- Indian Knowledge System- Introduction to Ancient Indian Mathematics: HUT4154 Mapping of Course Outcomes (COs) with Programme Outcomes (POs)											
	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12											
CO1	3	2	2	1	1	3	0	1	3	3	1	0
CO2	3	2	2	1	1	3	0	1	3	3	1	0
CO3	3	2	2	1	1	3	0	1	3	3	1	0
CO4	3	2	2	1	1	3	0	1	3	3	1	0
	3	3-Strong	Contribu	tion; 2-M	Ioderate	Contribut	ion; 1-L	ow Contr	ribution;			

MOOC- Indian Knowledge System- Introduction to Ancient Indian Mathematics: HUT4154 Mapping of Course Outcomes (COs) with Programme Specific Outcomes (PSOs)										
	PSO1	PSO2	PSO3	PSO4	PSO5					
CO1	2	1	1	3	2					
CO2	2	2	1	1	1					
CO3	2	1	1	3	2					
CO4	2	1	1	1	2					
3-Strong Contribution; 2-Moderate Contribution; 1-Low Contribution;										

Semester II Page 69 of 267

		Semester II			
CCA	Course Code:	Course Title:	Cro	edits =	= 2
	HUP4154	OPEN Activity - Sports - II	L	T	P
	Semester: II	Total contact hours: 60	1	1	0
		List of Prerequisite Courses			
	None				
		List of Courses where this course will be prerequisite			
	Not Applicable				
	De	escription of relevance of this course in the Int. M. Tech. Program			
games. and ch enjoys In the p	Games are necessary eerful throughout the life. For him, life is a playground, the playe	sary and useful for all. Games play an important part in life. Education is inco y to keep the body fit and trim. Moreover, they provide recreation. As a result, day. If one is cheerful and healthy, he or she is able to get the best out of life. song and a beauty. Games teach us the lesson of discipline, teamwork, patience are rs obey the captain and abide by the rules of the games. Games also teach us that for victory or defeat. A healthy man is always hopeful and cheerful.	one for A pla	eels si yer re inctua	mart eally dity.
		Course Contents (Topics and subtopics)	Req	d. hou	ırs
1	morning/evening or routine of physical activity me expenditure, for exart Activities can be conharder and one's heat Moderate physical and Walking brisk Bicycling (les General garde Dancing General garde Canoeing Tennis (doubl Vigorous physical and Running/joggi Walking very Bicycling (mo	activities include: activities include: activities per hour) s than 10 miles per hour) aning (raking, trimming shrubs) activities and carrying clubs) activities include: ang (5 miles per hour) fast (4½ miles per hour) are than 10 miles per hour)		60	
		Total		60	
		Course Outcomes (students will be able to)			
CO1	Keep physically fit a	and mentally agile		K2	
CO2	Manage stress in stu	dies and later in life		K2	
CO3	Coordinate body and	d mind together		K2	
CO4	Understand own em-	otions and maintain healthy daily routine		K2	
CO5	Develop teamwork a	and an ability to work with others for a common goal		К3	
K1: Re	emembering, K2: Und	lerstanding, K3: Applying, K4: Analyzing, K5: Evaluating, K6: Creating			

Ma	pping of			vity - Spo es (COs)				mes (PO	s)		
PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12

Semester II Page 70 of 267

CO1	-	1	ı	-	-	1	1	1	1	1	-	1
CO2	-	1	ı	-	-	1	1	1	1	1	-	1
CO3	-	1	ı	-	-	1	1	1	1	1	-	1
CO4	-	1	-	-	-	1	1	1	1	1	-	1
CO5	-	1	-	-	-	1	1	1	1	1	-	1
2 Strong Contribution 2 Moderate Contribution 1 Low Contribution												

2 Character Cambrillandian	2 Madamata Cantallant	ion: 1-Low Contribution:
3-Sirong Contribution:	7-Moderate Contribut	ion, i = i ow contribiliton.

OPEN Activity - Sports - II: HUP4154 Mapping of Course Outcomes (COs) with Programme Specific Outcomes (PSOs)										
PSO1 PSO2 PSO3 PSO4 PSO5										
CO1	-	-	-	-	1					
CO2	-	-	-	-	1					
CO3	-	-	-	-	1					
CO4	-	-	-	-	1					
CO5	-	-	-	-	1					
3-Strong Contribution; 2-Moderate Contribution; 1-Low Contribution;										

Semester II Page **71** of **267**

		Semester II						
CCA	Course Code:	Course Title:	Credits = 2					
	HUT4156	OPEN Activity - Fine arts - II	L	T	P			
•	Semester: II	Total contact hours: 60	1	1	0			
		List of Prerequisite Courses	•	•				
	None							
		List of Courses where this course will be prerequisite	•					
	Not Applicable							
			!					

Description of relevance of this course in the Int. M. Tech. Program

The focus of the course is to encourage creative expression through lines and colors. The course would inculcate appreciation of the local and global art and artists will broaden the perspective and social interactions.

The students will learn the basics of sketching, painting, photography and related art forms. Discussion of artists and art forms will be conducted to encourage appreciation.

Selection Criteria

Keen interest in fine arts as demonstrated by previous performance / participation in events, clubs, etc.

Selection on the basis of interview

Maximum limit for enrollment – 30 students

Evaluation – based on Student Attendance, Continuous assessment and Project.

The students will be expected to submit a fine arts project which will be part of the evaluation. Additional consideration will

be given to participation in Institute-level and inter-collegiate fine arts events.

	Course Contents (Topics and subtopics)	Reqd. hours
1	Concept: Basics of line, form, color and composition	6
2	Sketching of objects, faces, Nature, abstract forms – emphasis on composition, light / shadow, texture, depth	6
3	Types of sketches: Doodle, caricature, cartoons, anime, hyper-realistic, etc (Students can explore anyone)	12
4	Painting: Types of media (watercolor / oil / acrylics), types of base (paper / fabric / wood), emphasis on techniques, layering, color composition Painting styles: realistic, portraits, boho, impressionist	12
5	Indian art form: Students can explore any two from Mandala / Madhubani / Pichwai / Warli / Kalamkari / Gond / Patachitra etc. Discussion, appreciation and hands-on sessions	12
6	Artists and art: discussion of international and national artist, art appreciation	6
7	Project work	6
	Total	60
	Course Outcomes (students will be able to)	
CO1	Understanding of conceptual skills by assimilating the elements and principles of Art and applying creative, critical, and philosophical thinking of the work.	K2
CO2	Understand the contextual basis for the art through a study of the art history of diverse cultures, modern and contemporary art, and through the integration of this study in the hands-on process of art making.	К3
CO3	Specialization Course in Applied have great potential in providing creative solutions to communication of complex phenomena of print media such as books, magazines and newspaper, known as pictographic depictions or concept visualization.	K4
CO4	Demonstrate foundation skills in the use of art process and media that enable clear, creative visual communication. Identify and explain the various mediums and methods/processes used in the creation of two-dimensional and three-dimensional artworks.	K5
CO5	Develops the drawing ability and improve the observational skill and rendering of shape, tone, color, pattern, and texture.	K6
K1: Re	emembering, K2: Understanding, K3: Applying, K4: Analyzing, K5: Evaluating, K6: Creating	

Semester II Page 72 of 267

	Ma	pping of			ity - Fine es (COs)				mes (PO	s)					
	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12														
CO1	CO1 - 2 1 2														
CO2	CO2 - 3 1 3														
CO3	-	2	-	-	-	-	-	1	2	-	-	-			
CO4	-	2	-	-	-	-	-	1	3	-	-	-			
CO5	CO5 - 3 1 2														
	3	S-Strong (Contribut	tion; 2-M	Ioderate (Contribut	tion; 1-Lo	ow Contr	ribution;						

Mapping	OPEN Ac of Course Outcomes	tivity - Fine arts (COs) with Prog		Outcomes (PSOs)	
	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	-	-	-	-	1
CO2	-	-	-	-	1
CO3	-	-	-	-	1
CO4	-	-	-	-	1
CO5	-	-	-	-	1
3-5	Strong Contribution; 2	2-Moderate Contr	ibution; 1-Low Co	ntribution;	•

Semester II Page 73 of 267

		Semester II			
CCA	Course Code:	Course Title:	Cr	edits	= 2
	HUP4160	OPEN Activity - Yoga - II	L	T	P
	Semester: II	Total contact hours: 60	1	1	0
		List of Prerequisite Courses		l	
	Yoga and Self Deve	<u> </u>			
	1 984 4114 2011 2010	List of Courses where this course will be prerequisite			
	Not Applicable	List of Courses where this course will be prerequisite			
		escription of relevance of this course in the Int. M. Tech. Program			
Thorac		knowledge, skills, and different health practices related to selected sports disciple	inas an	d prot	moto
	and wellness through		ines an	u proi	посе
Ticuiti	dia weiniess unough	Course Contents (Topics and subtopics)	Req	d. ho	ars
1.	1. Suksham Vyay		<u> </u>	60	
		or whole Body			
		or whole body			
	Yogic JoggingHastpadsance	halan			
	Purn Hastpa				
	Janu Sancha				
	Aardha Baitl				
	Janu Vikasal	k			
	 Januvaksha 				
	Vaksha Vika	nsak			
	• Trikonasan				
	Konasan				
	Paad Hastass				
	Chalit Paad				
	Yog Nrutyas Namada				
	3. Surya Namaska • Aasana	ar			
	Aasana Condition				
	Condition Common R	11]4			
	Benefits	uic			
	4. Pranayam and	Its Renefits			
	Bhastrika P.				
	Kapalbhati				
	Tribandh Pi				
	Ujjayai Prai	nayam			
		lom Pranayam			
	Bhramri Pra	anayam			
	Udgith Pran				
		nayam/Onkar Meditation			
	5. Aasana				
	■ Standing Po				
		hakrasan-1 hakrasan-2			
	■ Taadas				
		Γaadasan			
	Vruksł				
	 Dhruva 				
	■ Back touch	ing the Earth			
		asana-1			
		asana-2			
		asana-3			
	■ Pavana	muktasana-1			

Semester II Page 74 of 267

	- D	1
	Pavanamuktasana-2	
	 Ardhahalasana 	
	Padavrittasana-1	
	Padavrittasana-2	
	Dwi-Chakrikasana-1	
	Dwi-Chakrikasana-2	
	 Belly touching the Earth 	
	Makarasana	
	■ Bhujangasana-1	
	■ Bhujangasana-2	
	■ Bhujangasana-3	
	■ Shalabhasana-1	
	■ Shalabhasana-2	
	■ Shalabhasana-3	
	Dhanurasan	
	■ <u>Sitting Position</u>	
	■ Mandukasana-1	
	■ Mandukasana-2	
	Shashankasan	
	 Vakrasan 	
	 Wajrasan 	
	Kandharasan	
	Total	60
	Course Outcomes (students will be able to)	
CO1	To understand the basic training and practices required in the selected asana's.	K2
CO2	To understand the importance of yoga practice and demonstrate the basic skills in the selected	1/2
	vyayam.	K3
CO3	To develop a set of core skills in the selected Yog-asana's for overall growth and development	K5
CO4	To create a foundation for professionals in the selected yoga.	K6
K1: Re	emembering, K2: Understanding, K3: Applying, K4: Analyzing, K5: Evaluating, K6: Creating	

	OPEN Activity - Yoga - II: HUP4160 Mapping of Course Outcomes (COs) with Programme Outcomes (POs)														
	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12														
CO1	CO1 1 2														
CO2	CO2 1 3														
CO3	-	-	-	-	-	-	-	1	2	-	-	-			
CO4	CO4 1 3														
	3	S-Strong (Contribu	tion; 2-M	Ioderate (Contribut	tion; 1-L	ow Contr	ribution;						

OPEN Activity - Yoga - II: HUP4160 Mapping of Course Outcomes (COs) with Programme Specific Outcomes (PSOs)												
PSO1 PSO2 PSO3 PSO4 PSO5												
-	-	-	-	1								
-	-	-	-	1								
-	-	-	-	1								
-	-	-	-	1								
	Course Outcomes	Course Outcomes (COs) with Prog	Course Outcomes (COs) with Programme Specific (Course Outcomes (COs) with Programme Specific Outcomes (PSOs)								

Semester II Page 75 of 267

Second Year

Semester-III

Semester-III Page 76 of 267

		Semester III								
PCC	Course Code:	Course Title:	Cr	edits	= 2					
	CET4251 Fluid Flow Semester: III Total contact hours: 30									
	Semester: III	Total contact hours: 30	1	1	0					
		List of Prerequisite Courses								
		and Mathematics, Applied Physics (PHT4151), Applied Mathematics: I and T4152); Introduction to Chemical Engineering (EST4154)								
		List of Courses where this course will be prerequisite								
	CEP4252, CEP4253 an	CET4352), Chemical Engineering Laboratory I, II, III and IV (CEP4251, d CEP4254), Instrumentation and Process Dynamics (CET4256), Chemical CET4351), Chemical Process Development and Engineering (CET4451)								
	Desc	cription of relevance of this course in the Int. M. Tech. Program								
	pasic course introduces of roduced.	concepts of fluid transfer to students. Various concepts such as pressure, mo	mentı	ım, er	iergy					
		Course Contents (Topics and subtopics)	Req	d. hou	ırs					
1	Fluid Statics and applie	cations to engineering importance.		4						
2	Bernoulli's Equation and engineering applications, Pressure drop in pipes and Fittings, Piping systems									
3	Utility network in chemical process industries: Cooling water, Steam, Chilled water, Thermic fluid system									
4	Types and design of systems, etc.	Fluid moving machinery such as pumps, blowers, compressors, vacuum		6						
5	Particle Dynamics, Bo Fluidized Beds, Flow t	oundary layer separation: skin and form drag, Flow through Fixed and hrough porous media		6						
		Total		30						
		List of Text Books/ Reference Books								
1	Transport Phenomena,	Bird R.B., Stewart W.E., Lightfoot E.N.								
2	Fluid Mechanics, Kund	du Pijush K.								
3	Fluid Mechanics, F. W	. White								
4	Unit Operations of Che	emical Engineering, McCabe, Smith and Harriott								
		Course Outcomes (students will be able to)								
CO1	Calculate pressure drop phase flow, fixed and f	o in pipelines and equipment for different situations such as single- and two-luidized beds		К3						
CO2	Calculate forces on par	rticles and terminal velocities of particles		К3						
CO3	Design pumps and pipi	ing systems for simple situations		K6						
CO4	Estimate and analyze to	he fluid mechanics problem in chemical industry		K4						
CO5	Evaluate the fluid flow	calculation in design the pumps and piping systems		K5						
CO6	Design and create the f	luid piping systems in chemical industry								
K1: R	emembering, K2: Under	estanding, K3: Applying, K4: Analyzing, K5: Evaluating, K6: Creating								

	Fluid Flow: CET4251 Mapping of Course Outcomes (COs) with Programme Outcomes (POs)														
	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12														
CO1	3	3	ı	2	1	ı	1	-	-	1	2	1			
CO2	3	3	-	1	-	-	-	-	-	-	2	1			
CO3	-	-	1	1	-	1	1	1	-	-	1	1			
CO4	3	3	1	1	1	1	1	1	-	1	2	1			

Semester III Page 77 of 267

Integrated Master of Technology, Chemical Engineering (Major) and MDM ICT Marathwada Campus, Jalna

CO5	3	2	1	1	-	-	-	-	-	-	-	1	
CO6	2	3	2	1	1	-	-	-	-	-	2	2	
	3-Strong Contribution; 2-Moderate Contribution; 1-Low Contribution;												

Mapping o	f Course Outcomes	Fluid Flow: CET (COs) with Pro		Outcomes (PSOs)	
	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	2	2	1	-	-
CO2	1	2	2	2	-
CO3	2	2	2	3	1
CO4	2	2	2	2	1
CO5	3	2	1	-	-
CO6	1	2	3	3	3
3-S1	trong Contribution; 2	2-Moderate Contr	ibution; 1-Low Co	ontribution;	

Semester III Page 78 of 267

		Semester III			
PCC	Course Code:	Course Title:	Cre	dits =	2
	CET4252	Heat Transfer	L	T	P
	Semester: III	Total contact hours: 30	1	1	0
		List of Prerequisite Courses			
	I and II (MAT4151	CET4352), Chemical Engineering Operation (CET4254), Applied Mathematics and MAT4152), Material and Energy Balance Calculations (CEP4151); ical Engineering (EST4154)			
		List of Courses where this course will be prerequisite			
	Process Development Engineering Laborat Instrumentation and F (CET4451), Multipha	Igineering (CET4351), Multiphase Reactor Engineering (HONOURS Syllabus), and Engineering (CEP4451), Process Safety (CET4255), Chemical rory I, II, III and IV (CEP4251, CEP4252, CEP4253 and CEP4254), Process Dynamics (CET4256), Chemical Process Development and Engineering rase Reaction Engineering (Non.), Mathematical Methods & Optimization in g (Hon.), Refinery Science and Engineering (Hon.)			
	Des	scription of relevance of this course in the Int. M. Tech. Program			
		als with heat transfer, overview of heat exchangers Heat transfer forms one of the action and is required in all future activities.	ne bas	ic pill	ars
		Course Contents (Topics and subtopics)	Req	d. hou	ırs
1	Concepts of resistance	of Heat transfer: Steady state and unsteady state conduction, Fourier's law, e to heat transfer and the heat transfer coefficient. Heat transfer in Cartesian, cal coordinate systems, Insulation, critical radius.		6	
2		sfer in laminar and turbulent boundary layers. Theories of heat transfer and nentum and heat transfer.		4	
3	Heat transfer by natur	ral convection.		4	
4	Concurrent, counter-cexchanger evaluation	ninar and turbulent flow in circular pipes: Double pipe heat exchangers: current and cross flows, mean temperature difference, NTU: epsilon method for a Heat transfer outside various geometries in forced convection, such as, single es or cylinders, packed beds and fluidized beds		8	
5		red vessels: coils, jackets, limpet coils, calculation of heat transfer coefficients, mes, applications to batch reactors and batch processes		4	
6	Basics of Radiative he	eat transfer and application to Furnace Design		4	
		Total		30	
		List of Text Books/ Reference Books			
1	Heat Transfer, Kern D	D.Q.			
2	Heat Exchangers, Kak	cac S., Bergles A.E., Mayinger F			
3	Process Heat Transfer	G. Hewitt			
		Course Outcomes (students will be able to)			
CO1		e profiles in a slab at steady state		K3	
CO2		r coefficients for free and forced convection in different heat transfer equipment		K3	
CO3		neat exchanger using NTU-epsilon method		K5	
CO4		l for heat transfer controlled process		K6	
CO5		equipment and their design calculation		K6	
CO6		d its design calculation		K6	
K1: R	emembering, K2: Unde	erstanding, K3: Applying, K4: Analyzing, K5: Evaluating, K6: Creating			

	Heat Transfer: CET4252													
Mapping of Course Outcomes (COs) with Programme Outcomes (POs)														
	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12													

Semester III Page 79 of 267

CO1	-	3	-	2	1	-	1	-	-	1	1	1
CO2	-	3	1	2	1	-	1	-	-	1	-	1
CO3	-	-	ı	3	2	1	1	-	-	-	-	1
CO4	-	-	1	2	2	3	2	1	-	-	2	2
CO5	-	3	1	2	2	1	2	1	-	1	1	1
CO6	-	2	2	1	-	-	-	-	-	1	-	1
	2		C . '1		r 1 .	C . 1	. 1 T	C .	.1			

2 Ct C	2 Madamata Cantallanti	on: 1-Low Contribution:
3-Sirong Contribution:	7-MOGERAIE CONTRIBUING	m, i-i ow contabiliton.

Mapping o	Heat Transfer: CET4252 Mapping of Course Outcomes (COs) with Programme Specific Outcomes (PSOs)												
	PSO1	PSO2	PSO3	PSO4	PSO5								
CO1	3	3	2	1	-								
CO2	2	3	2	1	-								
CO3	1	2	3	3	1								
CO4	2	1	3	3	2								
CO5	3	2	3	3	1								
CO6	1	2	1	3	3								
3-S	Strong Contribution; 2	-Moderate Contri	ibution; 1-Low Co	ntribution;	•								

Semester III Page 80 of 267

		Semester III			
PCC	Course Code:	Course Title:	Cr	edits	= 2
	EST4155	Engineering Thermodynamics	L	T	P
	Semester: III	Total contact hours: 30	1	1	0
	l	List of Prerequisite Courses			
		ring (EST4152); Material and Energy Balance Calculations (CEP4151); ical Engineering (EST4154)			
	l	List of Courses where this course will be prerequisite			
	Chemical Engineering	g Lab I, II, III and IV (CEP4251, CEP4252, CEP4253 and CEP4253), Chemical			
	Engineering Thermo	odynamics (CEP4353), Industrial Chemistry and Reaction Engineering I Engineering Laboratory I, II, III and IV (CEP4251, CEP4252, CEP4253 and			
		al Engineering Operation (CET4254), Chemical Reaction Engineering			
	(CET4451)	on Processes (CET4356), Chemical Process Development and Engineering			
		scription of relevance of this course in the Int. M. Tech. Program			
insigh		mits on performance of processes and equipment. This course gives students the perliminary thermodynamic analysis of a process for the purpose of establishments.			
		Course Contents (Topics and subtopics)	Req	d. ho	ars
1	Reversible process; C	Concepts of thermodynamics. State functions; Equilibrium; Phase Rule; constant P, V, T processes; Energy conservation & first law of thermodynamics; ances for open systems, nozzles,		6	
2		econd law; Heat engines, Carnot's theorem, Thermodynamic Temperature		6	
	Scales; Entropy; Ent Entropy balance for of Industrial Application	ropy changes of an ideal gas; Mathematical statement of the second law;			
3.		ysis of flow process, steam power plants; Rankine cycle; Internal combustion diesel engine; Jet engine.		6	
4.	Carnot refrigerator; V	Vapor-compression cycle; Absorption refrigeration; Heat pump, Liquefaction		6	
5	virial and cubic equat	ions, PVT behavior; description of materials: Ideal gas law, van der Waals, ions of state; Reduced conditions & corresponding states theories; correlations erial properties and behavior		6	
		Total		30	
		List of Text Books/ Reference Books			
1	Introduction to Chem	ical Engineering Thermodynamics: Smith, van Ness, Abbott			
2	Chemical, Biochemic	al and Engineering Thermodynamics: S. I. Sandler			
3	Properties of Gases a	nd Liquids: Reid, Prausnitz, Pauling			
		Course Outcomes (students will be able to)			
CO1	Calculate Enthalpy, I pressure	Entropy and Gibbs energy changes in fluids with changes in temperature and		K3	
CO2	Analyze process effic	ciencies using first law and second law of thermodynamics concepts		K4	
CO3	Calculate saturation t	emperature and pressure relationship for pure fluids from equations of state		К3	
CO4	Analyze process effic	ciencies of various engines and refrigeration units		K4	
CO5	Estimate and evaluate	e the thermodynamics calculation		K5	
CO6	Develop and create th	ne thermodynamic model equation		K6	
K1: R	emembering, K2: Unde	erstanding, K3: Applying, K4: Analyzing, K5: Evaluating, K6: Creating			

Semester III Page 81 of 267

	Engineering Thermodynamics: EST4155 Mapping of Course Outcomes (COs) with Programme Outcomes (POs)													
	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12													
CO1	3	3	-	1	-	-	1	ı	1	1	1	ı		
CO2	-	-	-	2	1	1	-	-	-	1	-	-		
CO3	3	3	-	1	-	-	1	-	-	-	1	-		
CO4	3	3	-	2	-	1	1	1	-	1	1	-		
CO5	3	3	-	2	1	1	1	1	-	1	1	-		
CO6	CO6 3 2 1 2 1 2 1 2 2													
	3	-Strong (Contribut	tion; 2-M	loderate (Contribut	tion; 1-L	ow Contr	ibution;					

Mapping (Engineering Thermodynamics: EST4155 Mapping of Course Outcomes (COs) with Programme Specific Outcomes (PSOs)												
	PSO1	PSO2	PSO3	PSO4	PSO5								
CO1	3	2	2	1	-								
CO2	1	2	2	3	1								
CO3	2	3	1	2	-								
CO4	2	3	3	2	-								
CO5	2	3	2	2	1								
CO6	2	1	2	2	1								
3-5	Strong Contribution; 2	2-Moderate Contr	ibution; 1-Low Co	ontribution;									

Semester III Page 82 of 267

		Semester III			
PCC	Course Code:	Course Title:	Cr	edits =	- 4
	CET4253	Industrial Chemistry and Reaction Engineering	L	T	P
	Semester: III	Total contact hours: 60	3	1	0
	T	List of Prerequisite Courses			
	• •	and CHT4152), Material & Energy Balance Calculations (CEP4151), I and II (MAT4151 and MAT4152), Momentum Transfer (CET4352)			
		List of Courses where this course will be prerequisite			
	(CET4353), Process	and Membrane (CET4356), Chemical Engineering Thermodynamics Safety (CET4255), Chemical Engineering Laboratory I, II, III and IV CEP4253 and CEP4254), Chemical Process Development and Engineering			
	Des	scription of relevance of this course in the Int. M. Tech. Program			
inorga		*			
		Course Contents (Topics and subtopics)	Reqd	. hour	'S
1	Raw material and ene and specialty chemica	rgy sources, Organic and inorganic intermediates and final products, Bulk ls		10	
2	Production costs of fu	els and chemicals		2	
3	Industrial gases and in	organic products		4	
4	Examples of major inc	lustrial processes		6	
5	Types of chemical rea	ctions: elementary/non-elementary, single/multiple, irreversible/reversible		8	
6	Types of chemical rea	ctors: batch and semi-batch reactors, continuous reactors (CSTR and PFR)		8	
7	Reaction kinetics (hon	nogeneous reactions)		8	
8	Isothermal, adiabatic a	and non-isothermal operation modes		8	
9	Different types of sing	gle phase and multiphase reactors		6	
		Total		60	
		List of Text Books			
1	Elements of Chemical	Reaction Engineering: H. Scott FOGLER			
2	Chemical Reaction En	gineering: Octave LEVENSPIEL			
3	The Engineering of Cl	nemical Reactions: Lanny D. SCHMIDT			
4	An introduction to Ch	emical Engineering Kinetics and Reactor Design: Charles HILL			
		List of Additional Reading Material / Reference Books			
1	Encyclopedia of Chen	nical Technology, Kirk-Othmer			
2	Ulmann's Encycloped	ia of Industrial Chemistry			
3	Industrial Organic Che	emistry, Weissermel & Arpe			
4	Chemical Process Indi	ustries, Shreve B. Austin			
5	Chemical Process Tec	hnology, Moulijn, M. and van Dippen			
6	Dryden's Outlines of	Chemical Technology			
7	Elements of Fuels, Fu	rnaces and Refractories, O.P. Gupta			
8	Fuels handbook, Johns				
		Course Outcomes (students will be able to)			
CO1	Draw process flow di from process descripti	agrams/process block diagrams for the manufacture of various chemicals on		K2	
CO2	List out various alternathe best choice	atives for carrying out a particular process and provide recommendations for		K3	

Semester III Page 83 of 267

Integrated Master of Technology, Chemical Engineering (Major) and MDM ICT Marathwada Campus, Jalna

CO3	List Principles of combustion systems for solid, liquid and gaseous fuel	K2							
CO4	Design chemical reactors optimally, using minimum amount of data	К3							
CO5	Design experiments in a judicious way to get the required data, if not available	K6							
CO6	Increase capacity and/or selectivity and/or safety by improving/changing the reactor type/sequence and/or operating conditions	K6							
K1: R	K1: Remembering, K2: Understanding, K3: Applying, K4: Analyzing, K5: Evaluating, K6: Creating								

	Industrial Chemistry and Reaction Engineering: CET4253 Mapping of Course Outcomes (COs) with Programme Outcomes (POs)														
PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12															
CO1	3	1	1	-	1	2	1	-	-	1	1	2			
CO2	-	2	1	1	-	-	-	-	-	1	1	1			
CO3	2	1	1	2	-	1	-	-	-	1	-	2			
CO4	2	1	1	2	1	-	-	-	-	-	1	1			
CO5	2	1	-	1	1	-	1	-	-	-	2	-			
CO6	3	2	2	1	2	1	-	-	-	1	-	1			
	3	S-Strong	Contribu	tion; 2-M	loderate (Contribut	tion; 1-L	ow Contr	ribution;						

	dustrial Chemist Course Outcomes	•	0	T4253 Outcomes (PSOs)	
	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	2	1	-
CO2	2	2	1	1	-
CO3	1	1	2	-	-
CO4	2	2	1	-	-
CO5	1	2	3	3	1
CO6	1	1	2	2	1
3-Stro	ong Contribution; 2	-Moderate Contri	bution; 1-Low Co	ontribution;	

Semester III Page 84 of 267

		Semester III				
PCC	Course Code:	Course Title:	Cr	edits =	= 2	
	CEP4251	Chemical Engineering Laboratory - I	L	Т	P	
	Semester: III	Total contact hours: 60	0	0	4	
		List of Prerequisite Courses				
	Calculations (CEP41	mical Engineering (EST4154), Material Balance and Energy Balance 51), Fluid Flow (CET4151), Heat Transfer (CET4252), Engineering T4155), Mathematics I and II (MAT5141 and MAT5142), Applied Physics Chemistry (CHT4151)				
		List of Courses where this course will be prerequisite				
	Chemical Engineering	g Lab - II (CEP4252)				
	Des	scription of relevance of this course in the Int. M. Tech. Program				
course	es. It also exposes them	ovides students the firsthand experience of verifying various theoretical concept to practical versions of typical chemical engineering equipment and servers as focuses on fluid dynamics, thermodynamics, and mass transfer.				
		Course Contents (Topics and subtopics)	Requ	l. hour	S	
1	6-8 Experiments on Fl	luid Flow		40		
2	2-3 Experiments on H	eat Transfer	10			
3	2-3 Experiments on K	inetics	10			
		Total		60		
		List of Text Books/ Reference Books				
1	McCabe W.L., Smith	J.C., and Harriott P. Unit Operations in Chemical Engineering, 2014				
2	Bird R.B., Stewart W.	E., and Lightfoot, E.N. Transport Phenomena, 2007				
3	Coulson J.M., Richard Chemical engineering	Ison J.F., and Sinnott, R.K. Coulson & Richardson's Chemical Engineering: design, 1996.				
4	Green D. and Perry R.	. Perry's Chemical Engineers' Handbook, Eighth Edition, 2007.				
		Course Outcomes (students will be able to)				
CO1	Student would be able	to Learn to experimentally verify various theoretical principles		К3		
CO2	Student would be ab principles	ole to Visualize practical implementation of basic chemical engineering		K2		
CO3	Student would be able	to Develop experimental skills		K4		
CO4	Student would be able	to Connect classroom teaching with the laboratory practical		K3		
CO5	Student would be able	to Improve understanding about safety in the laboratory		K4		
CO6	Student would be able	to evaluate and write the report based on results		K6		
K1: R	emembering, K2: Unde	erstanding, K3: Applying, K4: Analyzing, K5: Evaluating, K6: Creating				

	Chemical Engineering Laboratory - I: CEP4251 Mapping of Course Outcomes (COs) with Programme Outcomes (POs)													
	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12													
CO1	3	2	2	1	-	2	-	-	-	2	1	1		
CO2	3	2	2	-	-	-	-	-	-	1	1	2		
CO3	3	2	1	1	-	1	-	-	-	1	2			
CO4	3	1	1	2	-	-	-	-	-	2	1	-		
CO5	3	2	-	-	-	-	1	-	-	2	1	2		
CO6	CO6 3 2 2 2 1 1 2 1 1													
	3	-Strong (Contribu	tion; 2-M	Ioderate (Contribut	tion; 1-L	ow Contr	ibution;					

Semester III Page 85 of 267

Mapping of	Chemical Eng Course Outcomes	_	tory - I: CEP425 ramme Specific		
	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	2	3	2	3	1
CO2	3	1	1	3	-
CO3	1	2	3	1	2
CO4	2	1	2	2	2
CO5	2	1	2	2	2
CO6	1	2	1	2	2
3-Str	ong Contribution; 2	-Moderate Contri	bution; 1-Low Co	ontribution;	

Semester III Page 86 of 267

		Semester III			
AEC	Course Code:	Course Title:	Cr	edits :	= 4
	HUP4153	Modern Indian Language – मराठी भाषा: कौशल्य विकास	L	Т	P
	Semester: III	Total contact hours: 60	0	0	4
		List of prerequisite courses			
	मराठी – (X + XII)				
		List of courses where this course will be prerequisite			
	Nil				
		Description of relevance of this course in the Int. M. Tech. Program			
		का, विविध् भाषिक आविष्कार समजावून देणे.			
		वय करून देऊन विद्यार्थ्यांमधील क्षमता विकसित करणे.			
३ भा	षिक कौशलयांचा प्रत्य		ı		
	0 3 2	Course contents (topics and subtopics)	Req	d. hou	ırs
1		प्राथमिक आणि प्रगत यांचा परिचय		20	
		अर्ज लेखन, एमेल लेखन, निबंध लेखन, कल्पना ग्रारिक पत्र लेखन			
2		निवेदन, मुलाखत, भाषण, सूत्रसंचालन अभिवाचन		20	
_		स्य) इ. मधील उपयोग		20	
	२. देहबोली, उच्चार	रण आणि शब्दसंहिता यांचे महत्व			
3		वहार आण नवमा यमे, समाजमायमे		20	
		ग समाजमा यमाचे कार: लॉग, फेसबक, टिवटर.ू			
	३. नवमा यम आण	ग समाजमा यमािवषयक सा रता, द ता, वापर आिण परणाम			
		Total		60	
1	I	List of Textbooks/ Reference Books	I		
1		गा. डॉ. कयाण काळे, डॉ. अजली सोमण			
2	II.	सपादक डॉ. केतक मोडक, सतोष शेणई, सजाता शेणई			
3		गण काळे, अजली सोमण.			
4	यावहारक आिण उप	योिजत मराठी, डॉ. मनोहर रोकडे			
		Course Outcomes (students will be able to)	ı		
CO1		भाषिक कौशल्ये विकसित होतील		K3	
CO2		मध्ये प्रभावी संवाद साधण्याची कला विकसित होईल.		K3	
CO3		त्व विकास साध्य होण्यास मदत होईल.		K3	
CO4		येमे आणि समाज माध्यमाविषयी साक्षरता निर्माण होतील.		K3	
CO5	विद्यार्थ्यांमध्ये नवमाध	येमे आणि समाज माध्यमाचा परिणाम त्याबद्धल चर्चा होतील.		К3	
K1: Re	emembering, K2: Ur	nderstanding, K3: Applying, K4: Analyzing, K5: Evaluating, K6: Creating			

	Modern Indian Language – मराठी भाषा: कौशल्य विकास: HUP4153 Mapping of Course Outcomes (COs) with Programme Outcomes (POs)											
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	-	-	-	-	-	-	-	-	-	3	-	-
CO2	-	-	-	-	-	-	ı	-	ı	3	-	-
CO3	-	-	-	-	-	-	-	-	-	3	-	-
CO4	-	-	-	-	-	-	-	-	-	3	-	-
CO5	-	-	-	-	-	-	-	-	-	3	-	-
	3	S-Strong	Contribut	tion; 2-M	Ioderate (Contribut	ion; 1-L	ow Contr	ibution;			

Semester III Page 87 of 267

	ern Indian Langua f Course Outcomes	_			
	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	-	-	-	3	-
CO2	-	-	-	3	-
CO3	-	-	-	3	-
CO4	-	-	-	3	-
CO5	-	-	-	3	-
3-St	rong Contribution; 2	-Moderate Contri	bution; 1-Low Co	ontribution;	

Semester III Page 88 of 267

		Semester III			
MGT	Course Code:	Course Title:	Cr	edits =	= 2
	HUT4156	Basic Principles of Finance and Economics	L	T	P
	Semester: III	Total contact hours: 30	2	0	0
		List of Prerequisite Courses		•	
	Applied Mathematics	:: I and II (MAT4151 and MAT4152)			
		List of Courses where this course will be prerequisite			
	Project economics (C	ET4358); Fundamentals of marketing management and market research			
		scription of relevance of this course in the Int. M. Tech. Program			
This co		tion about Basic Principles of Finance and Economics.			
		Course Contents (Topics and subtopics)	Rec	qd. ho	ıırc
1	INTRODUCTION	Course Contents (Topics and Subtopics)	NCC	3	urs
1	Explaining the Econo	umt.		3	
	The Supply and Dem				
	Using the Supply and				
2		E EQUILIBRIUM MODEL		5	
	Deriving Demand				
	Deriving Supply	1 FCC			
	Market Equilibrium a	•			
3	DEVIATIONS FROM			5	
	Monopoly and Marke				
	Between Monopoly a	•			
	Antitrust Policy and I				
4	MACRO FACTS AN			5	
	_	Macroeconomic Ideas			
	Measuring Production	n, Income and Spending of Nations			
5	ACCOUNTING TRA	ANSACTIONS		5	
	Journal entries.				
	Debit credit rules.				
	Compound journal en	ntry.			
	Journal and ledger.				
	Rules of posting entri	es			
	Trial balance				
6	CAPITAL AND REV	/ENUE		5	
	Income and expenditu	ure			
	Expired costs and inc				
	Final accounts				
	Manufacturing accou	nts			
	Trading accounts				
	Profit and Loss accou	int.			
	Suspense account				
	Balance sheet				
7	CONCEPT OF DEPR	RECIATION		2	
		Total		30	
	I	List of Textbooks		-	
1	Finance and Account	ing for Nonfinancial Managers: All the Basics You Need to Know -			
-		d Jay O. Wright Microeconomics: Basic Principles and Applications- A A			
		ula, et al PRINCIPLES OF ECONOMICS(12e)- E. Case Karl, C. Fair Ray,			
	et al	· · · · · · · · · · · · · · · · · · ·			
		List of Additional Reading Material / Reference Books			

Semester III Page 89 of 267

1	Basic Finance for Nonfinancial Managers: A Guide to Finance and Accounting Principles for Nonfinancial Managers- Kendrick Fernandez	
2	Microeconomic Theory: Basic Principles and Extensions- Walter Nicholson and Christopher Snyder	
3	Macroeconomics(10e) Part of: Pearson Series in Economics (23 books) - by Froyen	
	Course Outcomes (students will be able to)	
CO1	Students will be able to know and apply accounting and finance theory.	K2
CO2	Students will be able to understand the mechanics of preparation of financial statements, their analysis and interpretation	K2
CO3	Students will be able to explain basic economic terms, concepts, and theories	К3
CO4	Students will be able to identify key macroeconomic indicators	K4
CO5	Student will be able to evaluate the accounting statements	K5
CO6	Student will be able to create the statemen and capital statement.	K6
K1: Re	emembering, K2: Understanding, K3: Applying, K4: Analyzing, K5: Evaluating, K6: Creating	

	Basic Principles of Finance and Economics: HUT4156 Mapping of Course Outcomes (COs) with Programme Outcomes (POs)											
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	-	1	1	1	-	1	-	-	-	1	2	1
CO2	-	1	3	-	-	-	-	-	-	1	1	1
CO3	-	-	-	1	-	1	-	-	-	-	1	1
CO4	-	-	3	2	-	-	-	-	-	1	1	-
CO5	-	1	3	2	-	1	1	-	-	1	1	1
CO6	-	-	2	2	-	1	-	-	-	-	3	1
	3	S-Strong (Contribu	tion; 2-M	Ioderate (Contribut	ion; 1-L	ow Contr	ribution;			

Mapping of	Basic Principles of Finance and Economics: HUT4156 Mapping of Course Outcomes (COs) with Programme Specific Outcomes (PSOs)										
	PSO1	PSO2	PSO3	PSO4	PSO5						
CO1	3	2	2	1	-						
CO2	2	3	1	1	-						
CO3	1	2	3	-	-						
CO4	2	1	2	-	-						
CO5	1	3	2	1	1						
CO6	3	3	2	1	1						
3-Str	ong Contribution; 2	-Moderate Contri	bution; 1-Low Co	ontribution;							

Semester III Page 90 of 267

		Semester III			
VEC	Course Code:	Course Title:	Cro	edits =	= 2
	CET4257	Environmental Sciences	L	T	P
	Semester: III	Total contact hours: 30	2	0	0
		List of Prerequisite Courses			•
	Environmental Studie	es of Standard XII			
		List of Courses where this course will be prerequisite			
	Chemical Project Eco	onomics (CET4358)			
	De	scription of relevance of this course in the Int. M. Tech. Program			
This c	ourse gives the inform	ation about Basic Principles of Environmental Sciences.			
		Course Contents (Topics and subtopics)	Req	d. hou	irs
1	chemical industry (c)	ar economy, EHS management (b) Environment management systems in the Legal provisions for environmental management: EP Act 1986; Air Act, 1981; zardous waste management Rules, 2019		6	
2	Importance of ecolog	y, effluent treatment and discharging norms for treated water		6	
3	SPCB consent param	eters, monitoring, and analysis		4	
4	External monitoring of	of ambient air, noise, stacks, etc		4	
5	Air pollutants, source	s and effects on human health and environment, monitoring, and analysis		6	
6	Life cycle analysis, e	nvironmental impact assessment		4	
		Total		30	
		List of Text Books/ Reference Books			
1	Introduction to Enviro	onmental Engineering and Science by Gilbert M Masters and Wendell P Ela			
2		ion Control Engineering, C. S. Rao			
3	Principles of Instrum Learning, 2007	ental Analysis by D. A. Skoog, F. James Holler and S. R. Crouch, Cengage			
		Course Outcomes (students will be able to)			
CO1	Describe the methods	s of industrial effluent treatment		K2	
CO2	apply the learning for sustainable developm	selection and implementation of appropriate waste management technique for tent		K2	
CO3	Basic understanding	and awareness about the components of environment		K2	
CO4	Gaining knowledge a	bout Climate patterns of India		K3	
CO5	Awareness about dise	eases caused due to polluted environment		K3	
CO6	Understanding the dis	fferent strategies used to control pollution.		K5	
K1: R	emembering, K2: Unde	erstanding, K3: Applying, K4: Analyzing, K5: Evaluating, K6: Creating			

	Environmental Sciences: CET4257 Mapping of Course Outcomes (COs) with Programme Outcomes (POs)											
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	1	1	2	1	-	-	-	2	1	1	2
CO2	1	2	-	2	-	-	1	-	2	1	1	1
CO3	1	1	1	2	1	-	1	-	2	1	1	1
CO4	1	2	1	1	-	-	3	1	2	-	2	3
CO5	1	2	1	1	-	-	3	1	2	-	2	1
CO6	-	1	1	-	-	-	3	1	-	-	1	2
	3	S-Strong	Contribu	tion; 2-M	Ioderate (Contribut	ion; 1-L	ow Contr	ribution;			

Semester III Page 91 of 267

Mapping of (nmental Sciences (COs) with Prog		Outcomes (PSOs)	
	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	2	3	2	1	-
CO2	2	2	3	1	-
CO3	2	3	3	1	-
CO4	1	2	2	1	-
CO5	1	2	3	1	-
CO6	1	2	2	1	-
3-Stro	ng Contribution; 2	-Moderate Contri	bution; 1-Low Co	ontribution;	

Semester III Page 92 of 267

Second Year

Semester-IV

Semester-IV Page 93 of 267

	<u> </u>	Semester IV	1		
PCC	Course Code:	Course Title:		edits :	1
	CET4254	Chemical Engineering Operations	L	T	P
	Semester: IV	Total contact hours: 60	2	2	0
		List of Prerequisite Courses			
	Material and Energy Engineering Thermody	Balance Calculations (CEP4151), Chemistry (CHT4151 and CHT4152), ynamics (EST4155)			
		List of Courses where this course will be prerequisite			
	Laboratory I, II, III and Lab: I and II (CEP42: Process Development Engineering and Chem	(CET4352), Separation Processes (CET4356), Chemical Engineering and IV (CEP4251, CEP4252, CEP4253 and CEP4254), Process Simulation 55 and CEP4256), Heat Transfer Equipment design (CET4357), Chemical and Engineering (CET4451), Chemical Eng Elective III-Environmental nical Process Safety, Biochemical Engineering (Hon.), Multiphase Reaction Mathematical Methods & Optimization in Chemical Engineering (Hon.), Engineering (Hon.)			
	Des	cription of relevance of this course in the Int. M. Tech. Program			
		Eng. course. The principles learnt in this course are required in almost all thout the professional career of Chemical Engineer			
		Course Contents (Topics and subtopics)	Requ	l. hou	rs
1		Operations and Chemical Engineering Processes, Introduction to mass Convective and diffusive transport		4	
2	Fractionating column a Lewis-Sorel methods minimum and optimur based methods: HETP	y mixtures: Differential distillation, Flash or equilibrium distillation, and multistage column, reflux, reflux ratio, need for reflux, McCabe-Thiele, of estimation of number of equilibrium stages, Operating and feed lines, no reflux ratio, Tray and column efficiency, Packed column distillation: rate-theory, Ponchon Savarit method, Introduction to batch distillation and steam or multicomponent separations: Fenske-Underwood-Gilliland Method		12	
3	Operating lines from in efficiency and column	bing of dilute mixtures: Fundamentals of absorption, equilibrium curves, material balances, Number of equilibrium stages, Kremser Equation, Stage performance, Absorption columns, Rate based methods for packed columns considerations: loading and flooding zones, pressure drop and column		12	
4	rate filtration, Incomp	ation theory: constant pressure, constant rate, and variable pressure-variable ressible and compressible cake filtration, Continuous filtration, filter aids, Selection, Sizing and Scale-up		10	
5	Sedimentation, Classi Performance evaluation	fication and Centrifugal Separations: Design and scale up equations, on, Sedimentation equipment, classifiers, centrifugal equipment, Sieving eving (dry, wet, vibro), magnetic separators, and froth flotation, Selection,		8	
6		chanism of drying, drying rate curves, Estimation of drying time, Drying Process design of dryers, material, and energy balances in direct dryers,		10	
7	Operational considera	on: Energy requirements for size reduction and scale-up considerations, tions, Crushing and grinding equipment: impact and roller mills, fluid media mills, Selection of equipment		4	
		Total		60	
		List of Textbooks/ Reference Books			
1		ulson, J.M., Harker, J.H., Backhurst, J.R., 2002. Chemical engineering: d separation processes. Butterworth-Heinemann, Woburn, MA.			
2	Seader, J.D., Henley, l	E.J., 2005. Separation Process Principles, 2 ed. Wiley, Hoboken, N.J.			
3	Svarovsky, L., 2000. S	Solid-Liquid Separation. Butterworth-Heinemann, Woburn, MA.			
4		J., Harriott, P., 2004. Unit Operations of Chemical Engineering, 7 ed. /Engineering/Math, Boston.			

Semester IV Page 94 of 267

5	Green, D., Perry, R., 2007. Perry's Chemical Engineers' Handbook, Eighth Edition, 8 ed.	
	McGraw-Hill Professional, Edinburgh.	
6	Dutta, B.K., 2007. Principles of Mass Transfer and Separation Process. Prentice-Hall of India Pvt. Ltd, New Delhi.	
	Course Outcomes (students will be able to)	
CO1	Know the significance and usage of different particulate characterization parameters, and equipment to estimate them	K2
CO2	Describe Size reduction energy requirements, estimate performance of equipment, selection and sizing of equipment	K3
CO3	Analyze filtration data and select systems based on requirements, estimate filtration area for given requirements, understand filter aids and their usage	K4
CO4	Draw T-y-x diagrams, and y-x diagrams, operating lines, feed line, bubble point, dew point calculations, ternary phase diagrams, partition coefficient	K4
CO5	Describe two common modes of drying, industrial drying equipment	K2
CO6	Calculate mass transfer coefficient in various equipment, calculate height and diameter required, minimum solvent required in absorption, calculate height and diameter required, minimum reflux required in distillation	K4
K1: R	emembering, K2: Understanding, K3: Applying, K4: Analyzing, K5: Evaluating, K6: Creating	

	Chemical Engineering Operations: CET4254 Mapping of Course Outcomes (COs) with Programme Outcomes (POs)											
	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12											
CO1	2	2	2	2	-	1	2	-	-	1	2	1
CO2 2 2 2 2 - 1 2											1	2
CO3	CO3 3 3 3 1 1											2
CO4	3	3	-	-	-	-	-	-	-	2	2	1
CO5	2	2	-	-	-	-	-	-	-	2	2	1
CO6	CO6 3 3 - 3 - 3 3 - 2 1 1											
	3-Strong Contribution; 2-Moderate Contribution; 1-Low Contribution;											

01	PSO2 2	PSO3	PSO4	PSO5
	2	2	1	-
	3			
	3	1	1	-
	1	2	3	1
	2	1	2	-
	2	1	1	-
	3	2	1	1
	nution: 2-Moo	1 2 2 2 3 3 aution: 2-Moderate Cont	1 2 1 2 1 2 1 3 2 2 1 3 2 2 1 1 3 2 2 1 1 3 2 2 1 1 1 1	1 2 3 2 1 2 2 1 1 1 3 2 1 2 1 1 1 3 1 2 1

Semester IV Page 95 of 267

		Semester IV			
PCC	Course Code:	Course Title:	Cr	edits =	- 2
	CET4255	Process Safety	L	T	P
	Semester: IV	Total contact hours: 30	1	1	0
		List of Prerequisite Courses			
	Industrial Engineering	Chemistry and Engineering (CET4253)			
		List of Courses where this course will be prerequisite			
	Chemical Process Co (CET4451)	III-Environmental Engineering and Chemical Process Safety (CETxxx), ontrol (CET4354), Chemical Process Development and Engineering			
		ription of relevance of this course in the Int. M. Tech. Program			
		arse are learnt the process safety inters of handing and performing the experir d transportation of hazardous chemicals.	nent in	labora	itory,
		Course Contents (Topics and subtopics)	Reqd	. hour	S
1		hemicals manufacturing units (b) Overview of hazards, contributors to lents, importance of safety culture (c) Causes of fires and explosion, ,		10	
2	Transport, storage and a (a) Flammable and com (b) Storage and handlin (c) Norms for safe hand	safe handling of hazardous chemicals.		10	
3	Basics of laboratory saf (a) MSDS and persona safety (e) Cylinder safe	protective equipment (b) Electrical safety (c) Fire safety (d) Machine sty (f) Bio safety		10	
		Total		30	
1	CI : 1 D C C	List of Text Books/ Reference Books			
1	LOUVAR	ty: Fundamentals with Applications: Daniel A. CROWL and Joseph F.			
2		Safety Management, Environment, Safety, Health, and Quality: Centre for afety of the American Institute of Chemical Engineers (AIChE)			
3	Chemical Process Safet	ty Learning from Case Histories: Roy E. SANDERS			
4		Safety Documentation: Center for the Chemical Process Safety of the Chemical Engineers (AIChE)			
		Course Outcomes (students will be able to)			
CO1	Identify hazards in a giv	ven process and assess the same and provide solutions for operating safely.		K2	
CO2	Specify safety requirem	nents for storage and handling of a given chemical.		K2	
CO3	Students learn what pro influence it.	cess safety is, the consequences of poor process safety, and the factors that		K3	
CO4	Students learn how to meleases of dangerous n	nanage risk and define critical controls, or barriers, to prevent unintentional naterials.		K5	
CO5	Students learn how to it	mplement sustainable improvements in PSM.		K5	
CO6	Students may gain hand critical thinking skills to	ds-on experience with bowtie diagrams and other tools and learn to apply o analyze scenarios.		K6	
K1: R		standing, K3: Applying, K4: Analyzing, K5: Evaluating, K6: Creating			

				Proce	ess Safety	y: CET4	255					
	Ma	pping of	Course	Outcom	es (COs)	with Pr	ogramm	e Outcor	mes (PO	s)		
											PO12	

Semester IV Page 96 of 267

CO1	2	2	2	2	-	1	2	-	-	1	1	-
CO2	2	2	2	2	-	1	2	-	-	2	1	-
CO3	3	3	3	3	-	1	3	-	-	1	1	-
CO4	-	2	1	2	-	-	-	-	1	1	2	2
CO5	2	1	1	2	1	-	-	1	-	-	3	1
CO6	1	1	2	2	1	-	-	-	-	-	2	2
3-Strong Contribution; 2-Moderate Contribution; 1-Low Contribution;												

Mapping o	Proof Course Outcomes	rocess Safety: CI s (COs) with Pro		Outcomes (PSOs)	
	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	2	2	3	1	-
CO2	3	2	2	-	1
CO3	2	2	2	1	1
CO4	1	2	1	1	-
CO5	2	1	3	1	-
CO6	1	2	2	2	-
3-5	Strong Contribution;	2-Moderate Contr	ribution; 1-Low C	ontribution;	

Semester IV Page 97 of 267

PCC	Course Code:	Course Title:	Cr	edits =	<u> </u>
ıcc	CET4256	Instrumentation and Process Dynamics	L	T	- <u>2</u> P
	Semester: IV	Total contact hours: 30	1	1	0
	L	List of Prerequisite Courses			
		s I (MAT4151), Physics (PHT4151), Fluid Flow (CET4251), Heat Transfer ry (CHT4151 and CHT4152)			
		List of Courses where this course will be prerequisite	ı		
		Control (CET4354), Chemical Engineering Laboratory I, II, III and IV, CEP4253 and CEP4254), Chemical Process Development and Engineering			
	De	scription of relevance of this course in the Int. M. Tech. Program			
		course are required in almost all the courses and throughout the professional	career o	of Che	mical
Engine	eer in terms of instrum	entation and process dynamics of process and design.	I		
		Course Contents (Topics and subtopics)	Reqd	. hour	S
1	Revision of basic co functions	ncepts: Laplace transformation, linearization, step, pulse, ramp, sinusoidal		4	
2.	Unsteady mass and e	nergy balances of system, dynamic equations		6	
3.	Overview of dynamic in a tank, temperature		6		
4.	First and second order to step, pulse, sinuson		4		
5.	Components of cor	ntrol system – precision, sensitivity, accuracy, and error analysis of educes, Transmission of signals		2	
6	Instrumentation for	stems and their response to input changes, Open Loop response, measurement of temperature, flow, pressure, level, concentration. Basic and physical construction of instruments,		2	
7		chanism – To design a simple control system of first order and second order		6	
	, ,	Total		30	
	<u> </u>	List of Text Books/ Reference Books	I		
1	Instrumentation, Eck	man			
2	Chemical Process Co	ontrol- George Stepheanopoulous			
	•	Course Outcomes (students will be able to)	ı		
CO1	To identify appropria	ate instrument for measurement of process variables		K2	
CO2	To estimate time vari	-		K3	
CO3		the system as first order, second order, etc,		K3	
CO4	_	of the system when subjected to change		K3	
CO5		ior of combined systems		K2	
CO6		te the instrumentation and control system of chemical process		K6	
K1. R	emembering K2: Und	erstanding, K3: Applying, K4: Analyzing, K5: Evaluating, K6: Creating			

	Instrumentation and Process Dynamics: CET4256 Mapping of Course Outcomes (COs) with Programme Outcomes (POs)												
	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12												
CO1	3	1	2	2	1	2	2	-	-	1	1	-	
CO2	2	2	1	1	2	1	-	-	-	2	2	-	
CO3	3	-	2	1	-	2	-	-	-	1	1	-	

Semester IV Page 98 of 267

Integrated Master of Technology, Chemical Engineering (Major) and MDM ICT Marathwada Campus, Jalna

CO4	2	1	2	-	2	2	-	-	-	1	1	-
CO5	1	2	2	2	1	-	1	-	-	2	1	-
CO6	3	2	2	2	2	2	1	-	-	2	2	-
3-Strong Contribution: 2-Moderate Contribution: 1-Low Contribution:												

Mapping	Instrumentation of Course Outcomes	on and Process D s (COs) with Pro										
PSO1 PSO2 PSO3 PSO4 PSO5												
CO1	2	1	1	-	-							
CO2	3	1	2	1	1							
CO3	3	2	1	1	-							
CO4	3	2	1	-	-							
CO5	2	1	2	1	-							
CO6	3	2	1	1	1							

3-Strong Contribution; 2-Moderate Contribution; 1-Low Contribution;

Semester IV Page 99 of 267

		Semester IV			
PCC	Course Code:	Course Title:	Cr	edits =	2
	CEP4252	Chemical Engineering Laboratory - II	L	T	P
	Semester: IV	Total contact hours: 60	0	0	4
		List of Prerequisite Courses			
	Transfer (CET4252), Enand MAT4152), Chem	Inergy Balance Calculations (CEP4151), Fluid Flow (CET4151), Heat gineering Thermodynamics (EST4155), Mathematics I and II (MAT4151 cical Engineering Operations (CET4154), Industrial Chemistry and (ET4253), Instrumentation and Process Dynamics (CET4256)			
		List of Courses where this course will be prerequisite			
	Chemical Engineering L	aboratory III and IV (CEP4253 and CEP4254)			
	Descr	iption of relevance of this course in the Int. M. Tech. Program			
course	s. It also exposes them to	des students the firsthand experience of verifying various theoretical concepractical versions of typical chemical engineering equipment and servers acuses on fluid dynamics, thermodynamics, and mass transfer.	s a brid	ge bety	ween
		Course Contents (Topics and subtopics)	Reqd	. hour	s
2	2-3 Experiments on Hear	t Transfer		12	
4	6-8 Experiments on Che	40			
5	1-2 Experiments on Instr	rumentation		8	
		Total		60	
		List of Text Books/ Reference Books			
1	McCabe W.L., Smith J.C	C., and Harriott P. Unit Operations in Chemical Engineering, 2014			
2	Bird R.B., Stewart W.E.	, and Lightfoot, E.N. Transport Phenomena, 2007			
3	Coulson J.M., Richardso Chemical engineering de	on J.F., and Sinnott, R.K. Coulson & Richardson's Chemical Engineering: esign, 1996.			
4	Green D. and Perry R. P	erry's Chemical Engineers' Handbook, Eighth Edition, 2007.			
		Course Outcomes (students will be able to)			
CO1	Student would be able to	Learn to experimentally implement various theoretical principles		K2	
CO2	Student would be able t data	o Utilize the chemical engineering equipment to generate experimental		K4	
CO3	Student would be able to	Calculate experimental results		K3	
CO4	Student would be able to	Improve ability to write laboratory reports		К3	
CO5	Student would be able to	Improve ability for oral communication		K3	
CO6	Student would be able to	write and conclude the experiment data		K5	
K1: R6	emembering, K2: Underst	anding, K3: Applying, K4: Analyzing, K5: Evaluating, K6: Creating			

	Chemical Engineering Laboratory - II: CEP4252 Mapping of Course Outcomes (COs) with Programme Outcomes (POs)														
	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12														
CO1	3	2	2	1	-	2	-	-	-	2	1	1			
CO2	3	2	2	-	-	-	-	-	-	1	1	2			
CO3	3	2	1	1	-	1	-	-	-	1	2				
CO4	3	1	1	2	-	-	-	-	-	2	1	-			
CO5	3	2	-	-	-	-	1	-	-	2	1	2			
CO6	3	2	2	2	2	1	1	-	-	2	1	1			
	3	S-Strong	Contribut	tion; 2-M	Ioderate (Contribut	ion; 1-L	ow Contr	ibution;						

Semester IV Page 100 of 267

Mapping of	Chemical Engineering Laboratory - II: CEP4252 Mapping of Course Outcomes (COs) with Programme Specific Outcomes (PSOs)												
	PSO1	PSO2	PSO3	PSO4	PSO5								
CO1	2	3	2	3	1								
CO2	3	1	1	3	-								
CO3	1	2	3	1	2								
CO4	2	1	2	2	2								
CO5	2	1	2	2	2								
CO6	CO6 1 2 1 2 2												
3-Str	ong Contribution; 2	-Moderate Contri	bution; 1-Low Co	ontribution;									

Semester IV Page 101 of 267

MGT	Course Code	Semester IV Course Title:	Cr	edits =	
MGI	GT Course Code: Course Title: HUT4157 Industrial Management	L	T	P	
	Semester: IV	Total contact hours: 30	2	0	0
	Semester. 1v	List of Prerequisite Courses	4	U	U
	Industrial Chemistry	and Reaction Engineering (CET4253), Instrumentation and Process			
	Dynamics (CET4256),	Process Safety (CET4255) List of Courses where this course will be prerequisite			
	I	List of Courses where this course will be prerequisite			
	Process Development at Chemical Process Equi	ntrol (CET4354), Chemical Project Economics (CET4358), Chemical and Engineering (CET4451), Chemical Industrial Management (CET4452), pment Design and drawing (CEP4451), Chemical Process Development			
	and Engineering (CET4	·			
7D1 :		ription of relevance of this course in the Int. M. Tech. Program	•	c :	
This co	ourse equips students with	h human resource management skills to be able to function effectively in th	eir pro	ofessio	nal
		Course Contents (Topics and subtopics)	Rec	ıd. ho	urs
1	The production function	18.		6	
	Operation concept of pr	roduction			
	Production as the conve	ersion process			
	Productivity of convers				
	Components of product	ion function-Planning, organising, and controlling			
2	Manufacturing systems			8	
	Factors influencing cho	ice of manufacturing system.			
	Classification of manuf	acturing systems			
	Jobbing production				
	Batch production.				
	Mass or flow productio	n			
3	Facilities location			6	
	Factors governing plant				
	Economic survey of site				
	Urban, sub-urban, rural				
4	Productivity techniques			5	
	Kaizen				
	Kanban				
	JIT				
	5S				
	Poka yoke				
5	Six sigma	on alamina and control		5	
3	Ganti chart for producti	on planning and control			
		Total		30	
	T	List of Text Books/ Reference Books			
1		perations Management, (8e)- Buffa and Sarin			
2	Operations Managemer	nt,12e-Jay Heizer, Barry Render, et al.			
3	OPERATIONS MANA	GEMENT 13TH EDITION by William J. Stevenson			
4	Operations and Supply Shankar, et al.	Chain Management (SIE) 15th Edition by Richard B. Chase, Ravi			
		Course Outcomes (students will be able to)			
CO1	Student would be able practices in their domai	to explain the concepts of management and explore the management n area within society.		K4	
CO2	*	o evaluate different types of organizational structures and design them.		K6	

Semester IV Page 102 of 267

Integrated Master of Technology, Chemical Engineering (Major) and MDM ICT Marathwada Campus, Jalna

CO3	Student would be able to explain about product design process and Design product layout.	K6
CO4	Student would be able to explain about method study and use various work measurement methods.	K3
CO5	Student would be able to draw various statistical quality control charts and interpret them.	K3
CO6	Student would be able to apply the techniques of PERT/CPM in project.	K3
K1: Re	emembering, K2: Understanding, K3: Applying, K4: Analyzing, K5: Evaluating, K6: Creating	

	Industrial Management: HUT4157 Mapping of Course Outcomes (COs) with Programme Outcomes (POs)														
PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12															
CO1	1	2	2	-	3	1	ı	-	-	1	3	1			
CO2	2	1	3	1	1	-	-	-	-	2	2	2			
CO3	1	3	1	2	2	-	ı	-	2	1	1	1			
CO4	2	3	3	2	2	1	-	-	2	1	3	1			
CO5	2	1	2	1	2	1	-	-	1	1	-	-			
CO6	2	3	1	2	1	-	-	-	1	1	-	-			
	3	S-Strong	Contribu	tion; 2-M	Ioderate (Contribut	ion; 1-L	ow Contr	ribution;						

Mapping of (Industrial Management: HUT4157 Mapping of Course Outcomes (COs) with Programme Specific Outcomes (PSOs)												
	PSO1	PSO2	PSO3	PSO4	PSO5								
CO1	3	2	1	1	-								
CO2	2	1	2	3	2								
CO3	1	2	3	1	3								
CO4	2	2	2	1	3								
CO5	2	2	1	2	1								
CO6	2	1	2	1	-								
3-Stro	ong Contribution; 2	2-Moderate Contri	ibution; 1-Low Co	ntribution;									

Semester IV Page 103 of 267

		Semester IV			
FP	Course Code:	Course Title:	Cr	edits =	= 2
	HUP4158	Community Projects	L	T	P
	Semester: IV	Total contact hours: 60	0	0	4
		List of Prerequisite Courses			
	Nil				
		List of Courses where this course will be prerequisite			
	Nil				
	Desc	cription of relevance of this course in the Int. M. Tech. Program			
	nts will explore the vari	ous community projects as individual or group related to study of socie nizations.	tal tec	chnolo	gica
		Course Contents (Topics and subtopics)	Req	ıd. ho	urs
1	society. In the first step, student faced by the society in collate relevant informatield or general sciences. The team shall then exelling the team of the suggested properties of the suggested properties of the suggested properties of the same on the same on the same on the same on the event of emerging the team of the event of emerging the team of the same on the event of emerging the same on the event of emerging the same of the event of emerging the event of emerging the same of the event of emerging the event of e	f water supply Pipeline network, estimation of water requirement, Pressure is and pumping requirements adata, identification of food supply, waster generation, dump areas in local areas, treatment of malodour from dumped materials eans hospitals, waste generation, analysis of waste treatment ollution in the areas, identification and quantitative measurements and effect ocal population in the areas. If waste materials generated by local economic activities, development of e, and/or building economic activities ass among people in the vicinity of chemical plants, suggesting methods in		60	
		concept awareness			
	Any-other project of so	ocial relevance with prior approval of the HOD			
		Total		60	
	T	List of Text Books/ Reference Books			
1	General Books, Newspa				
	T	Course Outcomes (students will be able to)			
CO1		audents to contribute of social networking as a bridge between the various and the people of India. The course also outlines the benefits of community search and innovation.		K2	
CO2	physical, mental and s	e environment and education, safety and energy, enthusiasm towards spiritual health along with simple living and high thinking have been derstanding of the students.		K2	

Semester IV Page 104 of 267

Integrated Master of Technology, Chemical Engineering (Major) and MDM ICT Marathwada Campus, Jalna

CO3	Students will be able to understand the various problems of any community and the possible ways to address them.	К3
CO4	Student would be able to explain about environmental impact assessment	К3
K1: R	emembering, K2: Understanding, K3: Applying, K4: Analyzing, K5: Evaluating, K6: Creating	

	Community Projects: HUP4158 Mapping of Course Outcomes (COs) with Programme Outcomes (POs)													
PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12														
CO1	1	1	2	1	1	2	1	1	2	1	2	2		
CO2	1	1	2	1	1	2	1	1	2	1	2	2		
CO3	1	1	2	1	1	2	1	1	2	1	2	2		
CO4	CO4 2 3 3 2 2 1 1 1 2 1 3 1													
	3	S-Strong	Contribu	tion; 2-M	Ioderate (Contribut	ion; 1-L	ow Contr	ribution;					

Mapping o	Community Projects: HUP4158 Mapping of Course Outcomes (COs) with Programme Specific Outcomes (PSOs)												
	PSO1 PSO2 PSO3 PSO4 PSO5												
CO1	-	-	-	1	3								
CO2	-	-	-	1	3								
CO3	-	-	-	1	3								
CO4	-	-	-	1	3								
3-S	trong Contribution; 2	-Moderate Contr	ibution; 1-Low Co	ntribution;									

Semester IV Page 105 of 267

Third Year

Semester-V

Semester-V Page 106 of 267

		Semester V			
PCC	Course Code:	Course Title:	Cr	edits =	= 2
	CET4351	Chemical Reaction Engineering	L	T	P
	Semester: V	Total contact hours: 30	1	1	0
		List of Prerequisite Courses			
		51 and CHT4152), Material & Energy Balance Calculations (CEP4151), es I and II (MAT4151 and MAT4152), Fluid Flow (CET4251), Engineering (ST4155)			
		List of Courses where this course will be prerequisite			
	(CET4451), Chemic Lab - I and II (CI (CET4451), Chemic Biochemical Engin Methods & Optimiz	Control (CET4354), Chemical Process Development and Engineering al Engineering Lab - III and IV (CEP4253 and CEP4254), Process Simulation EP4255 and CEP4256), Chemical Process Development and Engineering al Eng Elective III-Environmental Engineering and Chemical Process Safety, eering (Hon.), Multiphase Reaction Engineering (Non.), Mathematical zation in Chemical Engineering (Hon.), Refinery Science and Engineering ience and Engineering (Hon.)			
	D	escription of relevance of this course in the Int. M. Tech. Program			
& petroleoch	ochemicals, Pulp & plemicals, and surfact	but not limited to the following industries: Inorganic chemicals, organic chemicals, organic chemicals, Pigments & paints, rubber, plastics, synthetic fibers, Foods, Dyes and intants, Minerals, cleansing agents, Polymers and textiles, Biochemicals and Microelectronics, energy from conventional and non-conventional resources, M	termed d biot	liates,	Oils,
		Course Contents (Topics and subtopics)	Rec	ıd. ho	ars
1	Sizing and analysis	of chemical Reactors (single and multiple reactions (series/parallel))		6	
2	Series of reactors, Fisothermal reactor de	Recycle reactors, Use of energy balance in reactor sizing and analysis, non-esign	6		
3	Non-idealities in che	emical reactors: RTD, Axial dispersion models		6	
4	Gas-Solid reactions:	Catalytic and Non-catalytic		4	
5	Heterogeneous catal	ysis: internal and external transport, kinetics, and mechanisms		4	
6	Gas-solid reactions ((non-catalytic), Kinetics of fluid-fluid reactions		4	
		Total		30	
		List of Text Books/ Reference Books			
1	Elements of Chemic	al Reaction Engineering: H. Scott FOGLER			
2	Chemical Reaction I	Engineering: Octave LEVENSPIEL			
3	The Engineering of	Chemical Reactions: Lanny D. SCHMIDT			
4	An introduction to C	Chemical Engineering Kinetics and Reactor Design: Charles HILL			
5	Heterogeneous Reac	tions, Vol. I and II: L. K. Doraiswamy, M. M. Sharma			
		Course Outcomes (students will be able to)			
CO1	Design chemical rea	ctors optimally, using minimum amount of data		K4	
CO2	Design experiments	in a judicious way to get the required data, if not available		K4	
CO3	Fix some problems i	related to operability and productivity		K4	
CO4	Select appropriate si	ngle and multiphase reactor configuration for given application		K3	
CO5		to develop skills to choose the right reactor for isothermal, non-isothermal, or		K6	
CO6		to calculate conversion and extent values for different systems, including tems.		K6	
K1: R		derstanding, K3: Applying, K4: Analyzing, K5: Evaluating, K6: Creating			

Semester V Page 107 of 267

	Chemical Reaction Engineering: CET4351 Mapping of Course Outcomes (COs) with Programme Outcomes (POs)													
	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12													
CO1	3	2	2	1	2	1	-	-	-	1	1	-		
CO2	2	1	1	2	2	1	3	-	1	2	2	-		
CO3	1	2	1	1	-	1	-	-	-	1	1	-		
CO4	2	1	2	1	1	2	-	-	-	-	1	-		
CO5	3	2	2	1	2	2	3	-	-	1	1	-		
CO6	3	2	2	1	2	1	2	-	-	-	1	2		
	3	S-Strong (Contribu	tion; 2-M	loderate (Contribut	tion; 1-Lo	ow Contr	ibution;					

Chemical Reaction Engineering: CET4351 Mapping of Course Outcomes (COs) with Programme Specific Outcomes (PSOs)					
	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	1	2	3	3	-
CO2	2	3	3	3	1
CO3	1	2	2	3	-
CO4	2	2	3	2	1
CO5	2	2	3	3	1
CO6	2	3	2	2	2
3-Strong Contribution; 2-Moderate Contribution; 1-Low Contribution;					

Semester V Page 108 of 267

		Semester V			
PCC	Course Code:	Course Title:	Cr	edits =	- 2
	CET4352	Momentum Transfer	L	T	P
	Semester: V	Total contact hours: 30	1	1	0
		List of Prerequisite Courses			
		s and Mathematics, Applied Physics: I and II (PHT4151), Fluid Flow Mathematics: I and II (MAT4151 and MAT4152), Chemical Engineering			
		List of Courses where this course will be prerequisite	T		
	Membrane (CET4356 Development and Enginand Chemical Process	Lab - III and IV (CEP4253 and CEP4254), Separation Processes +), Heat Transfer Equipment design (CET4357), Chemical Process neering (CET4451), Chemical Eng Elective III-Environmental Engineering Safety (CETxxx), Multiphase Reaction Engineering (Non.), Mathematical on in Chemical Engineering (Hon.)			
	Desc	cription of relevance of this course in the Int. M. Tech. Program			
energy	are introduced. Laws re	concepts of momentum transfer to students. Various concepts such as preselated to conservation of momentum; energy are taught. Applications of the cess equipment is explained with the help of several problems			
		Course Contents (Topics and subtopics)	Reqd	l. hour	s
1		y and Motion (Cartesian, cylindrical, and spherical coordinates) in laminar ons for the calculation of velocity profiles, shear stresses, power, etc. in olications.		8	
2	Boundary Layer Flow solutions,	s: Blasius equations and solution, Von-Karman integral equations and		6	
3	Introduction to turbuler	nce: turbulent pipe flow, basis of Universal velocity profile and its use		6	
4	Similarities in Moment	um, Heat and Mass Transfer		6	
5		imental and computational fluid dynamics: HFA, LDA, PIV, UVP, tlence modelling, multiphase system modelling etc.		4	
		Total		30	
		List of Textbooks/ Reference Books	1		
1	•	Bird R.B., Stewart W.E., Lightfoot E.N.			
2	Fluid Mechanics, Kund	•			
3	Fluid Mechanics, F. W.				
4	Unit Operations of Che	mical Engineering, McCabe, Smith			
		Course Outcomes (students will be able to)	ı		
CO1		iles, forces, pressure drops for simple 1 –D laminar flow situations		K2	
CO2	-	ticles and terminal velocities of particles		K2	
CO3	** *	at and mass transfer concepts to simple situations		K3	
CO4	equipment	asurement technique for detailed characterization in chemical process		K3	
CO5	Analyze compressible t			K4	
CO6		ent for transportation and metering of fluids.		K6	
K1: R	emembering, K2: Under	standing, K3: Applying, K4: Analyzing, K5: Evaluating, K6: Creating			

	Momentum Transfer: CET4352											
	Mapping of Course Outcomes (COs) with Programme Outcomes (POs)											
	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO1											
CO1												

Semester V Page 109 of 267

CO2	1	2	1	1	2	2	1	-	-	-	1	-	
CO3	3	2	1	2	2	1	2	-	ı	1	-	-	
CO4	CO4 1 1 2 1 2 1 1 1												
CO5	CO5 3 2 2 2 1 2 2 1 1												
CO6	CO6 2 2 1 1 2 1												
3-Strong Contribution; 2-Moderate Contribution; 1-Low Contribution;													

Mapping o	Momo of Course Outcomes	entum Transfer: (COs) with Prog		Outcomes (PSOs)	
	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	2	1	-
CO2	3	2	3	1	-
CO3	2	2	2	1	1
CO4	2	1	2	2	1
CO5	3	2	2	1	1
CO6	2	1	2	-	-
3-8	Strong Contribution; 2	2-Moderate Contr	ibution; 1-Low Co	ontribution;	

Semester V Page 110 of 267

		Semester V			
PCC	Course Code:	Course Title:	Cı	redits :	= 4
	CEP4353	Chemical Engineering Thermodynamics	L	Т	P
	Semester: V	Total contact hours: 60	3	1	0
		List of Prerequisite Courses			
	Engineering Thermody	namics (CET4155)			
		List of Courses where this course will be prerequisite			
	Environmental Enginee (Hon.), Multiphase Re	Lab - III and IV (CEP4253 and CEP4254), Chemical Eng Elective III- ering and Chemical Process Safety (CETxxx), Biochemical Engineering action Engineering (Non.), Mathematical Methods & Optimization in (Hon.), Statistical Thermodynamics (Hon.)			
	Desc	ription of relevance of this course in the Int. M. Tech. Program			
forma heats	lism and insights necessory of mixing, sparingly solu	eding course by developing the concept of non-ideal mixing and provide ary to tackle real industrial problems like liquid-liquid phase splitting, az able gases and solids, electrolytes etc. Student who has taken this course rectrum of industrial chemical processes.	eotrop	oic, no	n-zero
		Course Contents (Topics and subtopics)	Re	qd. ho	urs
1.	Relations, and the need	f Ideal and non-ideal mixtures. Equations for Property Changes, Maxwell for Equations of State. Residual Properties		6	
2.	Phase Equilibria for lequation, Gibbs energy	Pure Fluids, Fugacity and Fugacity Coefficient, Clausius-Clapeyron		6	
3.	Thermodynamic Proper Fugacity and Fugacity (rties of Mixtures, Gibbs Duhem Equation, Phase Equilibrium in Mixtures, Coefficient in Mixtures		6	
4.	Non-Ideal Mixtures, Ex	cess Properties, and activity coefficients		6	
5.	Models of the Liquid I UNIQUAC and NRTL)	Phase: Activity Coefficient Models (Margules, Van Laar, Wilson et al,		4	
6.	Vapor: Liquid Equilibr point calculations for Id	ia in Ideal Mixtures, T-x-y and P-x-y diagrams, Bubble point and Dew leal mixtures		6	
7		a in non-ideal mixtures including azeotropes and high-pressure vapor: gamma-phi and phi-phi approaches		6	
8	Solubility of Gases in L	iquids, concept of infinite dilution activity coefficient, Henry's law		4	
9	Liquid: Liquid Equilibr	ia and Phase splitting, applications to extraction		4	
10	Solubility of Solids in I	Liquids		2	
11	Debye Huckel Theory,	activity coefficients of electrolytes		4	
12	Chemical Equilibrium in Heterogenous reacting in	in Ideal and non-ideal Mixtures in single phase reacting mixtures and in mixtures		6	
		Total		60	
	T	List of Text Books/ Reference Books			
1		and Engineering Thermodynamics: S. I. Sandler			
2		al Engineering Thermodynamics: Smith, van Ness, Abbott			
3	Properties of Gases and	Liquids: Reid, Prausnitz, Pauling			
·		Course Outcomes (students will be able to)			
CO1		equilibria in binary non-ideal mixtures using activity coefficient models		K3	
CO2	•	solutes (gases and solids) in liquids		K3	
CO3		equilibria using activity coefficient models		K3	
CO4	Analyze equilibria in re			K4	
CO5	systems, some of which	e to solve problems involving multi-phase chemical systems and reactive may be related to safety.		K5	
CO6	Students should be able	to interpret thermodynamic data for applications in chemical engineering		K6	

Semester V Page 111 of 267

processes, process safety, biological sciences, energy, and environmental sciences.

K1: Remembering, K2: Understanding, K3: Applying, K4: Analyzing, K5: Evaluating, K6: Creating

	Ma	C pping of		_	ring The	•				s)					
	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12														
CO1	CO1 3 1 2 1 2 1 1 1 -														
CO2	CO2 2 2 1 2 1 2 1 -														
CO3	2	2	1	2	1	1	-	-	-	-	2	-			
CO4	3	2	-	2	-	2	1	-	-	-	1	-			
CO5	3	2	1	2	1	2	1	-	-	-	2	-			
CO6	CO6 3 2 1 1 1 2 2														
	3-Strong Contribution: 2-Moderate Contribution: 1-Low Contribution:														

Mapping	Chemical Engineer Course Outcomes	_	lynamics: CEP4 gramme Specific		
	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	2	2	1	-
CO2	2	3	2	2	-
CO3	2	2	1	2	1
CO4	1	2	3	2	1
CO5	2	3	2	2	1
CO6	2	3	1	1	-
3-5	Strong Contribution; 2	2-Moderate Contr	ibution; 1-Low Co	ontribution;	•

Semester V Page 112 of 267

		Semester V			
PCC	Course Code:	Course Title:	Cr	edits =	= 2
	CEP4253	Chemical Engineering Laboratory - III	L	T	P
	Semester: V	Total contact hours: 60	0	0	4
	Γ	List of Prerequisite Courses			
	(CET4352), Materia (CET4151), Heat Tran and II (MAT4151 and Instrumentation and Pr	g Laboratory I and II (CEP4251 and CEP4252), Momentum Transfer al Balance and Energy Balance Calculations (CEP4151), Fluid Flow Insfer (CET4252), Engineering Thermodynamics (EST4155), Mathematics I MAT4152), Industrial Chemistry and Reaction Engineering (CET4253), process Dynamics (CET4256), Chemical Reaction Engineering (CET4351), CET4352), Chemical Engineering Thermodynamics (CET4253), Chemical Ins (CET4254)			
		List of Courses where this course will be prerequisite			
	Chemical Engineering	Lab - IV (CEP4254)			
	Des	cription of relevance of this course in the Int. M. Tech. Program			
course	es. It also exposes them t	vides students the firsthand experience of verifying various theoretical concepto practical versions of typical chemical engineering equipment and servers as focuses on fluid dynamics, thermodynamics, and mass transfer.			
		Course Contents (Topics and subtopics)	Reqd	l. hour	'S
1	2-3 Experiments on M			10	
2	3-4 Experiments on Cl	nemical Engineering Thermodynamics		20	
3	4-6 Experiments on Re	eaction Engineering		30	
		Total		60	
		List of Textbooks/ Reference Books			
1	McCabe W.L., Smith J	J.C., and Harriott P. Unit Operations in Chemical Engineering, 2014			
2	Bird R.B., Stewart W.l	E., and Lightfoot, E.N. Transport Phenomena, 2007			
3	Coulson J.M., Richard Chemical engineering	son J.F., and Sinnott, R.K. Coulson & Richardson's Chemical Engineering: design, 1996.			
4	Green D. and Perry R.	Perry's Chemical Engineers' Handbook, Eighth Edition, 2007.			
		Course Outcomes (students will be able to)			
CO1	Student would be able	to implement the experimental procedure with minimal assistance		K3	
CO2	Student would be able	to Connect various chemical engineering subjects for common output		K2	
CO3	Student would be able	to Analyze large experimental data and results		K4	
CO4	Student would be able	to Improve ability to write scientific reports		K3	
CO5	Student would be able	to Improve ability draw conclusions		K3	
CO6	Student would be able experimental findings	to write and present technical reports and documents, and communicating orally to colleagues		K6	
K1: R	emembering, K2: Under	rstanding, K3: Applying, K4: Analyzing, K5: Evaluating, K6: Creating			

	Chemical Engineering Laboratory - III: CEP4253 Mapping of Course Outcomes (COs) with Programme Outcomes (POs)												
	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12												
CO1 3 2 2 1 - 2 2 1											1		
CO2	CO2 3 2 2 1 1 2												
CO3	CO3 3 2 1 1 - 1 - 1 2												
CO4	3	1	1	2	-	-	-	-	-	2	1	-	

Semester V Page 113 of 267

Integrated Master of Technology, Chemical Engineering (Major) and MDM ICT Marathwada Campus, Jalna

CO5	3	2	i	i	i	-	1	i	-	2	1	2
CO6	3	2	2	2	2	1	1	-	-	2	1	1
	3-Strong Contribution; 2-Moderate Contribution; 1-Low Contribution;											

Mapping of	Chemical Engi Course Outcomes	neering Laborat (COs) with Prog			
	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	2	3	2	3	1
CO2	3	1	1	3	-
CO3	1	2	3	1	2
CO4	2	1	2	2	2
CO5	2	1	2	2	2
CO6	1	2	1	2	2
3-St	rong Contribution; 2	2-Moderate Contri	bution; 1-Low Co	ontribution;	

Semester V Page 114 of 267

PCC	Course Code:	Semester V Course Title:	C	edits =	
icc	CEP4255	Process Simulation Laboratory - I	L	T	- <u>2</u> P
	Semester: V	Total contact hours: 60	0	0	4
				l	
		List of Prerequisite Courses			
		cs and Mathematics, Applied Physics: I and II (PHT4151), Applied (MAT4151 and MAT4152)			
		List of Courses where this course will be prerequisite			
	Process Simulation La Transport Phenomena	b-II (CEP4256), Advanced Reaction Engineering (CET4553), Advanced (CET4551)			
	Desc	cription of relevance of this course in the Int. M. Tech. Program			
	1 0	Chemical Engineering processes and equipment.			
		uipment through programming			
To Le	arn the solving process of	of Chemical Engineering problems through computational techniques	I		
		Course Contents (Topics and subtopics)	Reqd	. hour	<u>s</u>
1.	3-4 experiments on cal energy models	culation of chemical properties by equation of state, fugacity and Gibbs'		12	
2.		mputation of vapor-liquid equilibria and liquid-liquid equilibria		8	
4	2-3 experiments on flas	sh vessel calculations, estimation of bubble point and dew point conditions		12	
6	5-6 Design of chemica liquid-liquid extractor,	l engineering equipment such as absorber, stripping unit, distillation unit, cooling tower		28	
		Total		60	
		List of Text Books/ Reference Books			
1	Coker, Ludwig's Appli	ed Process Design for Chemical and Petrochemical Plants			
2	Perry's Chemical Engi	neering Handbook			
3	Albright's Chemical E	ngineering Handbook			
		Course Outcomes (students will be able to)			
CO1	Use advanced program	nming software with built in functions		K3	
CO2	Write own functions			K4	
CO3	Solve chemical engine	ering problems using computers		K4	
CO4	Design a chemical eng	ineering equipment for separation process		K4	
CO5		skills in building and running a process simulation model to predict the and to conduct technical-economic optimization.		K4	
CO6		mercial simulation software.		K5	
K1: R	emembering, K2: Under	rstanding, K3: Applying, K4: Analyzing, K5: Evaluating, K6: Creating			

	Process Simulation Laboratory - I: CEP4255 Mapping of Course Outcomes (COs) with Programme Outcomes (POs)											
												PO12
CO1	-	-	3	1	1	1	-	-	-	-	2	-
CO2	1	2	3	1	2	1	-	-	-	-	2	-
CO3	1	2	1	2	1	1	-	-	-	-	3	-
CO4	3	1	1	1	-	1	-	2	-	-	1	-
CO5	2	2	2	1	1	1	-	2	-	-	2	-
CO6	3	2	1	-	-	-	-	1	-	-	1	2

Semester V Page 115 of 267

3-Strong Contribution; 2-Moderate Contribution; 1-Low Contribution;

Mapping	Process Sim of Course Outcomes		ory - I: CEP4255 gramme Specific		
	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	2	1	2	-
CO2	2	3	2	1	-
CO3	2	1	3	3	1
CO4	1	2	3	3	1
CO5	2	2	3	3	1
CO6	2	3	1	1	-
3-5	Strong Contribution; 2	2-Moderate Contr	ibution; 1-Low Co	ontribution;	

Semester V Page 116 of 267

Third Year

Semester-VI

Semester-VI Page 117 of 267

		Semester VI							
PCC	Course Code:	Course Title:	Cr	= 2					
	CET4354	Chemical Process Control	LT		P				
	Semester: VI	Total contact hours: 30	1	1	0				
		List of Prerequisite Courses							
	Applied Mathematics I and II (MAT4151 and MAT4152), Instrumentation and Process dynamics (CET4256), Chemical Reaction Engineering (CET4351), Process safety (CET4255), Mathematical Methods & Optimization in Chemical Engineering (Hon.)								
		List of Courses where this course will be prerequisite							
	Industrial Management (HUT4157), Chemical Engineering Lab-IV (CEP4354), Chemical Process Development and Engineering (CET4451)								
	Description of relevance of this course in the Int. M. Tech. Program								
Drogg	as control plays on over	dy critical role in the contact of actual operation of a chemical plant. Most of t	ha aar	o obor	nioo1				

Process control plays an overly critical role in the context of actual operation of a chemical plant. Most of the core chemical engineering courses focus on the steady state operation. In the real-life environment, process is continuously subjected to various disturbances which deviate the operation from the designed steady state. This course specifically prepares students to assess the impact of such disturbances and equip them with the tools available with the chemical engineer to tackle these situations.

	Course Contents (Topics and subtopics)	Reqd. hours
1	Controller tuning: Open loop tuning, closed loop tuning, characteristic equation, Routh-Hurwitz criterion	6
2	Design of controllers using simple performance criteria, time-integral performance criteria. Design of controllers using frequency response technique, Nyquist, and Bode Stability criteria,	8
3	Control Strategies- Cascade control, Ratio Control, Feedforward control, Dead time compensation	6
4	Modern control strategies, Internal model control, Dynamic Matrix control	4
6	Control of batch processes, programmable logical controllers, Distributed control systems, supervisory Control systems	2
7	Digital control systems, Introduction to z-transforms	4
	Total	30
	List of Textbooks/ Reference Books	
1	Chemical Process Control- George Stephenopoulus	
2	Process control- Shinskey	
	Course Outcomes (students will be able to)	
CO1	To design a controller and understand behavior of a close loop-controlled system	K4
CO2	To evaluate performance of a close loop control system, stability and controllability, Robustness	K4
CO3	To select and Design control strategy	К3
CO4	To evaluate a advanced control system, design feedforward controllers	K4
CO5	To evaluate digital control systems	K4
CO6	Develop the transfer function for a given system to generate response for a given forcing function. and develop block diagram for a given process	K6
K1: R	emembering, K2: Understanding, K3: Applying, K4: Analyzing, K5: Evaluating, K6: Creating	

	Chemical Process Control: CET4354											
Mapping of Course Outcomes (COs) with Programme Outcomes (POs)												
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	2	1	1	3	2	1	-	-	1	1	-
CO2	3	1	2	1	1	2	1	-	-	1	3	-
CO3	2	2	1	2	1	1	2	-	-	3	2	-
CO4	1	1	2	1	1	1	-	-	-	1	2	_

Semester VI Page 118 of 267

Integrated Master of Technology, Chemical Engineering (Major) and MDM ICT Marathwada Campus, Jalna

CO5	2	3	1	1	3	1	ı	İ	1	2	1	-
CO6	3	2	2	1	2	2	1	-	1	-	3	-
	3	S-Strong (Contribut	tion; 2-M	loderate (Contribut	ion; 1-L	ow Contr	ibution;			

Mapping	Chemica of Course Outcomes	al Process Contr (COs) with Pro		Outcomes (PSOs)	
	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	2	2	3	3	1
CO2	1	2	3	2	-
CO3	1	3	2	3	2
CO4	2	2	3	2	1
CO5	1	2	2	3	1
CO6	2	2	3	3	1
3-5	Strong Contribution; 2	2-Moderate Contr	ibution; 1-Low Co	ontribution;	•

Semester VI Page 119 of 267

		Semester VI			
PCC	Course Code:	Course Title:	Cr	edits =	= 2
	CET4356	Separation Processes	L	T	P
	Semester: VI	Total contact hours: 30	1	1	0
		List of Prerequisite Courses			
	(CET4254), Engineer Applied Mathematics	Balance Calculations (CEP4151), Chemical Engineering Operations ring Thermodynamics (EST4155), Momentum Transfer (CET4352), I and II (MAT4151 and MAT4152), Chemical Engineering Laboratory I, CEP4252 and CEP4253), Process Simulation Lab: I (CEP4255)			
		List of Courses where this course will be prerequisite			
	Chemical Process Devand Engineering (CET	g Laboratory IV (CEP4254), Process Simulation Lab - II (CEP4256), velopment and Engineering (CET4451), Chemical Process Development C4451), Multiphase Reaction Engineering (Non.)			
		cription of relevance of this course in the Int. M. Tech. Program			
	eering Principles and he	t up on and in continuation with Chem. Eng. operations. It forms the ence it is required in almost all the courses and throughout the professional ca			
		Course Contents (Topics and subtopics)	Re	qd. ho	urs
1	and Maloney-Schuber number of stages, max Introduction to reactiv supercritical fluid ex	ing of ternary systems: Ternary diagrams, Hunter-Nash graphical method rt graphical equilibrium-stage method, Solvent Selection, Operating point, timum solvent to feed ratios, minimum reflux, minimum number of stages, we extraction, aqueous two phase extraction, extraction of biomolecules, traction, Solid-liquid extraction: Solid - liquid equilibria, efficiency, ion, Equipment for extraction, leaching and their sizing, Design		10	
2	Chromatography, Bre Dispersion Model, S Transport-Rate Coeff	exchange: Liquid Adsorption, Ion-Exchange Equilibria, Equilibria in eakthrough Curves, Kinetic and transport considerations, Convection-Generation Efficiency (Plate Height or Bandwidth), Correlations for ficients, Equipment for sorption operations, Scale-Up and Process ve Membranes, simulated-moving-bed operation, modes of operation		5	
3	Crystallization: Theo relationship), Supersat of moments for rate ex operation, evaporative	ory of solubility and crystallization, phase diagram (temp/solubility turation, Nucleation, Crystal Growth, Population balance analysis, method expressions for, volume, area and length growth, CSD distribution, MSMPR and cooling (rate expressions), most dominant size, ideal classified bed, extallization, Process design of crystallizers and their operation		5	
4	Humidification and C tower process design,	Cooling Towers: Method of changing humidity and equipment, Cooling counter-current, concurrent, and cross current, mass and heat balances in stimation of air quality, performance evaluation of cooling towers.		5	
5	vapour permeation and Porous Membranes, Ro Porous Membranes, T Mixtures, Gas Mixtures	as: Types of separations, reverse osmosis, ultrafiltration, gas separation, di pervaporation, dialysis, electrodialysis, nanofiltration, Transport Through esistance Models, Liquid Diffusion Through Pores, Gas Diffusion Through Transport Through Nonporous Membranes, Solution-Diffusion for Liquid ures, Concentration Polarization and Fouling, Membrane modules, es in cascades, performance criteria and design considerations		5	
		Total		30	
		List of Textbooks/ Reference Books			
1		alson, J.M., Harker, J.H., Backhurst, J.R., 2002. Chemical engineering: ad separation processes. Butterworth-Heinemann, Woburn, MA.			
2	Seader, J.D., Henley, l	E.J., 2005. Separation Process Principles, 2 ed. Wiley, Hoboken, N.J.			
3	McCabe, W., Smith,	J., Harriott, P., 2004. Unit Operations of Chemical Engineering, 7 ed. /Engineering/Math, Boston.			
4		2007. Perry's Chemical Engineers' Handbook, Eighth Edition, 8 ed.			

Semester VI Page 120 of 267

5	Dutta, B.K., 2007. Principles of Mass Transfer and Separation Process. Prentice-Hall of India Pvt. Ltd, New Delhi.	
	Course Outcomes (students will be able to)	
CO1	List situations where liquid–liquid extraction might be preferred to distillation, Make a preliminary selection of a solvent using group-interaction rules, Size simple extraction equipment	K2
CO2	Differentiate between chemisorption and physical adsorption, List steps involved in adsorption of a solute, and which steps may control the rate of adsorption, Explain the concept of breakthrough in fixed-bed adsorption	K2
CO3	Explain how crystals grow, Explain the importance of supersaturation in crystallization.	K2
CO4	Explain membrane processes in terms of the membrane, feed, sweep, retentate, permeate, and solute-membrane interactions.	K2
CO5	Distinguish among microfiltration, ultrafiltration, nanofiltration, virus filtration, sterile filtration, filter-aid filtration, and reverse osmosis in terms of average pore size. Explain common idealized flow patterns in membrane modules.	K5
CO6	Describe effects of mixing on supersaturation, mass transfer, growth, and scale-up of crystallization	K5
K1: R	emembering, K2: Understanding, K3: Applying, K4: Analyzing, K5: Evaluating, K6: Creating	

	Separation Processes: CET4356 Mapping of Course Outcomes (COs) with Programme Outcomes (POs)											
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	1	1	2	2	2	-	-	1	3	-
CO2	3	1	2	1	2	1	2	-	-	2	1	-
CO3	3	2	1	-	1	1	1	-	-	1	2	-
CO4	2	1	2	1	1	2	3	-	-	1	1	-
CO5	3	2	2	1	2	2	2	-	-	1	2	-
CO6	2	1	2	2	-	-	-	-	-	-	1	1
	3	S-Strong	Contribu	tion; 2-M	Ioderate (Contribu	tion; 1-L	ow Conti	ribution;			

Mapping o	Separ of Course Outcomes	ation Processes: (COs) with Pro		Outcomes (PSOs)	
	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	2	2	1	2	-
CO2	3	2	2	1	1
CO3	1	2	1	2	2
CO4	1	2	1	1	1
CO5	2	2	1	2	1
CO6	1	1	2	1	-
3-S	Strong Contribution; 2	-Moderate Contr	ibution; 1-Low Co	ontribution;	

Semester VI Page 121 of 267

		Semester VI			
PCC	Course Code:	Course Title:	Cr	edits =	- 2
	CET4357	Heat Transfer Equipment Design	L	T	P
	Semester: VI	Total contact hours: 30	1	1	0
		List of Prerequisite Courses			
	Mathematics I and II (N	ET4352), Chemical Engineering Operation (CET4254), Applied MAT4151 and MAT4152), Material and Energy Balance Calculations action Engineering (CET4351)			
		List of Courses where this course will be prerequisite			
	Engineering (CET4451),	ineering (HONOURS Syllabus), Chemical Process Development and Environmental Engineering and Process Safety (CETxxx), Chemical P4354), Chemical Process Development and Engineering (CET4451)			
	Descri	ption of relevance of this course in the Int. M. Tech. Program			
		with heat transfer, heat exchangers and their design. Heat transfer form Education and is required in all future activities.	s one	of the	basic
		Course Contents (Topics and subtopics)	Reqd	. hour	s
1	nomenclature, choice of	angers: Basic construction and features, TEMA exchanger types, their exchanger type, correction to mean temperature difference due to cross gers. Design methods for shell and tube heat exchangers such as Kern method		8	
2	Finned tube exchangers,	air-cooled cross flow exchangers and their process design aspects		3	
3	Compact Exchangers: Pla and their process design a	ate, Plate fin, Spiral, etc.: Construction, features, advantages, limitations aspects		3	
4	horizontal versus vertical aspects of total condens	theoretical prediction of heat transfer coefficients, practical aspects, condensation outside tubes, condensation inside tubes, Process Design ers, condensers with de-superheating and subcooling, condensers of condensation of vapors in presence of non-condensable.		8	
5	Heat transfer to boiling circulation reboilers	liquids: Process design aspects of evaporators, natural and forced		8	
		Total		30	
		List of Text Books/ Reference Books			
1	Heat Transfer, Kern D.Q.				
2	Heat Exchangers, Kakac	S., Bergles A.E., Mayinger F			
3	Process Heat Transfer, G	. Hewitt			
		Course Outcomes (students will be able to			
CO1	Calculate heat duty/c1-	Course Outcomes (students will be able to)		K4	
CO1		t temperatures/pressure drops/area required for various equipment like ers, shell and tube heat exchangers, plate heat exchangers, condensation, ss.		K4	
CO2		f shell and tube exchanger based on TEMA classification.		K2	
CO3	Design a reboiler system	for distillation		K4	
CO4		e of heat transfer equipment, such as parallel and counter flow heat through black and gray bodies.		K4	
CO5		ripment, such as shell and tube heat exchangers, and plate type heat		K6	
CO6		tages required for a given mass transfer problem		K5	
K1: R	emembering, K2: Understa	anding, K3: Applying, K4: Analyzing, K5: Evaluating, K6: Creating			

Semester VI Page 122 of 267

	Heat Transfer Equipment Design: CET4357 Mapping of Course Outcomes (COs) with Programme Outcomes (POs)													
	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12													
CO1	3	2	1	1	2	3	2	-	-	1	2	-		
CO2	3	-	-	1	1	-	-	-	1	2	1	-		
CO3	3	2	2	1	2	3	3	-	-	1	2	-		
CO4	3	2	2	1	2	2	2	-	1	1	1	-		
CO5	2	3	3	1	-	-	-	-	-	1	2	2		
CO6	1	2	2	-	-	-	-	-	-	1	3	3		
3-Strong Contribution; 2-Moderate Contribution; 1-Low Contribution;														

Mapping	Heat Transfer Equipment Design: CET4357 Mapping of Course Outcomes (COs) with Programme Specific Outcomes (PSOs)												
	PSO1	PSO2	PSO3	PSO4	PSO5								
CO1	2	3	3	2	1								
CO2	3	1	2	1	-								
CO3	2	1	2	3	-								
CO4	2	1	2	2	1								
CO5	2	3	3	1	-								
CO6	3	2	1	2	-								
3-5	Strong Contribution;	2-Moderate Contr	ibution; 1-Low Co	ontribution;	•								

Semester VI Page 123 of 267

PCC	Course Code:	Course Title:	Cr	edits =	= 2
	CEP4256	Process Simulation Laboratory - II	L	T	P
	Semester: VI	Total contact hours: 60	0	0	4
		List of Prerequisite Courses			
		and Mathematics, Applied Physics (PHT4151), Applied Mathematics: I rocess Simulation Lab-II (CEP4255), Chemical Engineering Operations			
		List of Courses where this course will be prerequisite			
	Advanced Reaction Eng	ineering (CET4553), Advanced Transport Phenomena (CET4551)			
	Descr	iption of relevance of this course in the Int. M. Tech. Program			
To lea	rn the design aspects equi	hemical Engineering processes and equipment. pment through programming Chemical Engineering problems through computational techniques			
		Course Contents (Topics and subtopics)	Reqd.	hours	3
1	Design of multicompone			6	
2	Design of shell and tube	heat exchanger		6	
3.	Design of evaporator	4			
4.	design of adiabatic drier	4			
6	2-3 experiments on mon	1	8		
7.	1-2 experiment of multion	component reaction	4		
8.	Design of reactor			4	
9	2-3 process flow sheet c	alculation		20	
		Total		60	
	<u></u>	List of Text Books/ Reference Books			
1	Coker, Ludwig's Applied	d Process Design for Chemical and Petrochemical Plants			
2	Perry's Chemical Engine	eering Handbook			
3	Albright's Chemical Eng	rineering Handbook			
		Course Outcomes (students will be able to)			
CO1	Solve chemical engineer	ring design problems involving iterative calculations		K4	
CO2	Solve chemical engineer equations	ring problems involving non-linear equations coupled with differential		K4	
CO3	Solve chemical engineer	ring problems using computers		K4	
CO4		eering equipment for separation process		K4	
CO5		ills in building and running a process simulation model to predict the d to conduct technical-economic optimization.		K4	
CO6	Pursue by using a comm	ercial simulation software.	1	K5	

	Process Simulation Laboratory - II: CEP4256 Mapping of Course Outcomes (COs) with Programme Outcomes (POs)													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
CO1	-	-	3	1	1	1	-	-	-	-	2	-		
CO2	1	2	3	1	2	1	-	-	-	-	2	-		
CO3	1	2	1	2	1	1	-	-	-	-	3	-		
CO5	3	1	1	1	-	1	-	2	-	-	1	-		

Semester VI Page 124 of 267

Integrated Master of Technology, Chemical Engineering (Major) and MDM ICT Marathwada Campus, Jalna

CO6	2	2	2	1	1	1	-	2	-	-	2	ı
3-Strong Contribution; 2-Moderate Contribution; 1-Low Contribution;												

Mapping	Process Simulation Laboratory - II: CEP4256 Mapping of Course Outcomes (COs) with Programme Specific Outcomes (PSOs)											
	PSO1	PSO2	PSO3	PSO4	PSO5							
CO1	3	2	1	2	-							
CO2	2	3	2	1	-							
CO3	2	1	3	3	1							
CO4	1	2	3	3	1							
CO5	2	2	3	3	1							
CO6	2	3	1	1	-							
3-5	Strong Contribution; 2	2-Moderate Contri	ibution: 1-Low Co	ntribution:								

Semester VI Page 125 of 267

		Semester VI			
PCC	Course Code:	Course Title:	Cr	edits =	: 2
	CEP5254	Chemical Engineering Laboratory -IV	L	T	P
	Semester: VI	Total contact hours: 60	0	0	4
		List of Prerequisite Courses			
	Balance and Energy (CET4252), Enginee MAT4152), Industria Process Dynamics (C (CET4352), Chemica (CET4354), Separati	g Laboratory I, II and III (CEP4251, CEP4252, and CEP4253), Material Balance Calculations (CEP4151), Fluid Flow (CET4151), Heat Transfer ring Thermodynamics (EST4155), Mathematics I and II (MAT4151 and al Chemistry and Reaction Engineering (CET4253), Instrumentation and ET4256), Chemical Reaction Engineering (CET4351), Momentum Transfer al Engineering Thermodynamics (CET4353), Chemical Process Control on Processes (CET4356), Heat Transfer Equipment design (CET4357), g Operations (CET4254)			
	374	List of Courses where this course will be prerequisite	I		
	NA				
		scription of relevance of this course in the Int. M. Tech. Program			
course	es. It also exposes them	ovides students the firsthand experience of verifying various theoretical conce to practical versions of typical chemical engineering equipment and servers a focuses on fluid dynamics, thermodynamics, and mass transfer.	as a bric	lge bet	ween
		Course Contents (Topics and subtopics)	Reqd	. hours	;
1	2-3 Experiments on N			10	
3	-	Chemical Process Control and Dynamics		20	
4	6-8 Experiments on N	Mass Transfer and Separation Processes		30	
		Total		60	
		List of Textbooks/ Reference Books	1		
1		J.C., and Harriott P. Unit Operations in Chemical Engineering, 2014			
2		.E., and Lightfoot, E.N. Transport Phenomena, 2007			
3	Coulson J.M., Richard Chemical engineering	dson J.F., and Sinnott, R.K. Coulson & Richardson's Chemical Engineering: g design, 1996.			
4	Green D. and Perry R	t. Perry's Chemical Engineers' Handbook, Eighth Edition, 2007.			
		Course Outcomes (students will be able to)			
CO1		e to Completely design and implement the experimental procedure		K3	
CO2	Student would be able	e to Process complex information to solve chemical engineering problems		K2	
CO3	Student would be abl	e to Connect classroom teaching with the laboratory practical		К3	
CO4	Student would be abl	e to Improve understanding about safety in the laboratory		K4	
CO5	Student would be abl	e to evaluate and write the report based on results		K6	
CO6	Student would be able	e to Connect classroom teaching with the laboratory practical		K3	
K1: R	emembering, K2: Und	erstanding, K3: Applying, K4: Analyzing, K5: Evaluating, K6: Creating			

	Chemical Engineering Laboratory - IV: CEP4254 Mapping of Course Outcomes (COs) with Programme Outcomes (POs)													
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12		
CO1	3	2	2	1	-	2	-	-	-	2	1	1		
CO2	3	2	2	-	-	-	-	-	-	1	1	2		
CO3	3	2	1	1	-	1	-	-	-	1	2			
CO4	3	1	1	2	-	-	-	-	-	2	1	-		
CO5	3	2	2	2	2	1	1	-	-	2	1	1		

Semester VI Page 126 of 267

Integrated Master of Technology, Chemical Engineering (Major) and MDM ICT Marathwada Campus, Jalna

CO6	2	3	2	1	1	2	İ	İ	-	-	2	3
3-Strong Contribution; 2-Moderate Contribution; 1-Low Contribution;												

Mapping o	Chemical Engineering Laboratory - IV: CEP4254 Mapping of Course Outcomes (COs) with Programme Specific Outcomes (PSOs)												
	PSO1	PSO2	PSO3	PSO4	PSO5								
CO1	2	3	2	3	1								
CO2	3	1	1	3	-								
CO3	1	2	3	1	2								
CO4	2	1	2	2	2								
CO5	2	1	2	2	2								
CO6	3	2	1	2	-								
3-S	trong Contribution; 2	2-Moderate Contr	ibution; 1-Low C	ontribution;	•								

Semester VI Page 127 of 267

		Semester VI			
PCC	Course Code:	Course Title:	Cr	edits =	= 2
	CET4358	Chemical Project Economics	L	T	P
	Semester: VI	Total contact hours: 30	2	0	0
		List of Prerequisite Courses	•		
	Material and Energy Engineering (CET4253)	Balance Calculations (CEP4151), Industrial Chemistry and reaction			
		List of Courses where this course will be prerequisite	•		
		(HUT4157), Chemical Process Development and Engineering (CET4451)			
		ription of relevance of this course in the Int. M. Tech. Program			
This c	ourse is required for the f	•			
		Course Contents (Topics and subtopics)	Reqd	. hour	S
1	on Project justification design deliverables and	ld projects and global nature of projects; Impact of currency fluctuations and cash flows and Concepts of "Quality by Design" including typical understanding constructability, operability and maintainability during all cution. Meaning of Project Engineering, various stages of project		4	
2	Relationship between pr Elements of cost of pro expenses, sales expense estimation. Introduction	rice of a product and project cost and cost of production, EVA analysis. Eduction, monitoring of the same in a plant, Meaning of Administrative es etc. Introduction to various components of project cost and their in to concept of Inflation, location index and their use in estimating plant prious cost indices, Relationship between cost and capacity.		4	
4	of finance, time value of alternative equipment of Depreciation concept, I	Equity ratio, Promoters' contribution, Shareholders' contribution, source of money. Concept of interest, time value of money, selection of various or system based on this concept. Indian norms, EMI calculations, andian norms and their utility in estimate of working results of project. It and its relevance to project.		4	
5	profit, profit before tax,	sults of proposed project. Capacity utilization, Gross profit, operating corporate tax, dividend, Net cash accruals. Project evaluation: Cumulative k-Even analysis, incremental analysis, various ratios analysis, Discounted		4	
6	Process Selection, Site S	Selection, Feasibility Report		4	
7	technical and non-technical contracts. Lump-sum	Commissioning: milestones, Project execution as conglomeration of ical activities, contractual details. Contract: Meaning, contents, Types of Turnkey (LSTK), Eng, Procurement and Construction (EPC), Eng, ruction Management (EPCM). Mergers and Acquisitions		4	
8		ets and evaluation of Techno-commercial Project Reports.		2	
9	PERT, CPM, bar charts			4	
		Total		30	
		List of Textbooks/ Reference Books			
1	Chemical Project Econor	mics, Mahajani V. V. and Mokashi S M.			
2	Plant Design and Econo	mics for Chemical Engineers, Peters M. S., Timmerhaus K.D.			
3	Process Plant and Equip	oment Cost Estimation, Kharbanda O.P.			
		Course Outcomes (students will be able to)			
CO1	Calculate working capita	al requirement for a given project		K4	
CO2	Calculate cost of equipm	nent used in a plant total project cost		K4	
CO3	Calculate cash flow from	n a given project		K4	
CO4	Select a site for the proje	ect from given alternatives		K3	
CO5	List out various mileston	nes related to project concept to commissioning		К3	
CO6	Evaluate the measurem simulation can be applie	nent and treatment of risk in project evaluation and understand how ed to risk evaluation.		K5	

Semester VI Page 128 of 267

K1: Remembering, K2: Understanding, K3: Applying, K4: Analyzing, K5: Evaluating, K6: Creating

	Chemical Project Economics: CET4358 Mapping of Course Outcomes (COs) with Programme Outcomes (POs)														
	PO1	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12													
CO1	3	1	1	-	2	3	1	-	-	1	1	-			
CO2	3	1	2	1	2	3	2	-	-	2	2	2			
CO3	3	-	1	1	2	1	1	-	-	1	1	-			
CO4	1	-	2	-	2	-	3	-	-	-	2	-			
CO5	-	1	2	1	-	-	-	-	-	1	1	-			
CO6	3	1	2	1	2	3	2	-	-	1	2	1			
3-Strong Contribution; 2-Moderate Contribution; 1-Low Contribution;															

Mapping o	Chemical Project Economics: CET4358 Mapping of Course Outcomes (COs) with Programme Specific Outcomes (PSOs)											
	PSO1	PSO2	PSO3	PSO4	PSO5							
CO1	1	2	3	1	-							
CO2	2	2	2	2	1							
CO3	2	3	3	1	-							
CO4	1	2	2	3	1							
CO5	-	2	3	1	-							
CO6	2	2	3	1	1							
3-S	trong Contribution; 2	2-Moderate Contr	ibution; 1-Low Co	ontribution;								

Semester VI Page 129 of 267

		Semester VI						
IPT	Course Code:	Course Title:	Cr	edits =	= 2			
	CEP4373	IPT	L	T	P			
	Semester: VI	Total contact hours: 40	0	0	0			
	1	List of Prerequisite Courses						
	All							
		List of Courses where this course will be prerequisite	•					
	All							
	Des	scription of relevance of this course in the Int. M. Tech. Program						
	course enables students neering Principles	to integrate all the subjects that they have learnt and design plants / Proce	ess froi	m Chei	mical			
	Course Contents (Topics and subtopics)							
1	IPT		40					
		Total		40				
		List of Textbooks/ Reference Books						
1								
		Course Outcomes (students will be able to)						
CO1	Identify market require	ement related to a particular chemical		K2				
CO2	Draw a process block	diagram from a given process description		K5				
CO3	Select a site for the pro	nject		К3				
CO4	Develop a PFD based	on block diagram		K5				
CO5	Do material and energy	y for all the equipment in PFD		K5				
CO6	Students will be know presenting problems an	ledgeable about the application of IPT theory and practice with a variety of and groups.		K6				
K1: R	Remembering, K2: Unde	rstanding, K3: Applying, K4: Analyzing, K5: Evaluating, K6: Creating						

	IPT: CEP4373 Mapping of Course Outcomes (COs) with Programme Outcomes (POs)											
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	-	3	2	1	1	2	2	1	-	1	3	2
CO2	3	2	1	2	-	1	2	-	-	1	2	1
CO3	-	1	1	2	1	1	-	-	2	2	1	2
CO4	3	1	2	1	1	2	1	-	-	1	2	3
CO5	2	2	1	2	1	2	3	-	-	2	3	2
CO6	3	2	2	2	1	2	2	1	2	1	3	2
	3	S-Strong	Contribu	tion; 2-M	Ioderate (Contribut	tion; 1-L	ow Contr	ribution;			•

IPT: CEP4373 Mapping of Course Outcomes (COs) with Programme Specific Outcomes (PSOs)											
PSO1 PSO2 PSO3 PSO4 PSO5											
CO1	3	2	2	1	-						
CO2	3	2	1	2	-						
CO3	3	3	2	2	-						
CO4	2	2	2	1	3						

Semester VI Page 130 of 267

Integrated Master of Technology, Chemical Engineering (Major) and MDM ICT Marathwada Campus, Jalna

CO5	2	1	2	3	3					
CO6	3	2	2	3	3					
3-Strong Contribution; 2-Moderate Contribution; 1-Low Contribution;										

Semester VI Page 131 of 267

Fourth Year

Semester-VII

Semester-VII Page 132 of 267

		Semester VII			
PCC	Course Code:	Course Title:	Cr	edits =	3
	CET4451	Chemical Process Development and Engineering	L	T	P
	Semester: VII	Total contact hours: 45	2	1	0
		List of Prerequisite Courses			
	(EST4154), Material (CET4251), Heat Trar Chemistry and Reactio Process Safety (CET4 Reaction Engineering (CET4354), Separation Chemical Project Economical Project Ec	CHT4151 and CHT4152), Introduction to Chemical Engineering Balance and Energy Balance Calculations (CEP4151), Fluid Flow Inster (CET4252), Engineering Thermodynamics (EST4155), Industrial In Engineering (CET4253), Chemical Engineering Operation (CET4254), 4255), Instrumentation and Process Dynamics (CET4256), Chemical (CET4351), Momentum Transfer (CET4352), Chemical Process Control In Process (CET4356), Heat Transfer Equipment Design (CET4357), Instrumentation and Process (CET4358) Material Science and Engineering (CEP4151), to (HUT4157), Biochemical Engineering (Hon.)			
	I	List of Courses where this course will be prerequisite	I		
		Management (CET4452), Chemical Process Equipment Design and Biochemical Engineering (Hon.)			
	_	ription of relevance of this course in the Int. M. Tech. Program			
		hemical engineering and allied subjects for appropriate design of process	s plants	, in sele	ection
		Course Contents (Topics and subtopics)	Reqd.	hours	
1	Development of a preli	iminary Process System: Modular approach		2	
2	Multiple process synth	esis, selection of process, basic economic evaluation		2	
3	Sequencing of operation	ons and integration in processes		2	
4	Batch vs continuous vs	s semi-batch processes- Scale up	2		
5	Process Engineering development.	aspects of low and medium volume chemicals including process		4	
6	Concept of dedicated a	and multiproduct plant facilities, pilot plant, mini plants		2	
7	Development and evaluation	uation of alternative flow sheets		2	
8	Scale up aspects; ident	ification of controlling steps of process,		4	
9	Green Engineering prin	nciples		3	
10	Utilization of energy; of	cost of utilities, heat exchange networks		4	
11	Process intensification			4	
12	Preparation of Concept	tual process and instrumentation diagrams		4	
13	Preparation of process	specifications for typical equipment.		4	
14	Safety and Risk of che	mical processes		4	
15	Learn from mistakes			2	
		Total		45	
		List of Text Books/ Reference Books			
1	Industrial Chemical Pro	ocess Design, D. L. Erwine			
2	· · · · · · · · · · · · · · · · · · ·	Process Development, Anderson N.			
3	Organic Unit Processes	s, Groggins			
4		ineering: Design and Economics, Silla H.			
5		l Process Development, Chandalia S. B.			
6	Conceptual Chemical I	Plant Design, Douglas J. M.			
	ı	Course Outcomes (students will be able to)	1		
CO1	To select a strategy for	a process from amongst the alternatives		K2	

Semester VII Page 133 of 267

CO2	Determine strategy for carrying out a particular process; Apply knowledge: Use knowledge of mathematics, science, and engineering to design systems, components, or processes that meet needs while considering realistic constraints	K4
CO3	Prepare specifications for a particular equipment; Conduct experiments: Design and conduct experiments, and analyze and interpret data	K4
CO4	Calculate utility requirements; Work in teams: Function effectively on multi-disciplinary teams	K6
CO5	Develop sustainable innovations: Use research skills to develop sustainable innovations in interdisciplinary areas	K6
CO6	Develop managerial skills: Acquire essential managerial skills and ethical values to become leaders and team players	K6
K1: Re	emembering, K2: Understanding, K3: Applying, K4: Analyzing, K5: Evaluating, K6: Creating	

	Chemical Process Development and Engineering: CET4451 Mapping of Course Outcomes (COs) with Programme Outcomes (POs)												
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	2	-	1	1	2	1	2	-	-	2	2	1	
CO2	3	1	2	1	1	2	1	-	-	3	3	2	
CO3	2	1	2	2	1	1	2	-	-	1	2	-	
CO4	3	-	1	1	2	1	-	-	-	2	1	1	
CO5	3	1	2	1	2	1	2	-	-	3	2	1	
CO6	2	3	2	1	2	-	-	-	-	2	3	1	
	3	S-Strong	Contribu	tion; 2-M	Ioderate (Contribu	tion; 1-L	ow Contr	ribution;			•	

Chemical Process Development and Engineering: CET4451 Mapping of Course Outcomes (COs) with Programme Specific Outcomes (PSOs)												
	PSO1	PSO2	PSO3	PSO4	PSO5							
CO1	3	3	2	1	-							
CO2	2	2	3	2	1							
CO3	1	2	3	3	2							
CO4	-	2	3	3	3							
CO5	2	2	3	3	2							
CO6	-	1	2	2	2							
3-St	rong Contribution; 2	-Moderate Contr	ibution; 1-Low Co	ontribution;								

Semester VII Page 134 of 267

	· · · · · · · · · · · · · · · · · · ·	Semester VII			
PCC	Course Code:	Course Title:	Cr	edits =	: 2
	CET4452	Chemical Industrial Management	L	T	P
	Semester: VII	Total contact hours: 30	2	0	0
		List of Prerequisite Courses			
	Chemical Process De (HUT4157)	velopment and Engineering (CET 4451), Industrial Management			
	,	List of Courses where this course will be prerequisite	1		
	NA				
		ription of relevance of this course in the Int. M. Tech. Program			
This co		cal industrial process and their management.			
11113 C	ourse integrates an enemi	Course Contents (Topics and subtopics)	Doad	. hour	
1	Daging of management	Course Contents (Topics and Subtopics)	Kequ		<u>, </u>
1	Basics of management The eras of managemen	•		3	
	Mission and vision of or				
2	Micro organizational be			5	
2	Psychoanalytical frames			3	
	Common personality tra				
	Hofstede cultural dimen				
3	Employee Recruitment			6	
3	Concept of Role	and beleetion		Ü	
	Job description and man	specifications			
	Some methods of recrui				
	Selection methods				
4	Employee performance			5	
	MBO				
	Appraisal methods				
	Review meetings				
5	Employee motivation			5	
	Employee predisposition	n to motivation			
	Goal setting				
	Recent motivation theor				
	How to motivate trouble	e spots			
6	Group dynamics.			6	
	Theories of group forma	ition			
	Pitfalls of a group Conflicts				
	Connets	Total		30	
	I set a	Total of Text Books/ Additional Reading Material / Reference Books	1	30	
1					
1		gement (15e) - Gary Dessler, Biju Varrkey gement(15e)-Robbins			
2	Select HBR articles				
3	Industrial/Organizationa	ll Psychology: An Applied Approach- Michael Aamodt			
		Course Outcomes (students will be able to)			
CO1	Student would be able to	o understand the process of corporate recruitment.		K2	
CO2	Student would be able to	o use the information while applying for jobs		K3	
CO3	Student would be able to	o gain knowledge on how to perform well in an interview process.		К3	
CO4		to gain knowledge on how goals are set in any organization and		К3	

Semester VII Page 135 of 267

CO5	Student would be able to learn basic management concepts and laws, marketing skills, and how to prepare policy documents. They can also learn how to manage human resources in industry, including understanding human psychology, attitudes, morals, and stress limits.	K5					
CO6	Students would be able to learn how to produce industrial acids, bases, gases, cement, glass, soaps, pulp, paper, sugar, industrial alcohol, paint, dyes, and fertilizers. They can also learn about process flow diagrams, process parameters, and how to identify and solve engineering problems during production.	K6					
K1: R	K1: Remembering, K2: Understanding, K3: Applying, K4: Analyzing, K5: Evaluating, K6: Creating						

	Chemical Industrial Management: CET4452 Mapping of Course Outcomes (COs) with Programme Outcomes (POs)												
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1	-	-	2	1	-	-	-	3	1	2	2	1	
CO2	-	-	2	2	-	-	ı	3	2	1	3	2	
CO3	-	-	1	1	-	1	-	2	1	2	1	1	
CO4	-	-	1	1	-	1	1	2	1	2	2	2	
CO5	-	-	2	1	-	1	ı	3	1	2	2	2	
CO6	-	-	2	3	-	3	3	2	3	2	3	2	
	3	S-Strong	Contribu	tion; 2-M	Ioderate (Contribut	ion; 1-L	ow Contr	ribution;				

Map	Chemical Industrial Management: CET4452 Mapping of Course Outcomes (COs) with Programme Outcomes (POs)										
	PSO1	PSO2	PSO3	PSO4	PSO5						
CO1	3	2	1	-	-						
CO2	2	3	2	2	1						
CO3	2	3	2	1	-						
CO4	2	2	3	2	1						
CO5	2	3	2	1	1						
CO6	2	2	3	1	2						
3-5	Strong Contribution; 2	2-Moderate Contr	ibution; 1-Low Co	ontribution;	•						

Semester VII Page 136 of 267

		Semester VII			
PCC	Course Code:	Course Title:	Credits		= 2
	CEP4451	Chemical Process Equipment Design & Drawing	L	L T	
	Semester: VII	Total contact hours: 60	0	0	4
		List of Prerequisite Courses			,
		T4151), Materials Science and Engineering, Engineering Graphics ject Economics (CET4358), Chemical Process Development and			
		List of Courses where this course will be prerequisite			
	NA				
	Descri	otion of relevance of this course in the Int. M. Tech. Program			

Knowledge of chemicals and chemical producing equipment and plants are essential for professional Chemical engineer and Technologist. This subject will help students to understand use of basics of applied science in the form of mechanics, strength of materials, selection of materials and suitable manufacturing techniques and the details of operating conditions of equipment and its design procedure. This will help Chemical engineer to understand process equipment and their design concept and section of proper equipment for the designed functions of the plats. It will help them to understand various design codes used for fabrication of these equipment and the various types of destructive and non-destructive tests performed on equipment before and after assembly of equipment defining its capacity, reliability, and its life.

Course Contents (Topics and subtopics) Reqd. hours Basic design concepts, use of standards and design stresses and factor of safety, selection of 6 materials, working conditions, corrosion and its effects on equipment's. Standard design Design of pressure vessels: stresses acting on pressure vessels, operating conditions. 6 selection of materials, pressure vessel codes, design stress and design criteria's, Design of Shell, Head, Nozzle, Flanged joints for heads and nozzles Design of Storage vessels: Storage of various types of fluids and liquids in tanks, Loss 6 mechanism of storage of volatile and non-volatile liquids and gases, Types of storage vessels, Vessels for storing of gases, method of storage of gases, Design of rectangular and cylindrical tank with components such as shell, bottom plate, self-supporting roof design, types of roofs, Testing of process equipment, various 4 4 14 Mechanical Design of Reaction Vessels. Design of shells subjected to internal and external pressures. Types of Jackets /Coils used for heating and cooling in reaction vessels and their design. Type of agitators and their design. Design of agitator system components such as shafts, stuffing box etc. Mechanical Design of Heat Exchangers 12 Components of shell and tube type heat exchangers. Design of various components of heat exchangers such as Fixed tube sheet type, U tube, Floating head etc. Various codes for heat exchangers. Mechanical design of distillation columns 12 Various components of columns such as trays, packings, downcomers, bubble cap etc Design of shell for various stress conditions. Tray supports and their design Total **60** List of Text Books/ Reference Books Process equipment Design By V V Mahajani, S. B. Umarji 1 2 Equipment Design by Dawande 3 Process equipment Design by Young 4 Welding Technology by O.P. Khanna, Welding Technolog by Little

Semester VII Page 137 of 267

	Course Outcomes (students will be able to)					
CO1	Understand general design procedure for chemical process equipment.	K2				
CO2	Design and draw pressure vessels and its parts subjected to internal pressure.	K6				
CO3	Design and draw reactors and its parts subjected to internal and external pressure.	K6				
CO4	Design and draw shell and tube type of heat exchangers.	K6				
CO5	Design and draw tray columns and its parts.	K6				
CO6	Understand different types of supports for chemical process equipment.	K2				
K1: R	emembering, K2: Understanding, K3: Applying, K4: Analyzing, K5: Evaluating, K6: Creating					

	Chemical Process Equipment Design & Drawing: CEP4451 Mapping of Course Outcomes (COs) with Programme Outcomes (POs)											
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	1	1	2	3	3	-	-	1	1	1
CO2	3	1	1	2	2	3	3	-	-	2	2	2
CO3	3	1	2	1	1	2	2	-	-	1	1	1
CO4	3	1	1	1	2	2	3	-	-	2	2	-
CO5	2	1	1	-	2	2	2	-	-	1	2	-
CO6	-	-	-	-	1	1	1	-	-	1	2	2
	3	S-Strong (Contribu	tion; 2-M	Ioderate (Contribut	tion; 1-L	ow Contr	ribution;			

Mapping	Chemical Process Equipment Design & Drawing: CEP4451 Mapping of Course Outcomes (COs) with Programme Specific Outcomes (PSOs)									
	PSO1	PSO2	PSO3	PSO4	PSO5					
CO1	3	2	3	1	-					
CO2	1	2	3	3	1					
CO3	2	3	3	2	2					
CO4	1	2	3	3	3					
CO5	2	3	2	2	2					
CO6	3	1	-	1	-					
3-5	Strong Contribution; 2	-Moderate Contr	ibution; 1-Low Co	ntribution;	-					

Semester VII Page 138 of 267

		Semester VII	ı		
RM	Course Code:	Course Title:	C	redits :	= 2
	CEP4452	Literature Review (Research Methodology: I)	L	T	P
	Semester: VII	Total contact hours: 30	1	0	2
		List of Prerequisite Courses			
	NA				
		List of Courses where this course will be prerequisite			
	Design and Analysis and CEP4475)	Experiments (CEP4453), Design Project - I (CEP4461), Thesis (CEP4474			
	· · · · · · · · · · · · · · · · · · ·	scription of relevance of this course in the Int. M. Tech. Program			
variou critica	ormal exposure to various activities, document al for polishing the naïv	ous elements of research methods such as problem formulation, literature ation, budgeting, purchase, report/thesis compilation, manuscript writing e research attitude and aptitude in the PG students of the programme. The oncepts of research methodology in stepwise manner to the students.	g, pate	nt draf	ting,
		Course Contents (Topics and subtopics)	Re	eqd. ho	urs
1	Introduction of Cours	se		3	
	Academic Honesty P	ractices			
		f science & Arguing About Knowledge			
	Case studies in science	•			
2	Motivation and Back	-		3	
		ation for Research, Building Background for Research and How to read			
	research papers				
3		Academic and Non-academic time), Effort Management, Plan execution,		4	
		Issue, Role and expectation of research supervisor and student			
4	Finding and Solving			4	
	what is Research, h experiments.	ow to start? Approaches to find research problems and psychological			
	_	xtbooks, Review, and research papers			
	How to ask Question	* *			
	-	esearch problem, Analytical and synthetic research approach			
5	Finding and Solving			4	
3		ow to start? Approaches to find research problems and psychological		7	
	experiments.	on to summi rapproments to ring resourch procedure and populations			
	_	xtbooks, Review and research papers, critical review of research papers,			
	how to write literatur	e survey report, how to ask Questions, formulating research questions,			
6	What is worthwhile r	esearch problem, Analytical and synthetic research approaches?		4	
		h problems, designing work plan, importance of objectives, activity and			
		work. Design of timeline for work plan (Gnatt Chart etc), Grant Writing			
	Guidelines				
7	_	ch, Inventory Management, Material Management		4	
		ills for research, Documentation and lab notebook guidelines,			
-		mical/biological research			
8		used in Research: Qualitative studies; Quantitative studies; Simple data on tive data analysis; Limitations and sources of error; Inquiries in form of		6	
		onnaire or by interview; Statistical analysis of data including Variance,			
		tudents 't' test and Analysis of variance (ANOVA), Correlation data and			
	its interpretation, Con				
9	Scientific Writing			6	
	_	h paper, author guidelines, proficient writing skills, importance of			
	discussion, Macro-le				
	Structure of the docu	ments. General issues of presentability. Micro-level discussion.			
	Stylistic issues.				
	Examples of had and	1	1		

Semester VII Page 139 of 267

Examples of bad and good writings.

10	Publishing and Reviewing	4
	Publication process, how to publish papers, where to submit, Review process and reacting to a	
	review report.	
	Reviewing scientific papers	
11	Scientific Norms and Conventions	3
	Authorship.	
	Plagiarism. Simultaneous submissions. Reviewing norms. Referring to other papers. Use of data. Collaborative Research Work	
	Total	30
	List of Textbooks/ Reference Books	
1	Menzel, D.; Writing a Technical Paper; McGraw-Hill, United States (1961).	
2	Best, J. W., Kahn, J. V., Jha, A. K.; Research in Education; 10th ed.; Pearson, New Delhi, India (2005)	
	Course Outcomes (students will be able to)	
CO1	Understand the basic concepts of research and the components therein, formally	K2
CO2	Understand and appreciate the significance of statistics in Chemical Technology, Pharmacy and Chemical Engineering	K2
CO3	Understand and apply importance of literature survey in research design and understand an indepth knowledge on the documentation in research	К3
CO4	Evaluate importance of various parts of a research report/paper/thesis in presentation of research results	K5
CO5	Understand the significance of several types of IPRs in research	K1
CO6	Create a model research project	K6
K1: Re	emembering, K2: Understanding, K3: Applying, K4: Analyzing, K5: Evaluating, K6: Creating	

	Literature Review (Research Methodology: I): CEP4452 Mapping of Course Outcomes (COs) with Programme Outcomes (POs)											
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	-	2	3	1	-	-	2	-	-	3	1	-
CO2	2	3	2	1	-	-	1	-	-	2	1	-
CO3	-	3	3	-	1	-	1	-	-	3	2	-
CO4	-	3	3	2	-	-	2	-	-	3	2	-
CO5	2	2	2	2	1	-	1	-	-	3	2	-
CO6	2	3	2	1	1	1	1	1	-	2	1	-
	3	S-Strong	Contribu	tion; 2-M	Ioderate (Contribut	ion; 1-L	ow Contr	ribution;			

Mapping o	Literature Review (Research Methodology: I): CEP4452 Mapping of Course Outcomes (COs) with Programme Specific Outcomes (PSOs)								
	PSO1	PSO2	PSO3	PSO4	PSO5				
CO1	3	2	3	-	-				
CO2	3	1	2	-	-				
CO3	2	2	2	-	-				
CO4	3	2	2	2	-				
CO5	2	2	1	3	1				
CO6	1	2	2	3	1				
3-S1	trong Contribution; 2	-Moderate Contri	bution; 1-Low Co	ontribution;	•				

Semester VII Page 140 of 267

		Semester VII			
RM	Course Code:	Course Title:	Cre	edits	= 2
	CEP4453	Design and Analysis of Experiments (Research Methodology: II)	L	T	P
	Semester: VII	Total contact hours: 30	1	0	2
		List of Prerequisite Courses			
	Literature Review (CE)	P4452), Applied Mathematics I (MAT4151 and MAT4152)			
		List of Courses where this course will be prerequisite			
		for graduating engineers to function effectively in Industry, Academia, and res. This course is in Semester VIII			
	Desc	ription of relevance of this course in the Int. M. Tech. Program			

Modern day manufacturing activities and R&D activities need decisions taken with a scientific rigor and should be well-supported by 'statistics. Chemical engineering graduates who will serve industry as well as postgraduate research students who will serve industry, R&D organizations, or academic research should have a good background of statistical decision making. This also involves extraction of meaningful data from well-designed minimal number of experiments at the lowest possible material costs. This course will also help the students in all domains of their life by imparting them a vision for critical appraisal and analysis of data.

critica	l appraisal and analysis of data.	
	Course Contents (Topics and subtopics)	Reqd. hours
1	Fundamental principles of classical design of experiments Strategy of Experimentation, Typical applications of Experimental design, Basic Principles, Guidelines for Designing Experiments.	4
2	Review of Probability and basic statistical inference: Concepts of random variable, probability, density function cumulative distribution function. Sample and population, Measure of Central tendency; Mean median and mode, Measures of Variability, Concept of confidence level. Statistical Distributions: Normal, Log Normal & Weibull distributions, Hypothesis testing.	3
3	Experiments with a Single Factor: The Analysis of Variance Fixed effect model and Random effect model, Model adequacy checking, Contrasts, Orthogonal contrasts, Regression Models and ANOVA, Violation of Normality Assumption: Kruskal-Wallis test. Randomized block designs, Latin square designs, Balanced Incomplete Block Designs	6
4	Factorial designs: Definition, estimating model parameters, Fitting response curves and surfaces.	3
5	The 2 ^k Factorial Design, Blocking and Confounding in the 2k Factorial Design; Focus of 2 ² and 2 ³ designs, Blocking and Confounding in the 2 ^k Factorial Design.	6
6	Plackett Burman methods, Central Composite Design (CCD)	3
7	Descriptive Statistics, Probability Distribution and testing of Hypothesis using R	4
8	Regression techniques, diagnostic checks, ANOVA using R and implementation of contrasts.	4
9	Construction of Balanced Incomplete Block Designs and data analysis using R	4
10	Analysis of factorial designs using R, understanding output and interpretation.	4
11	Factorial designs, Data analysis and interpretation.	4
	Total	30
	List of Text Books / Reference Books	
1	Douglas C. Montgomery, Design and Analysis of Experiments, 8 th Edition, John Wiley & Sons, Inc. 2013	
2	Box, G. E., Hunter, W.G., Hunter, J.S., Hunter, W.G., Statistics for Experimenters: Design, Innovation, and Discovery, 2nd Edition, Wiley, 2005.	
3	John Lawson, Design and Analysis of Experiments with R, CRC Press, 2015	
4	Dieter Rasch, Jürgen Pilz, Rob Verdooren, Albrecht Gebhardt Optimal Experimental Designs with R. CRC Press, 2011.	
5	José Unpingco, Python for Probability, Statistics, and Machine Learning, Springer, 2019	
6	Response Surface Methodology: Process and Product Optimization using Designed Experiments: R. H. Myers, D. C. Montgomery.	

Semester VII Page 141 of 267

7	Introduction to Statistical Quality Control: D. C. Montgomery.	
8	Design of Experiments in Chemical Engineering: Živorad R. Lazić.	
	Course Outcomes (students will be able to)	
CO1	Students should be able to understand basic principles of design of experiments.	K2
CO2	Students should be able to perform statistical analysis of single experiments and do post hoc analysis.	K4
CO3	Students should be able to conduct experiment and analyze the data using statistical methods.	K5
CO4	Students should be able to choose an appropriate design given the research problem.	K4
CO5	Students should be able to perform statistical analysis of different designs using R and interpret the results.	K6
CO6	Students should be able to identify and apply the basic principles of experimental design, including randomization, replication and control.	K4
K1: Re	emembering, K2: Understanding, K3: Applying, K4: Analyzing, K5: Evaluating, K6: Creating	

Design and Analysis of Experiments (Research Methodology: II): CEP4453 Mapping of Course Outcomes (COs) with Programme Outcomes (POs)												
	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12										PO12	
CO1	2	1	1	1	2	2	2	-	-	2	1	-
CO2	3	1	2	1	1	1	2	-	-	3	2	-
CO3	3	2	1	-	2	2	1	-	-	2	1	-
CO4	1	1	1	1	-	1	1	-	-	3	1	-
CO5	3	1	2	1	1	2	1	-	-	3	1	-
CO6	3	1	1	1	2	2	2	-	-	3	1	-
	3-Strong Contribution; 2-Moderate Contribution; 1-Low Contribution;											

Design and Analysis of Experiments (Research Methodology: II): CEP4453 Mapping of Course Outcomes (COs) with Programme Specific Outcomes (PSOs)											
	PSO1 PSO2 PSO3 PSO4 PSO5										
CO1	3	2	1	2	-						
CO2	2	2	2	1	-						
CO3	2	1	2	1	-						
CO4	3	1	2	1	-						
CO5	1	2	3	2	-						
CO6	3	2	2	2	-						
3-Stro	ong Contribution; 2	-Moderate Contri	bution; 1-Low Co	ontribution;							

Semester VII Page 142 of 267

		Semester VII			
Project	Course Code:	Course Title:	Cr	edits =	= 4
	CEP4461	Design project: I	L	T	P
	Semester: VII	Total contact hours: 120	0	0	8
		List of Prerequisite Courses			
	All				
	Li	ist of Courses where this course will be prerequisite			
	Home Paper II				
	Descripti	on of relevance of this course in the Int. M. Tech. Program			
	rse enables students to inte ring Principles.	grate all the subjects that they have learnt and design plants / proces	ses fro	m Che	mical
		Course Contents (Topics and subtopics)	Reqd	. hour	S
	progress made during the PFD, (ii) Material and Endmembers / examiners. The presentation.	t will be orally examined. The student will be assessed based on the semester. There would be two submissions: (i) Process selection and ergy Balance. The submissions will be presented to a panel of faculty ere will be a weightage of 60% for the submissions and 40% for the given to the students from time to time by the coordinator. Total		120	
		List of Text Books/ Reference Books		120	
		List of Text Books/ Reference Books			
		Course Outcomes (students will be able to)			
CO1	Identify market requireme	ent related to a particular chemical		K2	
CO2	Draw a process block diag	K6			
CO3	Select a site for the project	· · · · · · · · · · · · · · · · · · ·		K5	
CO4	Develop a PFD based on			K6	
CO5	Do material and energy for	or all the equipment in PFD.		K6	
CO6	Identify needs and constra	aints of product development system and create a prototype model 5.		K6	
K1: Rem	nembering, K2: Understand	ing, K3: Applying, K4: Analyzing, K5: Evaluating, K6: Creating			

Design project: I: CEP4461 Mapping of Course Outcomes (COs) with Programme Outcomes (POs)												
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	1	2	2	3	2	-	-	-	1	1	-
CO2	3	2	2	1	2	1	2	1	2	2	2	-
CO3	-	-	2	-	1	1	2	-	-	1	1	-
CO4	3	2	2	1	2	2	1	-	2	2	2	-
CO5	2	1	1	2	1	1	2	-	-	3	2	-
CO6	3	2	2	2	2	1	2	1	2	3	2	-
	3-Strong Contribution; 2-Moderate Contribution; 1-Low Contribution;											

Design project: I: CEP4461 Mapping of Course Outcomes (COs) with Programme Specific Outcomes (PSOs)							
	PSO1	PSO2	PSO3	PSO4	PSO5		

Semester VII Page 143 of 267

Integrated Master of Technology, Chemical Engineering (Major) and MDM ICT Marathwada Campus, Jalna

CO1	2	2	3	3	2			
CO2	1	2	2	3	3			
CO3	1	2	3	3	2			
CO4	1	2	2	3	2			
CO5	2	1	3	3	3			
CO6	2	2	2	3	2			
3-Strong Contribution; 2-Moderate Contribution; 1-Low Contribution;								

Semester VII Page 144 of 267

Fourth Year

Semester-VIII

Semester-VIII Page 145 of 267

		Semester VIII			
IPT	Course Code:	Course Title:	Cro	edits =	12
	CEP4474	IPT (4-6 Months)	L	T	P
	Semester: VIII	Total contact hours: 180	0	0	40
		List of Prerequisite Courses			
	All				
		List of Courses where this course will be prerequisite			
	All				
	Descr	iption of relevance of this course in the Int. M. Tech. Program			
	This course enables stude Process from Chemical E	ents to integrate all the subjects that they have learnt and design plants / Engineering Principles			
		Course Contents (Topics and subtopics)	Reqd	. hour	s
1	IPT		180		
		Total		180	
		List of Textbooks/ Reference Books			
		Course Outcomes (students will be able to)			
CO1	Identify market requirem	ent related to a particular chemical		K2	
CO2	Draw a process block dia	agram from a given process description		K6	
CO3	Select a site for the proje	ct		K5	
CO4	Develop a PFD based on	block diagram		K6	
CO5	Do material and energy f	or all the equipment in PFD		K6	
CO6	Students will be knowled presenting problems and	lgeable about the application of IPT theory and practice with a variety of groups.		K6	
K1: R	Remembering, K2: Underst	anding, K3: Applying, K4: Analyzing, K5: Evaluating, K6: Creating		·	

	IPT: CEP4474 Mapping of Course Outcomes (COs) with Programme Outcomes (POs)													
	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12													
CO1	-	3	2	1	1	2	2	1	-	1	3	2		
CO2	3	2	1	2	-	1	2	-	-	1	2	1		
CO3	-	1	1	2	1	1	-	-	2	2	1	2		
CO4	3	1	2	1	1	2	1	-	-	1	2	3		
CO5	2	2	1	2	1	2	3	-	-	2	3	2		
CO6	3	2	2	2	1	2	2	1	2	1	3	2		
	3	S-Strong	Contribu	tion; 2-M	Ioderate	Contribut	tion; 1-L	ow Contr	ribution;					

IPT: CEP4474 Mapping of Course Outcomes (COs) with Programme Specific Outcomes (PSOs)												
	PSO1 PSO2 PSO3 PSO4 PSO5											
CO1	3	2	3	3	3							
CO2	3	3	2	2	2							
CO3	2	2	2	3	2							
CO4	1	2	3	2	1							

Semester VIII Page 146 of 267

Integrated Master of Technology, Chemical Engineering (Major) and MDM ICT Marathwada Campus, Jalna

CO5	1	2	2	3	1
CO6	2	2	3	3	2
3-Stroi	ng Contribution; 2	-Moderate Contri	bution; 1-Low Co	ontribution;	

Semester VIII Page 147 of 267

Fifth Year

Semester-IX

Semester-IX Page 148 of 267

		Semester IX					
PCC	Course Code:	Course Title:	Credits = 3				
	CET4551	Advanced Transport Phenomena	L	T	P		
	Semester:	Total contact hours: 45	2	1	0		
		List of Prerequisite Courses					
	MAT4151), Applied Phy	Momentum Transfer (CET4352), Applied Mathematics (MAT4151 and vsics (PHT4151), Applied Chemistry (CHT4151), Chemical Engineering Separation Processes (CET4356), Process Simulation Lab-I and II					
		List of Courses where this course will be prerequisite					
	Multiphase Reactor Eng	ineering (Hon.)					
	Descr	iption of relevance of this course in the Int. M. Tech. Program					

This course introduces advanced concepts of momentum transfer and heat transfer to students. Various concepts such as pressure, momentum, energy, heat transfer, heat exchangers and their design are introduced. Laws related to conservation of momentum; energy are taught. Applications of these laws to various engineering situations and process equipment is explained with the help of several problems.

	Course Contents (Topics and subtopics)	Reqd. hours
1	Turbulent flow: basics, Reynolds average Navier-Stokes equations, closure problem, Boussinesques hypothesis, Prandtl mixing length theory, turbulence models, energy spectrum, turbulent boundary layer, universal velocity profile	10
2	Gas-liquid and solid-liquid fluidized beds: Characteristics of particles, Principle of fluidization and mapping of various regimes, two phase theory of fluidization, Bubbles in fluidized bed, Entrainment and Elutriation, Fast fluidized bed, Mixing, segregation and gas dispersion, Heat and mass transfer in fluidized bed, Solid-liquid fluidized bed and three phase fluidized bed, Design of fluidized bed reactors	10
3	Forced and natural convective heat transfer, analogies of momentum and heat transfer, Heat transfer with phase change	10
4	Design aspects of shell-and-tube heat exchangers (NTU-epsilon method; Bell-Delaware method), plate heat exchangers and spiral heat exchangers; Flow-stream analysis, Design of compact heat exchangers, Design aspects of condensers, reboilers, and evaporators	10
5	Radiation heat transfer concepts, Angle factor calculations, Radiation calculation through gases and vapors, design methods for furnaces.	5
	Total	45
	List of Textbooks/ Reference Books	
1	Transport Phenomena, R.B. Bird, W.E. Stewart, E.N. Lightfoot	
2	Transport Phenomena, R.S. Brodkey	
3	Momentum, Heat and Mass Transfer, Bennet and Myers	
4	Fluid Mechanics, Pijush K. Kundu	
5	Turbulent Flows: Fundamentals, Experiments and Modeling by G. Biswas, V. Eswaran	
6	Heat Transfer: Jack P. Holman	
	Course Outcomes (students will be able to)	
CO1	Calculate pressure drop in pipelines and equipment for different situations such as single- and two-phase flow, fixed and fluidized beds	К3
CO2	Describe and discuss equation of motion for turbulent flows	K2
CO3	Design various components of Heat transfer equipment	K5
CO4	Compare various heat transfer equipment and select an appropriate equipment for a particular situation	K5
CO5	Use information from balance equations to calculate engineering quantities like drag force, rate of heat and mass transfer, and pressure loss.	K4
CO6	Analyze transport problems in simple and complex geometries using simulation software.	K4

Semester IX Page 149 of 267

K1: Remembering, K2: Understanding, K3: Applying, K4: Analyzing, K5: Evaluating, K6: Creating

	Ma	pping of			nsport P es (COs)				mes (PO	s)			
	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12												
CO1	3	2	2	1	-	1	1	-	ı	1	1	-	
CO2	3	1	1	2	-	-	-	-	-	2	2	-	
CO3	3	2	2	1	2	1	2	-	ı	1	1	-	
CO4	2	1	1	2	1	ı	1	-	ı	2	1	-	
CO5	3	2	2	2	2	1	1	-	-	2	2	-	
CO6	3	2	1	1	-	-	-	-	-	2	2	-	
	3	-Strong (Contribu	tion: 2-M	loderate (Contribut	tion: 1-L	ow Contr	ibution:				

Mapping of		ransport Phenor (COs) with Prog		Outcomes (PSOs)									
	PSO1 PSO2 PSO3 PSO4 PSO5												
CO1	2	3	3	3	-								
CO2	1	2	2	3	-								
CO3	1	2	3	2	2								
CO4	1	1	2	2	1								
CO5	1	2	3	3	1								
CO6	2	3	2	2	1								
3-Stro	ong Contribution; 2	-Moderate Contri	bution; 1-Low Co	ontribution;									

Semester IX Page 150 of 267

		Semester IX			
PCC	Course Code:	Course Title:	Cr	edits =	= 3
	CET4552	Advanced Separation Processes	L	T	P
	Semester:	Total contact hours: 45	2	1	0
		List of Prerequisite Courses			
	Chemical Engineering C	Operation (CET4254), Separation Processes (CET4356)			
		List of Courses where this course will be prerequisite			
	Advanced Mass transfer	Operations (CET4554), Multiphase Reaction Engineering (Hon.)			
	Descr	iption of relevance of this course in the Int. M. Tech. Program			
		on and in continuation with undergraduate level course on mass transforcess such as membrane-based separation, adsorption, etc. are covered in			ation
		Course Contents (Topics and subtopics)	Rec	ıd. ho	urs
1	Principles of azeotropic	epts of Distillation, Design Aspects of multi-component distillation. and extractive distillation processes, Residue Curve Maps. Use of ternary c and extractive distillation. Designing separation strategy based on		9	
2	design aspects. Liquid- multiple feed streams us	pts of liquid extraction. Several types of extraction equipment and their liquid extraction; stage wise calculations for multicomponent with ing reflux and mixed solvents. Basic concepts and design calculations of asic concepts and calculations of separation factor for dissociation	12		
3	such as ultrafiltration,	ransport processes involved in various membrane separation processes nano-filtration, gas separation, reverse osmosis. Calculations of flux, sign aspects of various membrane processes such as ultrafiltration, nano, reverse osmosis.		12	
4		ange: Thermodynamic aspects of adsorption and ion exchange equilibria. d bed adsorption, ion exchange processes, analysis, and models for		12	
		Total		45	
		List of Textbooks/ Reference Books			
1	Separation Process Princ	riples, Authors: J.D. Seader, E.J. Henley			
2	Principles of Mass Trans	sfer and Separation Processes, B.K. Dutta			
		Course Outcomes (students will be able to)			
CO1	Describe and discuss pri chromatography, distilla	inciples of various advanced separation processes based on membranes, tion, extractions		K2	
CO2	Design various compone	ents of equipment used in advanced separation processes		K5	
CO3	Compare various options	s and select an appropriate process for a particular separation		K5	
CO4	Apply advanced comput	ational techniques to Chemical Engineering systems.		K3	_
CO5	Gain an appreciation of	formal problem-solving methodologies.		K4	
CO6		up-based assignments, an understanding of the design process involving rk spirits, leadership and the need for attention to detail.		K5	
K1: R	emembering, K2: Underst	anding, K3: Applying, K4: Analyzing, K5: Evaluating, K6: Creating			

	Advanced Separation Processes: CET4552 Mapping of Course Outcomes (COs) with Programme Outcomes (POs)											
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	CO1 2 3 2 1 2 2 1 1 1 -											
CO2	3	2	1	2	3	1	2	-	-	1	2	-

Semester IX Page 151 of 267

Integrated Master of Technology, Chemical Engineering (Major) and MDM ICT Marathwada Campus, Jalna

CO3	1	2	2	1	1	1	-	ı	-	2	1	-
CO4	2	3	2	2	2	1	2	-	-	1	1	-
CO5	2	3	2	1	1	1	-	-	-	-	2	1
CO6	2	3	1	2	3	1	-	-	-	-	1	2
	3	-Strong	Contribu	tion; 2-M	loderate (Contribut	tion; 1-Lo	ow Contr	ibution;	-		

Mapping o	Advanced S of Course Outcomes	•	esses: CET4552 gramme Specific	Outcomes (PSOs)									
	PSO1 PSO2 PSO3 PSO4 PSO5												
CO1	3	2	1	-	-								
CO2	2	3	3	2	2								
CO3	1	2	3	3	1								
CO4	2	3	3	2	2								
CO5	3	4	1	2	1								
CO6	2	3	2	1	-								
3-5	Strong Contribution; 2	2-Moderate Contr	ibution; 1-Low C	ontribution;	•								

Semester IX Page 152 of 267

		Semester IX					
PCC	Course Code:	Course Title:	Cr	edits =	= 3		
	CET4553	Advanced Reaction Engineering	L	T	P		
	Semester:	Total contact hours: 45	2	1	0		
		List of Prerequisite Courses					
	and MAT4152), Chemi	151), Applied Chemistry (CHT4151), Applied Mathematics (MAT4151 cal Reaction Engineering (CET4351), Material Energy Balance and Process Simulation Lab-I and II (CEP4255 and CEP4256)					
		List of Courses where this course will be prerequisite					
	NA						
	Descr	iption of relevance of this course in the Int. M. Tech. Program					
is truly	relevant but not limited	g is concerned with the utilization of chemical reactions on a commercial to the following industries: Pharmaceuticals, Petrochemical, Fine chemical sist and modelling of chemical reactors are covered in this course.	als, etc	. Adva	anced		
		Course Contents (Topics and subtopics)	Rec	qd. ho	urs		
1	Design of ideal reactors	with heat effects, multiple steady states and reactor stability		12			
2	Non-ideal flow in reactors; RTD, Estimation of dispersion/back mixing, dispersed plug flow and tanks in series model, design aspects of reactors with non-ideal flow, micro and meso mixing in reactors						
3	Kinetics of solid-catalyzed fluid phase reactions: Mechanisms of Catalytic Reactions, Development of rate equations for solid catalyzed fluid phase reactions, Diffusion with reaction in porous catalyst, Estimation of kinetic parameters External/internal mass and heat transfer resistances in catalyst particles. Design aspects of solid catalyzed reactions						
4	Fluid: Fluid Reactions: contactors, design aspec	Mass transfer with chemical reaction (regimes and examples), model ts of fluid: fluid reactors		12			
		Total		45			
		List of Textbooks/ Reference Books					
1	Chemical Reaction Engi	neering, O. Levenspiel					
2	Elements of Chemical R	eaction Engineering, H. Scott Foggler					
3	Heterogeneous Reaction	s vol. I and II, L.K. Doraiswamy, M.M. Sharma					
4	Mass Transfer with Cher	mical Reaction, G. Astarita					
		Course Outcomes (students will be able to)					
CO1	Describe and discuss pri	nciples of various types of reactors		K2			
CO2	Calculate rates of reaction	ons based on given reaction scheme		K3			
CO3	Design various compone	ents of reactors used in industrial practice		K5			
CO4	Compare various reactor	rs and select an appropriate reactor for a given situation		K5			
CO5		ctor systems using numerical methods and commercial software and ctor designs for industrial applications.		K6			
CO6		of catalysis in heterogeneous catalysis, photocatalysis, and biocatalysis rate limiting steps in catalytic systems.		K5			
K1: R6	emembering, K2: Underst	anding, K3: Applying, K4: Analyzing, K5: Evaluating, K6: Creating					

Advanced Reaction Engineering: CET4553 Mapping of Course Outcomes (COs) with Programme Outcomes (POs)												
PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12										PO12		
CO1	2	2	3	1	1	2	2	-	-	1	-	-
CO2	3	2	2	2	1	1	1	-	-	-	-	-
CO3	2	2	3	2	3	1	2	-	-	-	1	-

Semester IX Page 153 of 267

Integrated Master of Technology, Chemical Engineering (Major) and MDM ICT Marathwada Campus, Jalna

CO4	2	3	1	2	2	1	2	-	-	-	-	-
CO5	3	2	2	2	2	2	2	-	-	1	1	-
CO6	2	3	2	-	2	2	-	-	-	1	2	2
	3-Strong Contribution: 2-Moderate Contribution: 1-Low Contribution:											

Mapping	Advanced Reaction Engineering: CET4553 Mapping of Course Outcomes (COs) with Programme Specific Outcomes (PSOs)											
	PSO1	PSO2	PSO3	PSO4	PSO5							
CO1	3	2	3	1	-							
CO2	2	2	2	2	-							
CO3	1	2	3	2	2							
CO4	2	3	1	1	2							
CO5	2	3	3	2	1							
CO6	2	3	2	-	2							

Semester IX Page 154 of 267

Course Code:	P 0
Semester: Total contact hours: 45 List of Prerequisite Courses Fluid Flow (CET4251), Momentum Transfer (CET4352), Applied Mathematics (MAT4151 and MAT4151), Applied Physics (PHT4151), Applied Chemistry (CHT4151), Chemical Engineering Operation (CET4254), Separation Processes (CET4356) List of Courses where this course will be prerequisite Multiphase Reaction Engineering (Hon.) Description of relevance of this course in the Int. M. Tech. Program This is a course further built up on and in continuation with undergraduate level course on mass transfer. Modeling of transfer process with or without chemical reaction is explained in this course. Course Contents (Topics and subtopics) Reqd. h	0
List of Prerequisite Courses Fluid Flow (CET4251), Momentum Transfer (CET4352), Applied Mathematics (MAT4151 and MAT4151), Applied Physics (PHT4151), Applied Chemistry (CHT4151), Chemical Engineering Operation (CET4254), Separation Processes (CET4356) List of Courses where this course will be prerequisite Multiphase Reaction Engineering (Hon.) Description of relevance of this course in the Int. M. Tech. Program This is a course further built up on and in continuation with undergraduate level course on mass transfer. Modeling of transfer process with or without chemical reaction is explained in this course. Course Contents (Topics and subtopics) Reqd. In the course of the cour	
Fluid Flow (CET4251), Momentum Transfer (CET4352), Applied Mathematics (MAT4151 and MAT4151), Applied Physics (PHT4151), Applied Chemistry (CHT4151), Chemical Engineering Operation (CET4254), Separation Processes (CET4356) List of Courses where this course will be prerequisite Multiphase Reaction Engineering (Hon.) Description of relevance of this course in the Int. M. Tech. Program This is a course further built up on and in continuation with undergraduate level course on mass transfer. Modeling of transfer process with or without chemical reaction is explained in this course. Course Contents (Topics and subtopics) Reqd. h	of mass
MAT4151), Applied Physics (PHT4151), Applied Chemistry (CHT4151), Chemical Engineering Operation (CET4254), Separation Processes (CET4356) List of Courses where this course will be prerequisite Multiphase Reaction Engineering (Hon.) Description of relevance of this course in the Int. M. Tech. Program This is a course further built up on and in continuation with undergraduate level course on mass transfer. Modeling of transfer process with or without chemical reaction is explained in this course. Course Contents (Topics and subtopics) Reqd. h	of mass
Multiphase Reaction Engineering (Hon.) Description of relevance of this course in the Int. M. Tech. Program This is a course further built up on and in continuation with undergraduate level course on mass transfer. Modeling of transfer process with or without chemical reaction is explained in this course. Course Contents (Topics and subtopics) Reqd. h	of mass
Description of relevance of this course in the Int. M. Tech. Program This is a course further built up on and in continuation with undergraduate level course on mass transfer. Modeling of transfer process with or without chemical reaction is explained in this course. Course Contents (Topics and subtopics) Reqd. h	of mass
This is a course further built up on and in continuation with undergraduate level course on mass transfer. Modeling of transfer process with or without chemical reaction is explained in this course. Course Contents (Topics and subtopics) Reqd. h	of mass
transfer process with or without chemical reaction is explained in this course. Course Contents (Topics and subtopics) Reqd. h	of mass
	iours
Thermodynamic, kinetic and hydrodynamic physical phenomena governing interfacial mass transfer and generation of interfacial transfer area.	
2 Shell balances to set up lumped parameter models and more sophisticated differential equation- based models to describe mass transfer under various commonly encountered industrial situations.	
The Stefan-Maxwell Unified approach to mass transfer. 5	
4 Standard algorithms for multicomponent counter current mass transfer and their applicability. 8	
5 Mass Transfer equipment of Industrial significance and their quantitative characterization. 12	
Total 45	
List of Textbooks/ Reference Books	
1 Principles of Mass Transfer and Separation Processes, B.K. Dutta	
2 Mass Transfer Operations, R.E. Treybal	
3 Chemical Engineering, Volume 2, J.M. Coulson, J.F. Richardson	
4 Transport Processes and Unit Operations, C.J. Geankoplis	
5 Transport Processes and Separation Process Principles, C.J. Geankoplis	
6 Separation Processes, C.J. King	
7 Separation Process Principles, J.D. Seader, E.J. Henley	
8 Equilibrium Stage Separation Operations in Chemical Engineering, E.J. Henley, J.D. Seader	
9 Unified Approach to Mass Transfer: Krishna and Wesselingh	
10 Diffusion: Mass Transfer in Fluid Systems, E.L. Cussler	
11 Perry's Chemical Engineer's Handbook (latest editions VIII)	
12 Albrights' Handbook of Chemical Engineering	
Course Outcomes (students will be able to)	
CO1 Describe and discuss principles of various mass transfer operations K2	,
CO2 Calculate Mass transfer rates for given mass transfer operation K3	,
CO3 Design various components of equipment used in mass transfer operations K5	
CO4 Compare various options of mass transfer operations and equipment and select an appropriate equipment / operation for a particular situation K5	
CO5 To understand the mechanisms of heat transfer under steady and transient conditions.	,
CO6 Apply test equipment's in electrical projects.	
K1: Remembering, K2: Understanding, K3: Applying, K4: Analyzing, K5: Evaluating, K6: Creating	

Semester IX Page 155 of 267

	Advanced Mass transfer: CET4554 Mapping of Course Outcomes (COs) with Programme Outcomes (POs)												
PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12													
CO1	3	2	2	1	1	2	3	-	-	1	1	-	
CO2	3	2	1	2	2	1	2	-	-	2	1	-	
CO3	2	2	2	2	1	2	1	-	-	1	2	-	
CO4	3	1	2	1	1	2	1	-	-	2	1	-	
CO5	3	2	2	2	2	2	2	-	-	2	1	-	
CO6	2	3	2	2	1	-	-	-	-	1	2	1	
	3	S-Strong (Contribu	tion; 2-M	loderate (Contribut	tion; 1-L	ow Contr	ibution;				

Mapping o	Advanced Mass transfer: CET4554 Mapping of Course Outcomes (COs) with Programme Specific Outcomes (PSOs)											
	PSO1	PSO2	PSO3	PSO4	PSO5							
CO1	3	2	1	1	-							
CO2	2	1	2	1	1							
CO3	1	2	3	2	2							
CO4	1	3	2	3	1							
CO5	2	3	3	2	1							
CO6	2	3	1	2	2							
3-S	trong Contribution; 2	2-Moderate Contr	ibution; 1-Low Co	ontribution;								

Semester IX Page 156 of 267

		Semester IX						
Research	Course Code:	Course Title:	Cr	Credits = 10				
	CEP4563	EP4563 Thesis		T	P			
	Semester: IX	Total contact hours: 150	0	0	40			
	<u>.</u>	List of Prerequisite Courses						
	All							
	List of Co	ourses where this course will be prerequisite						
	All							
	Description of re	levance of this course in the Int. M. Tech. Program						

The research project is concerned with details and critical analysis of literature related to a topic of research.

Develop of research hypothesis

Identification of novel topic

Performing control and critical analyses to test the research hypothesis.

A report to e made and submitted as Thesis as per the guidelines (provided separately)

	Course Contents (Topics and subtopics)	Reqd. hours
	Research	150
	Total	150
	List of Textbooks/ Reference Books	
	All	
	Course Outcomes (students will be able to)	
CO1	Identify the Problem and Evaluate the solution by hypothesis	K5
CO2	Performing the Experiments to collect the data	K6
CO3	Presentation of data and optimization to satisfy the results	K6
CO4	Graphical representation and modelling along with simulation	K6
CO5	Evaluate and estimate the experimental data	K6
CO6	Report making and representing	K6
K1: Rer	nembering, K2: Understanding, K3: Applying, K4: Analyzing, K5: Evaluating, K6: Creating	

	Thesis: CEP4563 Mapping of Course Outcomes (COs) with Programme Outcomes (POs)												
PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12													
CO1	3	1	2	2	3	2	-	-	1	1	2	2	
CO2	3	2	2	1	2	1	2	1	2	2	3	3	
CO3	3	-	2	-	1	1	2	-	-	1	1	1	
CO4	3	2	2	1	2	2	1	-	2	2	3	2	
CO5	2	1	1	2	1	1	2	-	1	3	2	2	
CO6	3	2	2	2	2	1	2	1	2	2	3	3	
	3	-Strong (Contribu	tion; 2-M	loderate (Contribut	tion; 1-Lo	ow Contr	ribution;				

Thesis: CEP4563 Mapping of Course Outcomes (COs) with Programme Specific Outcomes (PSOs)										
	PSO1	PSO2	PSO3	PSO4	PSO5					
CO1	1	2	3	2	2					
CO2	2	3	3	3	3					

Semester IX Page 157 of 267

Integrated Master of Technology, Chemical Engineering (Major) and MDM ICT Marathwada Campus, Jalna

CO3	1	2	3	3	2						
CO4	1	3	2	3	3						
CO5	1	3	3	3	2						
CO6	2	3	3	3	3						
3-Stro	3-Strong Contribution; 2-Moderate Contribution; 1-Low Contribution;										

Semester IX Page 158 of 267

Fifth Year

Semester-X

Semester-X Page 159 of 267

		Semester X			
Research	Course Code:	Course Title:	Cre	edits =	22
	CEP4564	Thesis	L	T	P
	Semester: X	Total contact hours: 330	0	0	40
		List of Prerequisite Courses			
	All				
	Lis	t of Courses where this course will be prerequisite			
	All				
	Description	n of relevance of this course in the Int. M. Tech. Program			

The research project is concerned with details and critical analysis of literature related to a topic of research.

Develop of research hypothesis

Identification of novel topic

Performing control and critical analyses to test the research hypothesis.

A report to made and submitted as Thesis as per the guidelines (provided separately)

	Course Contents (Topics and subtopics)	Reqd. hours
	Research	330
	Total	330
	List of Textbooks/ Reference Books	
	All	
	Course Outcomes (students will be able to)	
CO1	Identify the Problem and Evaluate the solution by hypothesis	K5
CO2	Performing the Experiments to collect the data	K6
CO3	Presentation of data and optimization to satisfy the results	K6
CO4	Graphical representation and modelling along with simulation	K6
CO5	Evaluate and estimate the experimental data	K6
CO6	Report making and representing	K6
K1: Ren	nembering, K2: Understanding, K3: Applying, K4: Analyzing, K5: Evaluating, K6: Creating	

	Ma	pping of	Course			EP4564 with Pr		e Outco	mes (PO	s)			
	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12												
CO1	3	1	2	2	3	2	-	-	1	1	2	2	
CO2	3	2	2	1	2	1	2	1	2	2	3	3	
CO3	3	-	2	-	1	1	2	-	-	1	1	1	
CO4	3	2	2	1	2	2	1	-	2	2	3	2	
CO5	2	1	1	2	1	1	2	-	1	3	2	2	
CO6	3	2	2	2	2	1	2	1	2	2	3	3	
	3	-Strong (Contribu	tion; 2-M	loderate (Contribut	tion; 1-Lo	ow Contr	ribution;				

Mapping of C	Thesis –CEP4564 Mapping of Course Outcomes (COs) with Programme Specific Outcomes (PSOs)										
	PSO1 PSO2 PSO3 PSO4 PSO5										
CO1	1	2	3	2	2						
CO2	2	3	3	3	3						

Semester X Page 160 of 267 Integrated Master of Technology, Chemical Engineering (Major) and MDM ICT Marathwada Campus, Jalna

CO3	1	2	3	3	2
CO4	1	3	2	3	3
CO5	1	3	3	3	2
CO6	2	3	3	3	3
3-Stro	ng Contribution; 2	-Moderate Contri	bution; 1-Low Co	ontribution;	

Semester X Page 161 of 267

Honors Syllabus

Honors Syllabus Page 162 of 267

		Semester			
PCC	Course Code:	Course Title:	Cr	edits =	= 4
	CETxxxx	Biochemical Engineering	L	T	P
	Semester:	Total contact hours: 60	3	1	0
		List of Prerequisite Courses			
	Bioengineering, Chemis	Ingineering (CET4351), Introduction to Biological Sciences and stry (CHT4152), Material and Energy Balance Calculations (CEP4151), Thermodynamics (CET4353), Chemical Engineering Operations			
		List of Courses where this course will be prerequisite			
		gineering, Environmental Engineering and Process Safety (CETxxx), opment and Engineering (CET4451)			
	Descr	ription of relevance of this course in the Int. M. Tech. Program			
This c	ourse integrates biologica	l sciences and chemical engineering and a requisite for Biobased Industry			
		Course Contents (Topics and subtopics)	Reqd	. hour	'S
1	Introduction to Biotechn	ology: Role of chemical engineers in biotechnology		3	
2	Basic of Genetic Engine	ering and Tissue Culture: Recombinant DNA technology		3	
3	Structure function relation	ons of enzymes; Classification,		3	
4	Mechanism of Enzyme a	action, Enzyme kinetics, inhibition, and regulation		3	
5	Enzyme purification and	I characterization, Coenzymes, cofactors		3	
6	Enzyme reactors, thermo	os-stabilization, immobilization of enzymes		3	
7	Enzymes as industrial ca	atalysts- Examples		2	
8	Plant and animal cell cul	ltures to produce biochemicals, Immobilized cells.		4	
9	Kinetics of microbial g microbial culture	growth, models and simulations, Batch and continuous culture, Mixed		8	
10	Biochemical process dev	velopment and bioreactors using biological catalysts		8	
11	Integration of downstrea	am processing with bioprocessing		4	
12	Transport phenomena in	bioreactions and bioreactors		4	
13	Fundamentals of fermen engineering aspects of fe	tation-submerged fermentation, Fermenter design and basic biochemical ermentation		4	
14	_	nemical reactions and scale up, Process Design for bioproducts, up of bioreactions/reactors,		8	
		Total		60	
		List of Text Books/ Reference Books			
1	Biochemical Engineerin	g Fundamentals, Bailey and Olis, Wiley			
2	Biotransformation and E	Bioprocesses, Doble, Anilkumar and Gaikar, Marcel Dekker			
		Course Outcomes (students will be able to)			
CO1	Calculate microbial/enga	ymatic kinetics parameters		K5	
CO2	Design enzyme reactors	•		K6	
CO ₂		and scale up fermenters action/substrate requirements		K5	
CO4	Decide process parameter			K5	
CO ₅		ent/oxygen requirements		K5	
CO6		e/time for a given microbial/enzymatic process.		K6	
		tanding, K3: Applying, K4: Analyzing, K5: Evaluating, K6: Creating		120	

Honors Syllabus Page 163 of 267

	Ma	pping of			Biochen es (COs)			_	mes (PO	s)				
	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12													
CO1	CO1 3 1 1 2 2 1 2 1 1 -													
CO2	2	2	1	1	-	1	3	-	-	2	2	-		
CO3	1	1	2	1	-	-	-	-	-	2	2	-		
CO4	-	2	3	1	-	3	3	-	-	1	1	-		
CO5	3	1	2	2	1	1	2	-	-	1	1	-		
CO6	1	1	-	1	2	1	-	-	-	1	2	-		
	3	S-Strong	Contribu	tion; 2-M	loderate (Contribut	tion; 1-L	ow Contr	ibution;					

Mapping	HONOl of Course Outcomes	RS: Biochemical s (COs) with Pro	-	Outcomes (PSOs)	
	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	1	2	3	2	-
CO2	2	3	3	3	1
CO3	1	2	3	2	2
CO4	2	2	3	2	2
CO5	1	2	3	3	1
CO6	1	2	2	3	-
3-5	Strong Contribution; 2	2-Moderate Contr	ibution; 1-Low C	ontribution;	

Honors Syllabus Page 164 of 267

PCC	Course Code:	Semester Course Title:	7 -	edits =	
PCC	Course Code: CETxxxx	Multiphase Reaction Engineering	L	realts =	= 4 P
	Semester:	Total contact hours: 60	3	1	0
		List of Prerequisite Courses			
	(CET4252), Chemical E	ineering (CET4351), Momentum Transfer (CET4352), Heat Transfer Engineering Operations (CET4254), Separation Processes (CET4356), hermodynamics (CET4353)			_
		List of Courses where this course will be prerequisite			
	NA				
	Descri	iption of relevance of this course in the Int. M. Tech. Program			
This c	ourse integrates reaction e	ngineering and chemical engineering and a requisite for chemical and bio	ochemi	cal Ind	lustry
		Course Contents (Topics and subtopics)	Reqd	. hour	S
1	Classification of multiph	ase reactors, qualitative description, examples of industrial importance		8	
2		p, process design and performance of the following major classes of studies and problems, w.r.t:			
2a	Stirred tank reactors,			10	
2b	Bubble columns, packed	bubble columns, sectionalized bubble columns,		10	
2c	Internal loop and externa	l loop air-lift reactors, jet loop reactors,		8	
2d	Fluid-fluid reactors such disc contactors	as spray columns, packed columns, plate columns, static mixers, rotating		8	
2e	Fixed bed reactors, trickl	e bed reactors,		8	
2f	Solid-liquid and gas-soli	d fluidized bed reactors, solid-gas transport reactors		8	
		Total		60	
		List of Textbooks/ Reference Books			
1	Heterogeneous Reactions	s, Vol. I and II: L. K. Doraiswamy, M. M. Sharma			
2	Fluid Mixing and Gas Di	ispersion in Stirred Reactors: G. B. Tatterson			
3	Bubble Column Reactors	s: W. D. Deckwer			
4	Fluidisation: D. Kunni a	*			
5	Gas Liquid Reactions: P.	V. Danckwerts			
6	Fluidisation: J. F. Davids	son and D. Harrison			
7	Random Packings and Pa	acked Tower Design: R. F. Strigel			
		Course Outcomes (students will be able to)			
CO1	Calculate operating regir	ne for a given reaction.		K5	
CO2	Calculate intrinsic kineti	cs from the data on model contactors.		K5	
CO3	Calculate conversion / se given multiphase reaction	electivity / size / temperature / pressure / power required for conducting a n equipment.		K5	
CO4	Ability to solve problems	s of mass transfer with reaction in solid catalyzed reactions		K4	
CO5	sign and sizing of industr	rial scale reactor on the basis of kinetic data obtained at lab scale		K6	
CO6	Designing experiments in	nvolving chemical reactors, and analyzing and interpreting data		K6	

	HONORS: Multiphase Reaction Engineering												
	Mapping of Course Outcomes (COs) with Programme Outcomes (POs)												
	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12												
CO1	CO1 3 1 1 1 2 1 3 1 1 -												

Honors Syllabus Page 165 of 267

CO2	3	2	2	2	3	2	2	-	-	2	2	-
CO3	3	1	1	2	2	1	2	-	-	2	2	-
CO4	3	2	1	2	2	2	2	-	-	2	2	-
CO5	2	3	2	3	2	-	-	-	-	3	2	1
CO6	2	3	2	3	1	2	3	1	-	-	2	3
	3-Strong Contribution; 2-Moderate Contribution; 1-Low Contribution;											

Mapping	HONORS: I of Course Outcomes	_	tion Engineering gramme Specific		
	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	1	2	3	2	1
CO2	2	1	3	3	2
CO3	1	2	3	2	2
CO4	2	2	3	3	2
CO5	1	2	3	1	-
CO6	2	3	2	2	2
3-5	Strong Contribution; 2	2-Moderate Contr	ibution; 1-Low Co	ontribution;	•

Honors Syllabus Page 166 of 267

		Semester			
PCC	Course Code:	Course Title:	Cr	edits =	- 4
	CETxxxx	Mathematical Methods & Optimization in Chemical Engineering	L	T	P
	Semester:	Total contact hours: 60	2	0	4
	,	List of Prerequisite Courses			
	Transfer (CET4352),	I (MAT4151) and Applied Mathematics II (MAT4152), Momentum Chemical Engineering Operations (CET4254), Chemical Engineering T4253), Heat transfer (CET4252), Chemical Reaction Engineering			
		List of Courses where this course will be prerequisite			
	Transport Phenomena Engineering Systems	, Chemical Process Control (CET4354), Optimization of Chemical			
	Desc	cription of relevance of this course in the Int. M. Tech. Program			
Engine Chemi Engine	eering problems. Specifical Reaction Engineering problems encoun	serve as a bridge between the applied mathematics courses and their applications, the techniques learnt in this course will help problem formulationing, Chemical Process Control, Heat Transfer and Transport Phenomena. Iter trade-offs between two or more parameters and thus formulation are Chemical Engineer to obtain the best solution.	n and a Many	solution Chem	n in nical
		Course Contents (Topics and subtopics)	Reqd	. hour	S
1	Vector algebra: scalar &	& vector product (application to fluid flow problems) and Linear algebra.		12	
2	PDEs: Types, solution reaction-diffusion, disp	n (penetration theory, 2D conduction, counter-current heat exchanger, persion model, etc.)		8	
3	Fourier series, transform	ms (diffusion equations), Laplace, Z transform		8	
4	Equation scaling, norm	alization, convergence		4	
5	Integer, linear and quablending, data fitting, o	dratic programming (simple scheduling, simple production planning, fuel optimal control)		10	
6	Nonlinear programming systems)	g (Reflux ratio optimization, consecutive reaction, reactor-separator recycle		6	
7	Mixed integer linear pr	ogramming (flowsheet optimization, supply chain optimization)		6	
8	Multi-objective optimiz	zation (design and operation of chemical processes)		6	
		Total		60	
		List of Text Books/ Reference Books			
1	Kreyszig, E. Advanced	Engineering Mathematics.			
2	Pushpavanam, S. Math	ematical Methods in Chemical Engineering			
3	Collette, Y. and Siarry,	P. Multi-objective optimization			
4	Vanderbei, R.J. Linear	programming: Foundations and extensions			
5	Jenson, V.G. and Jeffre	eys, G.V. Mathematical Methods in Chemical Engineering			
		Course Outcomes (students will be able to)			
CO1	Formulate a Chemical l	Engineering problem into a mathematical problem		K4	
CO2	Solve (analytically or n Applications	umerically) ODE and PDE equations encountered in Chemical Engineering		K5	
CO3	Assess stability of Cher	mical Engineering systems		К3	
CO4	Formulate a Chemical l	Engineering problem into an optimization problem		K4	
CO5	Solve (analytically or r Applications	numerically) optimization problems encountered in Chemical Engineering	K5		
CO6	Provide knowledge of a	advanced numerical methods and their applications to chemical engineering		К3	_

Honors Syllabus Page 167 of 267

K1: Remembering, K2: Understanding, K3: Applying, K4: Analyzing, K5: Evaluating, K6: Creating

problems

	HONORS: Mathematical Methods & Optimization in Chemical Engineering Mapping of Course Outcomes (COs) with Programme Outcomes (POs)											
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	2	1	2	1	2	1	2	-	-	1	1	-
CO2	3	2	1	1	1	2	2	-	-	2	2	-
CO3	2	1	1	2	2	1	1	-	-	2	2	-
CO4	3	2	1	1	2	1	1	-	-	1	1	-
CO5	2	1	2	1	2	1	2	-	-	1	1	-
CO6	3	2	2	2	2	1	2	-	-	1	2	-
3-Strong Contribution; 2-Moderate Contribution; 1-Low Contribution;												

	HONORS: Mathematical Methods & Optimization in Chemical Engineering Mapping of Course Outcomes (COs) with Programme Specific Outcomes (PSOs)										
	PSO1	PSO2	PSO3	PSO4	PSO5						
CO1	1	2	3	2	1						
CO2	2	3	2	2	-						
CO3	3	2	1	2	1						
CO4	2	3	1	3	2						
CO5	1	2	3	2	1						
CO6	2	3	3	3	2						
3-S	Strong Contribution; 2	2-Moderate Contr	ibution; 1-Low C	ontribution;							

Honors Syllabus Page 168 of 267

DCC	G G 1	Semester	<u> </u>	edits =					
PCC	C Course Code: Course Title: CETxxxx Refinery Science and Engineering								
			L	T	P				
	Semester:	Total contact hours: 60	3	1	0				
	N. 11D.1 17	List of Prerequisite Courses	l						
		Energy Balance Calculations (CEP4151), Chemical Reaction Engineering Sfer (CET4252), Chemical Engineering Operations (CET4254)							
		List of Courses where this course will be prerequisite							
	NA								
	Desc	cription of relevance of this course in the Int. M. Tech. Program							
		ply their knowledge of mass transfer, heat transfer, equipment design and sees of petroleum refineries.	chemi	cal rea	ction				
		Course Contents (Topics and subtopics)	Reqd	l. hour	'S				
1	World oil scenario and	future of oil, Petroleum pricing and economics		4					
2	Fundamentals of crude	distillation		4					
3	Refinery products and	properties, refining chemistry, role of catalysis		6					
4	Refinery processes - thermal cracking, fluid catalytic cracking, hydrotreating, catalytic reforming, refinery alkylation, isomerization								
5		mical processes with refinery		6					
6									
7	Treatment processes, g	as cleaning		4					
8	Safety, health and envi	ronment issues		4					
9	Renewable and alternat	tive fuels		4					
10	Biorefineries			4					
		Total		60					
		List of Text Books/ Reference Books	•						
1	W. C. Edmister, Applie	ed Hydrocarbon Thermodynamics Vol I and Vol II Gulf Publishing Co.							
2	Joseph Hilyard, Interna	ntional petroleum encyclopedia 2008 (3 Volume).							
		Course Outcomes (students will be able to)							
CO1	To understand refining	trends, challenges, and key issues		K2					
CO2	To analyze the role of a	refining processes in the world energy challenge		K4					
CO3	To propose feasible sol	utions for energy security in India		K5					
CO4	To understand all the composition	basics about crude oil, including its physical/chemical properties and		K2					
CO5	To explain step-by-step	the processes of refining		К3					
CO6	Understand the flow characteristics.	diagrams of refineries and understand the refinery products and their		K2					
K1: R	emembering, K2: Under	standing, K3: Applying, K4: Analyzing, K5: Evaluating, K6: Creating							

	HONORS: Refinery Science and Engineering Mapping of Course Outcomes (COs) with Programme Outcomes (POs)											
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	2	3	1	1	3	3	1	1	1	1	-
CO2	-	1	2	2	2	2	2	-	-	2	2	-
CO3	-	1	2	1	2	3	3	-	-	2	2	-
CO4	1	2	3	2	2	3	3	1	1	1	2	-

Honors Syllabus Page 169 of 267

Integrated Master of Technology, Chemical Engineering (Major) and MDM ICT Marathwada Campus, Jalna

CO5	1	2	3	2	1	2	-	ı	-	-	1	1
CO6	2	2	1	3	2	-	-	-	2	2	1	1
	3	S-Strong (Contribut	tion; 2-M	loderate (Contribut	tion; 1-L	ow Contr	ibution;			

HONORS: Refinery Science and Engineering Mapping of Course Outcomes (COs) with Programme Specific Outcomes (PSOs)										
PSO1 PSO2 PSO3 PSO4 PSO5										
CO1	3	2	1	-	-					
CO2	2	3	2	2	1					
CO3	2	2	3	2	2					
CO4	2	2	2	2	1					
CO5	2	3	1	2	1					
CO6	3	2	2	1	2					

Honors Syllabus Page 170 of 267

		Semester			
PCC	Course Code:	Cı	edits =	- 4	
	CETxxxx	Catalytic Science and Engineering	L	T	P
	Semester:	Total contact hours: 60	3	1	0
	-	List of Prerequisite Courses			
	Applied Chemistry (Cl	HT4151), Chemical Reaction Engineering (CET4351)			
		List of Courses where this course will be prerequisite			
	NA				
	Desc	cription of relevance of this course in the Int. M. Tech. Program			
		oly their knowledge of catalysis process and it's engineering along with sy tic process. This course will also deal the several applications of catalyst			
		Course Contents (Topics and subtopics)	Reqd	. hour	š
1	Relevance and examp heterogeneous catalysi	oles, Atom economy and green chemistry concepts, Homogenous and s		10	
2		nogeneous catalysis and mechanisms and kinetics, Fundamentals of energetics, structural and dynamic considerations,		10	
3	Mechanisms, models a structure though model	10			
4		tion methods: Surface area and pore volume determinations, XRD, various ques, Temperature programmed reduction & oxidation, Electron			
5		nistry of catalysis, Quantum mechanical, molecular mechanical and hybrid n through artificial intelligence and computer modelling		5	
6	0.1	deactivation and selectivity, Catalytic process engineering, Measurement inetic parameters, Types of reactors		5	
		Total		60	
		List of Text Books/ Reference Books			
1	G. Ertl, H. Knozinger a - VCH.	and J. Weitkamp, "Handbook of Heterogeneous Catalysis" Vol 1-5, Wiley			
2	J.J. Carberry, "Chemic	al and catalytic reaction Engineering", Dover Publications.			
3	C. H. Bartholomew an VCH.	d R. J. Farrauto "Fundamentals of Industrial catalytic Processes", Wiley-			
		Course Outcomes (students will be able to)			
CO1	Understand synthesis,	characterization, activity and deactivation of heterogeneous catalyst		K2	
CO2	Understand the mechan	nisms of homogeneous catalysis		K2	
CO3	Understand the role of	catalysis in industrial processes		K2	
CO4	To plan, develop and to	est catalyst for given application		K3	
CO5	Suggest strategies for o	catalyst development		K3	
CO6	Select and design mult	iphase catalytic reactors		K4	
K1: R	emembering, K2: Under	rstanding, K3: Applying, K4: Analyzing, K5: Evaluating, K6: Creating			

Honors Syllabus Page 171 of 267

	HONORS: Catalytic Science and Engineering Mapping of Course Outcomes (COs) with Programme Outcomes (POs)											
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	2	1	1	2	1	2	-	-	1	1	-
CO2	2	1	2	1	1	1	3	-	-	2	2	-
CO3	1	2	3	1	3	2	3	-	-	2	2	-
CO4	1	3	1	2	2	1	1	-	-	1	1	-
CO5	1	2	1	2	2	1	2	-	-	1	1	-
CO6	2	2	1	2	1	2	2	-	-	-	-	-
	3-Strong Contribution; 2-Moderate Contribution; 1-Low Contribution;											

HONORS: Catalytic Science and Engineering Mapping of Course Outcomes (COs) with Programme Specific Outcomes (PSOs)											
	PSO1 PSO2 PSO3 PSO4 PSO5										
CO1	3	2	1	2	-						
CO2	2	2	2	1	-						
CO3	3	1	1	1	1						
CO4	3	2	1	2	-						
CO5	1	2	3	1	-						
CO6	1	2	1	2	-						
3-Strong Contribution; 2-Moderate Contribution; 1-Low Contribution;											

Honors Syllabus Page 172 of 267

	Г	Semester		edits =	
PCC	C Course Code: Course Title: CETxxxx Statistical Thermodynamics				
	CETxxxx	·	L	T	P
	Semester:	Total contact hours: 60	3	1	0
		List of Prerequisite Courses			
		ecially probability, vectors and linear algebra, Computer Programming rrays and vectors (MAT4151) and (MAT4152), Chemical Engineering (353)			
		List of Courses where this course will be prerequisite			
	NA				
		otion of relevance of this course in the Int. M. Tech. Program			
	course will learn to apply teir problem solution.	heir knowledge of statistical mechanics and its application in engineering	g therr	nodyna	amics
		Course Contents (Topics and subtopics)	Rec	qd. ho	urs
1	Introduction to statistical a Boltzmann Distribution	mechanics: a first look at the Canonical Ensemble. Introduction to the		4	
2	Introduction to the microc	canonical, PVT and Grand Canonical Ensembles		4	
3		amic Quantities as Functions of Ensembles with particular emphasis on erence between Heat Transfer and Work Transfer.		4	
4	extended to many particle	Gas Law using Schrodinger's Equation applied to Particle-in-a-box and systems using statistical mechanics for an Ideal Gas and introduction to the Virial Theorem		8	
5		teraction energy, pair correlation function (radial distribution function) roscopic thermodynamic quantities including derivation of the van der		10	
6	Introduction to Importar Algorithm	nce Sampling, detailed balance and the Metropolis Monte Carlo		4	
7	Writing a code for Monte	Carlo simulations in 1D using periodic boundary conditions		4	
8	Phase Space, the Liouville	e Theorem and Molecular Dynamics Simulations		6	
9	Symplectic integrators ar periodic boundary conditi	nd writing a code for molecular dynamics simulations in 1D using ons		4	
10	from MD simulations.	ethermodynamic and transport properties of a system from fluctuations of.		8	
11	Introduction to Transition	State Monte Carlo Simulations for Phase Equilibria		4	
		Total		60	
		List of Textbooks/ Reference Books			
1.	An Introduction to Statisti	ical Thermodynamics by Terrence Hill (Dover Books)			
2.	Understanding Molecular	Simulations by Daan Frenkel and Berend Smit (Academic Press)			
3.	Classical Dynamics of Par	ticles and Systems S.T. Thornton and J. B. Marion (Cengage Learning)			
4.	Statistical Mechanics D. A	A. McQuarrie (University Science Books)			
		Course Outcomes (students will be able to)			
CO1		understand and use the concept of microcanonical, canonical, grand- ables and the partition functions thereof		К3	
CO2	Student would be able to energy to the partition fun	relate macroscopic thermodynamic quantities like entropy and free actions		K4	
CO3	Student would be able to simple Monte Carlo Simu	understand the algorithms behind Monte Carlo simulations and write a lation		K4	

Honors Syllabus Page 173 of 267

Integrated Master of Technology, Chemical Engineering (Major) and MDM ICT Marathwada Campus, Jalna

CO4	Student would be able to understand the algorithms behind Molecular Dynamics Simulations and write a simple MD simulation	K4				
CO5	Student would be able to understand and use the fluctuation dissipation theorem in conjunction with Monte Carlo simulations to determine transport coefficients using the Green Kubo relations.	K4				
CO6	Students can learn to derive vibrational and translational partition functions, and to derive and compute thermodynamic functions from partition functions.	K6				
K1: Re	K1: Remembering, K2: Understanding, K3: Applying, K4: Analyzing, K5: Evaluating, K6: Creating					

	HONORS: Statistical Thermodynamics Mapping of Course Outcomes (COs) with Programme Outcomes (POs)											
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	1	1	2	1	1	2	1	-	-	1	2	-
CO2	1	2	1	1	2	1	2	-	-	-	1	-
CO3	2	1	1	2	1	2	1	-	-	-	2	-
CO4	2	1	2	1	2	2	-	-	-	-	-	-
CO5	2	1	2	1	1	2	1	-	-	1	1	-
CO6	2	1	2	1	2	2	1	-	-	1	1	-
	3	S-Strong	Contribu	tion; 2-M	Ioderate	Contribut	ion; 1-L	ow Contr	ribution;			

HONORS: Statistical Thermodynamics Mapping of Course Outcomes (COs) with Programme Specific Outcomes (PSOs)											
	PSO1 PSO2 PSO3 PSO4 PSO5										
CO1	3	2	1	2	-						
CO2	3	3	2	3	1						
CO3	3	2	3	2	2						
CO4	3	1	2	1	1						
CO5	3	2	1	2	2						
CO6	3	2	3	2	2						
3-Stro	ong Contribution; 2	-Moderate Contr	ibution; 1-Low Co	ontribution;							

Honors Syllabus Page 174 of 267

Electives Syllabus

Electives Syllabus Page 175 of 267

		Semester			
PEC	Course Code:	Course Title:	Cr	edits =	- 4
	CET4751	Process Intensification	L	T	P
	Semester:	Total contact hours: 60	3	1	0
	1	List of Prerequisite Courses			
		T4352), Chemical Engineering operations (CET4254), Heat transfer action engineering (CET4351), Advanced mass transfer (CET4554), omena (CET4551)			
	,	List of Courses where this course will be prerequisite			
	Thesis (CEP4563 and CE	P4564)			
		ption of relevance of this course in the Int. M. Tech. Program			
		l for students in applying intensified reactor and/or separator systems in c sified technologies, with particular emphasis on their application in cher			
		Course Contents (Topics and subtopics)	Re	qd. ho	ars
1	Strategies and domain bas	-		6	
2	Mechanism of Intensifica	the process intensification: Intensification by fluid flow process, tion by mixing, Intensification in Reactive system		4	
3		ication in sustainable development: Problems leading to sustainable sues and Challenges, Strategies in process design		4	
4	Process intensification b Acoustic cavitation, Hydrof cavitation in reaction, v	10			
5	Process intensification by Micro-reactors, Hydrodyr of micro-reactors in reacti	10			
6	Microwave-assisted proce reaction and nanomaterial	ess intensification technique, Applications of microwaves in extraction, ls.	10		
7	Process intensification by engineering in process int	membrane: Introduction to membrane and its principles, Membrane tensification		6	
		Total		60	
		List of Textbooks/ Reference Books			
1.		n Chemical Engineering Design Optimization and Control, by Juan lez Adrián and Bonilla Petriciolet, 2016, Springer.			
2.		ngineering for efficiency, sustainability and flexibility, by David Reay, m Harvey, 2nd edition, 2013, Elsevier.			
3.	3. The Fundamentals of I Georgios Stefanidis, 2019	Process Intensification by Andrzej Stankiewicz, TomVan Gerven and P, Willey VCH.			
		Course Outcomes (students will be able to)			
CO1	•	concepts and analyze design alternatives for any process		K3	
CO2	Propose improvements in	a process by integration of unit operations,		K4	
CO3	Apply their knowledge to on process intensification	the design and implementation of green processing technologies based principles.		K5	
CO4	consumption, costs, volur	at sacrificing product quality by increasing efficiency, reducing energy ne, and waste as well as improving safety.		K4	
CO5		eation for the enhancement of chemical processes		K2	
CO6	Solve process challenges process industries.	using intensification technologies and analyze scale up issues in the		K5	
K1: R	emembering, K2: Understa	nding, K3: Applying, K4: Analyzing, K5: Evaluating, K6: Creating			

Electives Syllabus Page 176 of 267

	Chemical Engineering Elective: CET4751Process Intensification Mapping of Course Outcomes (COs) with Programme Outcomes (POs)											
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	3	2	1	2	1	-	-	1	-	1
CO2	2	3	2	3	2	1	-	-	-	2	-	-
CO3	1	2	3	2	1	-	-	-	-	1	2	2
CO4	2	3	3	2	2	1	1	-	-	1	1	1
CO5	2	3	1	2	2	-	-	-	1	2	1	1
CO6	2	2	1	2	2	1	-	-	-	1	2	1
	3-Strong Contribution; 2-Moderate Contribution; 1-Low Contribution;											

	Chemical Engineering Elective: CET4751Process Intensification Mapping of Course Outcomes (COs) with Programme Specific Outcomes (PSOs)										
	PSO1	PSO2	PSO3	PSO4	PSO5						
CO1	3	2	3	1	-						
CO2	3	2	2	3	2						
CO3	2	1	3	3	3						
CO4	3	2	3	3	2						
CO5	2	1	2	1	2						
CO6	2	2	1	1	1						
3-5	Strong Contribution; 2	2-Moderate Contr	ibution; 1-Low Co	ontribution;							

Electives Syllabus Page 177 of 267

		Semester			
PEC	Course Code:	Course Title:	Cr	edits =	4
	CET4752	Chemical Safety and Risk Management	L	Т	P
	Semester:	Total contact hours: 60	3	1	0
	T	List of Prerequisite Courses	1		
	Process Safety (CET42)	55), Process Development and Engineering (CET4451)			
		List of Courses where this course will be prerequisite			
	NA				
	Desc	ription of relevance of this course in the Int. M. Tech. Program			
standa princij	ords, and regulations, - to ples and its management	oles of safety, risk management and material hazards, to define safety principles afety aspects related to chemicals, fires, electricity, pathogens et in the industry, - to assess the risks and environmental impact of projects dentification or plant layout etc.	c., - to	apply	SHE
		Course Contents (Topics and subtopics)	Reqd	. hour	s
1	Introduction to Safety	and Risk Management: Major industrial disasters and evolution of safety		12	
	and risk management				
	Basic OSH: Occupation				
	Material hazard - GH: Safety Data Sheet), 16 dosage values; TLV, ST phrases				
	-	: Classification of Hazardous chemicals			
2	PSM elements: Why P	SM; Overview of 14 elements		12	
	HAZOP & HAZAN A Analysis; QRA Hazard identification	chniques: What-If, Checklist, HAZOP, FEMA etc. Overview of each of analysis; Cause and Consequence Analysis; FEMA; LOPA; Fault Tree and assessment: 1. Basic Hazard identification, assessment & measures asafety-extinguishers: Fire types, Types of fire extinguishers, Agents for the content of			
3	Plant layout based on warehouse, and plant la Human elements in sa Basics of laboratory sa	process safety & fire safety-fire hydrant system design: Solvent yard, yout with design of fire safety system. fety-behavior safety:		12	
4	Management Practice management, policy management,		12		
5	Environmental Impac of projects, process rela Emergency response	et Assessment: Environmental impact and risk assessment (EIRA), risks ated, risks, measurement, and monitoring tools plan: Hazard identification and elements of emergency response plan; antrol banding and precautions while handling substances; GMP principles		12	

Electives Syllabus Page 178 of 267

	Total	60				
1	Chemical Process Safety: Fundamentals with Applications: Daniel A. CROWL and Joseph F. LOUVAR					
2	Guidelines for Process Safety Management, Environment, Safety, Health, and Quality: Centre for the Chemical Process Safety of the American Institute of Chemical Engineers (AIChE)					
3	Chemical Process Safety Learning from Case Histories: Roy E. SANDERS					
4	Guidelines for Process Safety Documentation: Center for the Chemical Process Safety of the American Institute of Chemical Engineers (AIChE)					
	Course Outcomes (students will be able to)					
CO1	Identify hazards in a given process and assess the same and provide solutions for operating safely.	К3				
CO2	Specify safety requirements for storage and handling of a given chemical.	K4				
CO3	Apply fundamental principles, implement safety and risk management in practice, and demonstrate management skills.	К3				
CO4	Recognize hazards, assess risks, minimize and manage risks, and prepare for emergencies.	K5				
CO5	To learn about chemical classification, toxicology, labeling, handling, storage, and transportation.	K2				
CO6	To learn the fundamentals of chemical process safety and hazards management and discuss important components of a risk management plan.	K2				
K1: R	emembering, K2: Understanding, K3: Applying, K4: Analyzing, K5: Evaluating, K6: Creating					

	Chemical Engineering Elective - CET4752 Chemical Safety and Risk Management Mapping of Course Outcomes (COs) with Programme Outcomes (POs)											
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	2	1	-	2	3	-	3	1	-	-
CO2	2	3	3	2	-	2	3	1	2	2	-	-
CO3	3	2	2	1	-	2	3	1	2	2	-	-
CO4	2	3	1	2	1	2	2	-	-	1	1	2
CO5	1	1	1	-	-	-	-	-	1	2	1	-
CO6	1	2	1	2	-	-	-	-	-	1	-	-
	3-Strong Contribution; 2-Moderate Contribution; 1-Low Contribution;											

Chemical Engineering Elective - CET4752 Chemical Safety and Risk Management Mapping of Course Outcomes (COs) with Programme Specific Outcomes (PSOs)										
	PSO1	PSO2	PSO3	PSO4	PSO5					
CO1	3	2	2	1	-					
CO2	2	3	1	2	1					
CO3	3	2	2	1	1					
CO4	2	3	2	1	-					
CO5	2	1	2	2	-					
CO6	2	3	1	-	1					
3-5	Strong Contribution; 2	2-Moderate Contr	ibution; 1-Low Co	ntribution;	•					

Electives Syllabus Page 179 of 267

Semester VII									
PEC	Course Code:	Course Title:	Credits = 4						
	CET4753	Environmental Engineering and Chemical Process Safety	L	T	P				
	Semester: VII	3	1	0					
	List of Prerequisite Courses								
	Material Balance & Energy Balance Calculations (CEP4151), Chemical Reaction Engineering (CET4351), Chemical Engineering Operations (CET4254), Momentum transfer (CET4352), Biochemical Engineering, Chemical Engineering Thermodynamics (EST4353), Process Safety (CET4255), Environmental Sciences (CET4258), Biochemical Engineering (Hon.)								
	•	•	•						

The course 'Environmental Engineering and Process Safety' is highly relevant in all fields of activities, and process industry. The above clearly highlights the necessity and significance of the course. This course will certainly add value to our chemical engineering graduates.

A chemical engineer working in any function of process industry should have working knowledge of all the prevailing safety, environment, and health standards, and may be involved in / responsible for any or all of the following:

- site process safety, environmental affairs
- assisting the Health Safety Environment (HSE) team
- employee safety observations and pre-job risk assessments
- implementation of HSE policies and guidelines to help ensure that all employees, contractors, and visitors enjoy high levels of safety, health and environmental protection; this reduces company's liability exposure.
- improvement of process safety performance and reduction of risk by facilitating Process Hazard Analyses Layer of Protection Analyses
- incident investigations for process safety and environmental incidents
- recognising information that would be pertinent to process safety documentation and follow through with site personnel to ensure information is well documented
- developing and updating site Policies and Procedures related to process safety and environmental.
- capital and other project teams to identify and resolve regulatory issues, analyse process and property hazards, and establish protective measures to mitigate risks to a tolerable level.
- assisting the plant with government interfaces and inspections.
- training using internal and external resources; provides guidance to site management for implementation of programs or controls to comply with environmental requirements.
- managing site environmental programs including but not limited to waste management, spill prevention & response, etc.
- preparation and submission of reports to appropriate agencies to assure compliance with federal, state and local regulations. Responds to corporate requests in a timely manner.
- obtaining new or revised environmental permits that provide operational flexibility within the schedule established for new projects. Ensure that the operating units can meet all provisions and provide tools to enable compliance.
- providing environmental guidance; develop procedures and training, and HSE support as needed.
- participate in site objectives in the areas of community relations.

	Course Contents (Topics and subtopics)	Reqd. hours
1	Introduction to all prevailing international standards of Health, Safety, and Environment (HSE); Environmental laws and regulations; Standards (air quality, noise, water), ISO 14000+	4
2	Environmental impact assessment, Life cycle assessment (LCA)	4
3	Pollution prevention in chemical manufacturing Industrial wastewater treatment: characterization of effluents (COD and BOD), treatment levels (primary, secondary and tertiary) and strategies (physical, chemical and biological), sludge treatment and effluent valorisation,	4
4	Wastewater treatment; Groundwater and surface water pollution, removal of specific water contaminants; Solid waste; Hazardous waste, Details of the effluent treatment plant and	6

Electives Syllabus Page 180 of 267

	machines, chemical pipelines and storage condition, segregation of waste streams (high	
	COD and low COD), Current practices in wastewater treatment: examples and case studies	
5	Management of municipal solid waste, waste-to-energy strategies, refuse-derived fuel, hazardous waste, E-waste, battery waste, plastic waste	2
6	Air pollution; Air pollutants: sources (specific pollutants), effects, and dispersion modelling, air pollution, air quality, pollutants minimisation and control, fugitive emissions (source and control), Methods (absorption, adsorption, oxidation and reduction) and equipment (scrubbers, dust management systems) for the control of gaseous pollutants from the industry, Catalytic technologies for air pollution control	4
7	Noise pollution	6
8	Inherent safety; Major disasters (e.g. Flixborough, UK; Bhopal, India; Seveso, Italy; Pasadena, Texas; Texas City, Texas; Jacksonville, Florida; Port Wentworth, Georgia),	6
9	Toxicology; Industrial hygiene	4
10	Prevention and control of accidental release of contaminants, plume behaviour Source models; Toxic release and dispersion models	4
11	Fires and explosions; Concepts to prevent fires and explosions	2
12	Chemical reactivity	4
13	Reliefs and reliefs sizing; Hazard identification; Risk assessment	4
14	Safety procedures and designs, Process hazards, design and control: safe design of process vessels, safety systems, colour coding, earthing, safety-related equipment Risk-based process safety, inherently safer design	4
15	Some case histories	2
	Total	60
	List of Text Books/ Reference Books	
1	Chemical Process Safety: Fundamentals with Applications: Daniel A. CROWL and Joseph F. LOUVAR	
2	Guidelines for Process Safety Management, Environment, Safety, Health, and Quality: Center for the Chemical Process Safety of the American Institute of Chemical Engineers (AIChE)	
3	Environmental Engineers' Handbook: Irene LIU (Editor)	
4	Chemical Process Safety Learning from Case Histories: Roy E. SANDERS	
5	Guidelines for Process Safety Documentation: Center for the Chemical Process Safety of the American Institute of Chemical Engineers (AIChE)	
6	Environmental and Health and Safety Management: A Guide to Compliance: Nicholas P. CHEREMISINOFF, Madelyn L. GRAFFA	
7	Environmental Pollution Control Engineering: C. S. Rao	
8	Environmental Engineering: H. S. Peavy	
	Course Outcomes (students will be able to)	
CO1	Calculate BOD / COD for a given composition of effluent stream, Estimation of bio-Kinetics	K5
CO2	Calculate adiabatic lapse rate and determine conditions for suitability of atmospheric dispersion, effective stack height, chimney design	K5
CO3	Calculate concentrative of pollutant at any point in the neighbourhood of emission given atmospheric conditions like wind, dispersion, environmental factors etc.	K5
CO4	Calculate size/time/power required for primary clarifier, secondary treatment, tertiary treatment, sizing of different types of biological treatments etc.	K5
CO5	Identify hazards in a given process and assess the same and provide solutions for operating safely.	K4
CO6	Specify safety requirements for storage and handling of a given chemical.	K2
K1· R	emembering, K2: Understanding, K3: Applying, K4: Analyzing, K5: Evaluating, K6: Creating	

Electives Syllabus Page 181 of 267

Chemical	Chemical Engineering Elective V: Environmental Engineering and Chemical Process Safety: CET4753 Mapping of Course Outcomes (COs) with Programme Outcomes (POs)											
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	1	1	2	2	3	1	3	-	1	-
CO2	3	1	1	1	1	1	1	-	2	-	2	-
CO3	2	1	1	1	2	1	1	-	3	-	1	-
CO4	2	1	1	1	2	2	2	-	3	-	1	-
CO5	1	2	1	-	-	2	1	-	3	-	2	-
CO6	1	2	2	1	1	1	1	-	2	-	1	-
		3-Strong	Contribu	tion; 2-M	Ioderate (Contribu	tion; 1-L	ow Conti	ribution;	•		•

· ·	Chemical Engineering Elective V: Environmental Engineering and Chemical Process Safety: CET4753 Mapping of Course Outcomes (COs) with Programme Specific Outcomes (PSOs)									
	PSO1	PSO2	PSO3	PSO4	PSO5					
CO1	1	2	3	3	-					
CO2	2	1	2	3	1					
CO3	1	2	3	3	-					
CO4	1	3	3	3						
CO5	2	2	2	2	-					
CO6	3	2	1	1	-					

Electives Syllabus Page 182 of 267

		Semester			
PEC	Course Code:	Course Title:	(Credits :	= 4
	CET4754	Perspectives of Society, Science and Technology	L	T	P
	Semester:	Total contact hours: 60	3	1	0
	T	List of Prerequisite Courses			
	NIL				
		List of Courses where this course will be prerequisite	ı		
		understand the sustainable development			
		iption of relevance of this course in the Int. M. Tech. Program			
		etween technology, science and society can be understood from different sophical, economic, political, ethical, and environmental.	rent per	rspective	es, such
		Course Contents (Topics and subtopics)	R	eqd. ho	urs
1	History of Science and T	echnology and its relevance in the respective era		4	
2	Recent developments in etc.) and their influence of	technology (chemical, biotechnology energy, telecommunications, on society		6	
3	Economics and Sustainal	ble Development		4	
4	Value system and Ethics	in the profession of Technology, Science and Engineering.		6	
		rld and India. Various approaches in solving them.			
5	Integrating Issue: Society			6	
6		heir effect on science and technology and society		4	
7	Environmental degradation society	on, global warming and their effect on science and technology and		6	
8	IPR issues and their relev	vance to science and technology and society		6	
9	Some aspects of future of	f Society, Technology, Science and Engineering.		4	
10	Interdependence of Theo	logy and Science		4	
11		e on the nexus of water, energy and water Peace Role of Innovation and R&D		6	
12	Industry-Academia Intera	action to Enhance Standard of Living		4	
		Total		60	
		List of Text Books/ Reference Books			
1	Science, Technology and 2005	l Society: An Encyclopedia by Sal Restivo, Oxford University Press			
2	Science, Technology an Jennifer Croissant, Sal P.	d Society: A Sociological Appraoach by Wenda K. Bauchspies, . Restivo			
3	Vision of STS: Counter Cutcliffe, Carl Mitcham,	points in Science Technology and Society Studies by Stephan H. Sunny Press 2012			
		Course Outcomes (students will be able to)			
CO1	Enable students to under contexts.	stand science as a socio-cultural product in specific socio-historical		K2	
CO2		sophical, historical and sociological perspectives to look at science edded in culture and society.		К3	
CO3		nature of the relations between wider cultural practices on one hand		К3	
CO4	-	nts with an understanding indispensable for an in-depth study of		K4	
CO5	Explore and understand	the many ways that modern science and technology shape modern tutions, and how modern values shape science and technology.		K5	
K1: R	•	anding, K3: Applying, K4: Analyzing, K5: Evaluating, K6: Creating	•		

Electives Syllabus Page 183 of 267

Cher	Chemical Engineering Elective: Perspectives of Society, Science and Technology: CET4754 Mapping of Course Outcomes (COs) with Programme Outcomes (POs)											
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1												
CO2												
CO3												
CO4												
CO5												
	3-Strong Contribution; 2-Moderate Contribution; 1-Low Contribution;											

	Chemical Engineering Elective: Perspectives of Society, Science and Technology: CET4754 Mapping of Course Outcomes (COs) with Programme Specific Outcomes (PSOs)											
	PSO1	PSO2	PSO3	PSO4	PSO5							
CO1												
CO2												
CO3												
CO4												
CO5												
3-S	Strong Contribution; 2	2-Moderate Contr	ibution; 1-Low Co	ntribution;								

Electives Syllabus Page 184 of 267

		Semester			
PEC	Course Code:	Course Title:	C	credits:	= 4
	CET4755	Optimization Techniques	L	T	P
	Semester:	Total contact hours: 60	3	1	0
		List of Prerequisite Courses			
	Mathematics 4151 and M	Mathematics 4152			
		List of Courses where this course will be prerequisite			
	NIL				
	Descri	ption of relevance of this course in the Int. M. Tech. Program			
		chniques course is to achieve the "best" design relative to a set of			
constra		nizing factors such as productivity, strength, reliability, longevity, efficiency			
		Course Contents (Topics and subtopics)	R	eqd. ho	urs
1	Review of local maximum			10	
2		Itipliers and KKT methods		10	
3	method and interpolation			10	
4		ned optimization: Powell's method, Nelder-Mead (simplex) method ation Methods: Steepest Descent Method, Newton's Method, ods		10	
5		mplex Method, Revised Simplex Method and other Advanced		10	
6	Modern Optimization Te Optimization	chniques; Genetic Algorithms, Simulated Annealing, Ant Colony		10	
		Total	<u> </u>	60	
		List of Text Books/ Reference Books			
1	S. S. Rao, Engineering	Optimization: Theory and Practice, Wiley, 2008.	<u> </u>		
2	K. Deb, Optimization Hall, 2 Nd edition 201	for Engineering design algorithms and Examples, Prentice 2.	Ī		
3	C.J. Ray, Optimum De	esign of Mechanical Elements, Wiley, 2007.			
4	R. Saravanan, Manufactu Francis Publications, 20	uring Optimization through Intelligent Techniques, Taylor & 006.			
5	D. E. Goldberg, Genetic a Wesley Longman Publish	algorithms in Search, Optimization, and Machine Learning, Addison- hing, 1989.			
6	An Introduction to Optin	nization, Edvin K. P. Chong & Stanislab H. Zak, Wiley Publication			
		Course Outcomes (students will be able to)			
CO1	Comprehend the technique	ues and applications of Engineering optimization.		К3	
CO2	Analyze characteristics of	f a general linear programming problem.		K4	
CO3	Apply basic concepts of	mathematics to formulate an optimization problem.		К3	
CO4	Analyse various methods	s of solving the unconstrained minimization problem.		K4	
CO5	Analyze and appreciate v	variety of performance measure for various optimization problems.		K5	
K1: Re	emembering, K2: Understa	anding, K3: Applying, K4: Analyzing, K5: Evaluating, K6: Creating			

	Chemical Engineering Elective: Optimization Techniques CET4755 Mapping of Course Outcomes (COs) with Programme Outcomes (POs)											
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1												
CO2												

Electives Syllabus Page 185 of 267

Integrated Master of Technology, Chemical Engineering (Major) and MDM ICT Marathwada Campus, Jalna

CO3											
CO4											
CO5											
	3-Strong Contribution; 2-Moderate Contribution; 1-Low Contribution;										

	mical Engineering E f Course Outcomes				
	PSO1	PSO2	PSO3	PSO4	PSO5
CO1					
CO2					
CO3					
CO4					
CO5					

Electives Syllabus Page 186 of 267

		Semester			
PEC	Course Code:	Course Title:	C	redits	= 4
	CET4756	Machine Learning	L	T	P
	Semester:	Total contact hours: 60	3	1	0
		List of Prerequisite Courses			
	Mathematics 4151 and M	athematics 4152, MATLAB/SCILAB, Python			
		List of Courses where this course will be prerequisite			
	Design projects (CEP446	1), Optimization (MATXXXE)			
	Descri	ption of relevance of this course in the Int. M. Tech. Program	*		

This course will provide a solid introduction to machine learning. In particular, upon successful completion of this course, students will be able to understand, explain and apply key machine learning concepts and algorithms, including:

Probability review

Introduction to different types of machine learning and supervised learning

Decision trees algorithm

Naïve Bayes algorithm

Logistic Regression algorithm

Machine learning concepts such as regularization, overfitting, and Laplace smoothing

1,140,111	Course Contents (Topics and subtopics)	Reqd. hours
1	Machine Learning Concepts: Mean Square Error (MSE), Training Error, Test Error, Biasvariance trade-off, Measuring the quality of fit, Regression Diagnostics, Understanding the concept of model flexibility and prediction accuracy, Universal behaviour of Training and Test MSE. Case study of linear regression with K-nearest neighbour regression	15
2	Model Selection and Regularization: Validation set approach, Leave-One-Out-Cross-Validation, K-fold cross validation, best subset selection, Forward Selection, Backward selection, Hybrid selection, shrinkage methods: Ridge regression, Lasso, least angle regression.	15
3	Decision Trees, Bagging and Boosting, Random Forests, Gradient Boosting, Artificial Neural Network	10
4	Classification problem: Logistic Regression, Support Vector Machines, Receiver operating characteristic (ROC) curves, Area under the curve (AUC) and other related accuracy measures	10
5	Multivariate methods: Principal Component Analysis, Factor Analysis, Principal component regression, K-means clustering, Hierarchical Clustering, Multi-dimensional scaling	10
	Total	60
	List of Text Books/ Reference Books	
1	Review of local maximum/minimum	
2	Method of Lagrange Multipliers and KKT methods	
3	One dimensional Optimization Techniques: Fibonacci search method, Golden section method and interpolation method.	
4	Direct Search unconstrained optimization: Powell's method, Nelder-Mead (simplex) method	
5	Gradient Search Optimization Methods: Steepest Descent Method, Newton's Method, Conjugate gradient methods	
6	Linear Programming: Simplex Method, Revised Simplex Method and other Advanced Methods, Integer Programming	
7	Modern Optimization Techniques; Genetic Algorithms, Simulated Annealing, Ant Colony Optimization	
	Course Outcomes (students will be able to)	
CO1	Understand different types of machine learning and map problems to different classes of machine learning algorithms.	К3
CO2	Describe and apply machine-learning algorithms including decision trees, naïve Bayes, and logistic regression.	K4

Electives Syllabus Page 187 of 267

Integrated Master of Technology, Chemical Engineering (Major) and MDM ICT Marathwada Campus, Jalna

	Understand subtleties and application scenarios for different supervised classification algorithms discussed above.	К3							
CO4	Explain and apply machine-learning concepts such as regularization, overfitting, and Laplace smoothing to design efficient machine learning models.	K4							
CO5	Develop an appreciation for what is involved in learning from data.	K5							
K1: R	K1: Remembering, K2: Understanding, K3: Applying, K4: Analyzing, K5: Evaluating, K6: Creating								

	Chemical Engineering Elective: Machine Learning CET4756 Mapping of Course Outcomes (COs) with Programme Outcomes (POs)												
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1													
CO2													
CO3													
CO4													
CO5													
	3	S-Strong	Contribu	tion; 2-M	Ioderate (Contribut	tion; 1-L	ow Contr	ribution;				

	Chemical Engineering Elective: Machine Learning CET4756 Mapping of Course Outcomes (COs) with Programme Specific Outcomes (PSOs)													
	PSO1	PSO2	PSO3	PSO4	PSO5									
CO1														
CO2														
CO3														
CO4														
CO5														
3-S	trong Contribution; 2	2-Moderate Contr	ibution; 1-Low Co	ntribution;										

Electives Syllabus Page 188 of 267

		Semester				
PEC	Course Code:	Course Title:	C	redits =	= 4	
	CET4757	Biomaterials: Biodegradable Materials for Biomedical Applications	L	T	P	
	Semester:	Total contact hours: 60	3	1	0	
		List of Prerequisite Courses				
	10+2 Biology					
		List of Courses where this course will be prerequisite				
	NIL					
	Descri	ption of relevance of this course in the Int. M. Tech. Program				
facilita	ating healing for people a	edge about biomaterials that play an integral role in medicine today— fter injury or disease. Biomaterials may be natural or synthetic and or replace damaged tissue or a biological function.				
		Course Contents (Topics and subtopics)	R	eqd. ho	urs	
1	Introduction of Biomater	ials		6		
2		tructure and Properties, Surface Energy		6		
	Adsorption and Reconstr	· · · · · · · · · · · · · · · · · · ·				
3	Protein-Surface Interaction Proteins: Structure, Proposition Measurement	ons erties, Functions, Protein Adsorption: Complex Phenomena,		6		
4		:: Host Response to Biomaterials: Cell adhesion mechanism, nune response	6			
5	Surface Characterization	: AES, XPS, AFM, Contact Angle		6		
6	Quantifying Cell Behavio	or: Cell Culture, Cellular Assays		6		
	Biosensors and Diagnost	ic devices				
7	Mechanical Pumps	ed Release, Diffusion Controlled and Membrane based devices,		6		
8	Biomaterial for Organ Re Mechanical Properties, B	•		6		
9	Introduction of Tissue Encartilage	ngineering: Cell, Scaffold design, Artificial liver, pancreas,		6		
10	Regulatory overview					
		Total		60		
		List of Text Books/ Reference Books				
1	Introduction to Materials	D., Hoffman, A. S., Lemons, J. E. (2004). Biomaterials Science: An in Medicine. Netherlands: Elsevier Science.				
2	Hench, L. L., Ethridge, E Academic Press.	E. C. (1982). Biomaterials: an interfacial approach. United Kingdom:				
3	Bronzino, J. D. (2000). T	The Biomedical Engineering Handbook. Germany: CRC Press				
4		Biomaterials Science: An Introduction to Materials in Medicine. 2nd demic Press, 2004. ISBN: 9780125824637				
	T	Course Outcomes (students will be able to)				
CO1	Understand common use structure, properties, and	of biomaterials as metals, ceramics and polymers and its chemical morphology.		К3		
CO2	Understand and account	for methods for categorization of biomaterials.		K4		
CO3	Explain methods to modi response.	fy surfaces of biomaterials and choose material for desired biological		K3		
CO4	Describe interactions bet	ween biomaterials, proteins and cells.		K4		
CO5		on between biomaterial and tissue for short term and long term between reactions in blood and in tissue.		K5		

Electives Syllabus Page 189 of 267

CO6	Explain the types of material used to replace different organs & tissues of human body.	
K1: R	emembering, K2: Understanding, K3: Applying, K4: Analyzing, K5: Evaluating, K6: Creating	

Chemical En	Chemical Engineering Elective: Biomaterials: Biodegradable Materials for Biomedical Applications CET4757 Mapping of Course Outcomes (COs) with Programme Outcomes (POs)													
	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12													
CO1														
CO2														
CO3														
CO4														
CO5														
CO6														
	3-Strong Contribution; 2-Moderate Contribution; 1-Low Contribution;													

				ons CET4757
PSO1	PSO2	PSO3	PSO4	PSO5
	f Course Outcomes	f Course Outcomes (COs) with Prog	f Course Outcomes (COs) with Programme Specific (ective: Biomaterials: Biodegradable Materials for Biomedical Applicati f Course Outcomes (COs) with Programme Specific Outcomes (PSOs) PSO1 PSO2 PSO3 PSO4 PSO4

Electives Syllabus Page 190 of 267

		Semester				
PEC	Course Code:	Course Title:	(Credits :	= 4	
	CET4758	Advanced Membrane Separations	L	T	P	
	Semester:	Total contact hours: 60	3	1	0	
		List of Prerequisite Courses				
	Chemical Engineering Op	peration ((CET4254), Separation Process (CET4356)				
		List of Courses where this course will be prerequisite				
	Advanced Separation Prod	cess (CET4552)				
	Descrip	otion of relevance of this course in the Int. M. Tech. Program				
separa exposi	tion techniques and their p	iarize the students of chemical engineering with the new, emergical potential applications in chemical and allied process industries. The chniques, chromatographic separation, super critical fluid extractions.	e cour	se will	provide	
	(Course Contents (Topics and subtopics)	R	eqd. ho	urs	
1	Introduction: classification	n and definitions		12		
2	enhanced ultrafiltration, N electrodialysis, Pervapora membranes, Ion exchange	their applications: Microfiltration, Ultrafiltration and micelle- Janofiltration, Reverse osmosis, Dialysis, piezo dialysis, tion and membrane distillation, Gas permeation, Liquid emembranes and mathematical modelling		12		
3		embranes, Characterization	12			
4		Polarisation phenomena and fouling concentration polarization, our in pressure driven membrane operation, Membrane fouling,	12			
5		and configurations: Capillary, hollow fibre, tubular, Plate and abrane reactors and their applications in biotechnology		12		
		Total		60		
	T	List of Text Books/ Reference Books				
1	Mulder, M.H.V. Membrar					
2	•	te-Based Separations, Springer.				
3	Transport Processes and S India Private Ltd, New De	eparation Process principles, Christie J Geankoplis Prentice-Hall of elhi, 4th Edition 2006.				
4		K.V. Membrane Technology in the Chemical Industry, Wiley.				
5		cht, Membrane Processes, Wiley.				
6	Crespo, J.G., Bodekes, K Academic Publications.	i.W. Membrane Processes in Separation and Purification, Kluwer				
7	Geankoplis, C.J. Transpor	rt Processes and Unit Operations, Prentice-Hall				
8	Separation Process Princip	ples, J.D. Seader and E.J.Henley, Wiley, 2nd Edition 2004				
		Course Outcomes (students will be able to)				
CO1	Ability to identify an appr	opriate separation technique for intended problem.		K3		
CO2	• •	of membrane separation for various aqueous systems.		K4		
CO3	To conceptualize the react	tive and catalytic distillation.		K3		
CO4	Ability to recognize the conventional separation to	selection criteria between advanced separation techniques and echniques.		K4		
CO5	Evaluate which membran separation/purification sys	ne materials and morphologies are most suitable for a membrane stem.		K5		
CO6	Able to design a suitable i	membrane separation process for a given separation system		K6		

Electives Syllabus Page 191 of 267

K1: Remembering, K2: Understanding, K3: Applying, K4: Analyzing, K5: Evaluating, K6: Creating

	Chemical Engineering Elective: Advanced Membrane Separations CET4758 Mapping of Course Outcomes (COs) with Programme Outcomes (POs)													
	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12													
CO1														
CO2														
CO3														
CO4														
CO5														
CO6														
	3-Strong Contribution; 2-Moderate Contribution; 1-Low Contribution;													

	al Engineering Elect of Course Outcomes		•		
	PSO1	PSO2	PSO3	PSO4	PSO5
CO1					
CO2					
CO3					
CO4					
CO5					
CO6					
3-5	Strong Contribution; 2	-Moderate Contri	bution; 1-Low Con	ntribution;	

Electives Syllabus Page 192 of 267

		Semester			
PEC	Course Code:	Course Title:	(Credits :	= 4
	CET4759	Process Design of Heat and Mass Transfer Equipment	L	T	P
	Semester:	Total contact hours: 60	3	1	0
		List of Prerequisite Courses			
	Chemical Engineering C	Operation ((CET4254), Heat Transfer (CET4252)			
		List of Courses where this course will be prerequisite			
	Advanced Separation Pr	ocess (CET4552)			
	Descr	iption of relevance of this course in the Int. M. Tech. Program			
on des		f major heat and mass transfer operations. The objective of this course asfer equipment. In addition, it also imparts knowledge on optimizat occss industries.			
		Course Contents (Topics and subtopics)	R	eqd. ho	urs
1	Advanced Process desig several case studies; and characteristics, selection The topics will include s (1) Equipment for heat to exchangers, thermos(2) Equipment for Unit of (3) Equipment for Multiput columns / modified by bed reactors, ejectors	60			
		Total		60	
		List of Text Books/ Reference Books			
1	A. Suryanarayana, "Mas	s Transfer Operations", 1st edition, New - Age, International, 2006.			
2	McCabe, W.L. Smith J. edition, McGraw Hill, 20	C. and Harriot P., "Unit Operations of Chemical Engineering", 7th 2004.			
3	D. Q. Kern, "Process He	at Transfer", McGraw-Hill, 2001.			
4	C. J. King, "Separation I	Processes", 2nd edition, McGraw Hill, 2014.			
5	P.M. Doran, "Bioprocess	s Engineering Principles", 2nd edition, Academic Press, 2012.			
6	R.E. Treybal, "Mass Tra	nsfer Operations", 3rd edition, Mc-Graw Hill, 2012.			
		Course Outcomes (students will be able to)			
CO1	Understand the basic mo	des of heat and mass transfer.		K2	
CO2	Apply principles of heat	and mass transfer to predict transfer coefficients		K3	
CO3	Analyze working of vari	ous heat transfer equipment		K4	
CO4	Design heat and mass tra	ansfer equipment.		K6	
CO5	Evaluate no. of stages re	quired for given mass transfer problem.		K5	
K1: Re	emembering, K2: Underst	anding, K3: Applying, K4: Analyzing, K5: Evaluating, K6: Creating			

Chemic	Chemical Engineering Elective: Process Design of Heat and Mass Transfer Equipment CET4759 Mapping of Course Outcomes (COs) with Programme Outcomes (POs)													
PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12														
CO1														
CO2														
CO3														
CO4														

Electives Syllabus Page 193 of 267

Integrated Master of Technology, Chemical Engineering (Major) and MDM ICT Marathwada Campus, Jalna

CO5											
	3	S-Strong (Contribut	ion; 2-M	oderate (Contribut	ion; 1-L	ow Contr	ribution;	•	

_	ering Elective: Proce of Course Outcomes	_			11473)
	PSO1	PSO2	PSO3	PSO4	PSO5
CO1					
CO2					
CO3					
CO4					
CO5					

Electives Syllabus Page 194 of 267

		Semester			
PEC	Course Code:	Course Title:	C	redits	= 4
	CET4760	CFD applications in chemical processes	L	T	P
	Semester:	Total contact hours: 60	3	1	0
		List of Prerequisite Courses			
	NIL				
		List of Courses where this course will be prerequisite			
	Design Project (CEP446)	1)			
	Descri	ption of relevance of this course in the Int. M. Tech. Program			
The co	ourse provides brief introd	duction of Computational Fluid Dynamics along with chemical eng	ineerin	g app	lication
specifi	ically, analysis of fluid me	chanics and heat transfer related problems.			
		Course Contents (Topics and subtopics)	R	eqd. ho	ours
1	-	of momentum and energy for turbulent flows.		60	
	Finite volume technique				
	One dimensional heat con	nduction and flow			
	Grid generation				
	Space and time discretiza	ation ng (simple, simpler & SIMPLEC)			
		imulation of pipe flow, backward step, flow past cylinder			
	=	mulation of pipe flow, backward step, flow past cylinder, stirred			
		n, cyclone separator, spray dryer etc.			
		Total		60	
	1	List of Text Books/ Reference Books			
1	Versteeg and Malalaseko volume method", (2007)	era, "An introduction to computational fluid dynamics. The finite			
2	Patankar S., "Numerical	heat transfer and fluid flow", (1980)			
3	P.S. Ghosdastidar, Com (1998).	puter Simulation of Flow and Heat Transfer, Tata McGraw-Hill			
4	Muralidhar, K., and Sun Publishing. House (1995)	dararajan, T. Computational Fluid Flow and Heat Transfer, Narosa).			
5	P. Niyogi, P. Chakraba dynamics, Pearson educa	arty, S.K. and Laha, M.K., Introduction to computational fluid ation (2006).			
6	LI J., G. H. Yeoh, C Liu.	A Computational Fluid Dynamics, ELSEVER (2008)			
		Course Outcomes (students will be able to)			
CO1	underlying fluid dynamic	anding: Gain a comprehensive understanding of the principles cs, numerical methods, and the application of Computational Fluid		K2	
CO2	analyze various fluid flor	Develop proficiency in applying CFD techniques to simulate and w scenarios, including multiphase flows, heat transfer, and reacting		K3	
CO3		ptimization: Apply optimization and sensitivity analysis in CFD design and performance within chemical engineering applications		K4	
CO4	Technological Integration	on: Explore and utilize emerging technologies, such as machine lictive analysis and innovation in CFD simulations.		K5	
CO5	emerging trends in Cl	ent: Gain exposure to industrial challenges, best practices, and FD, fostering readiness for practical applications and future chemical engineering field.		K6	
K1: R	emembering, K2: Understa	anding, K3: Applying, K4: Analyzing, K5: Evaluating, K6: Creating			

Electives Syllabus Page 195 of 267

	Chemical Engineering Elective: CFD applications in chemical processes CET4760 Mapping of Course Outcomes (COs) with Programme Outcomes (POs)												
	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12												
CO1													
CO2	CO2												
CO3													
CO4													
CO5													
3-Strong Contribution; 2-Moderate Contribution; 1-Low Contribution;													

	Chemical Engineering Elective: CFD applications in chemical processes CET4760 Mapping of Course Outcomes (COs) with Programme Specific Outcomes (PSOs)											
	PSO1	PSO2	PSO3	PSO4	PSO5							
CO1												
CO2												
CO3												
CO4												
CO5												
3-Strong Contribution; 2-Moderate Contribution; 1-Low Contribution;												

Electives Syllabus Page 196 of 267

		Semester			
PEC	Course Code:	Course Title:	C	redits =	- 4
	CET4761	Process Systems Engineering	L	T	P
	Semester:	Total contact hours: 60	3	1	0
		List of Prerequisite Courses			
	NIL				
		List of Courses where this course will be prerequisite			
	Design Project (CEP446)	1)			
	Descri	ption of relevance of this course in the Int. M. Tech. Program			
This co	ourse gives a general back	ground on problems, methods, and tools for process systems engineer	ing.		
		Course Contents (Topics and subtopics)	R	eqd. ho	urs
1	Introduction to Systems Systems Engineering	s Engineering: Systems and their origin, examples of problems in		5	
2	Goals, Objectives, Specif	Engineering: Scope and Formulation of Engineering Problems, fications and Constraints, Types of Models; Hierarchical s, Types of Problems: Forward solution and inversion of models		5	
3	Partitioning and Preceder	Systems: Graphs and digraphs: Representation of systems, nce Ordering of systems, Structural analysis of modelling trollability and observability of systems, Applications to		10	
4	Degrees of freedom and	f Systems: Formulating steady-state models and simulations, design specifications, The Sequential-Modular Strategy, The gy, Applications to engineering problems		10	
5	programming, Unconstra	s: Theory and Algorithms: Basic concepts and definitions, Linear ined nonlinear optimization, Nonlinear Programming, on, Applications to engineering problems		10	
6	formulating dynamic sim	Systems: Basic concepts: Systems described by ODEs and DAEs, aulations; consistent initialization, Numerical integration of ODEs mulation of hybrid Discrete/Continuous systems, Applications to		10	
7	Model-Based Process C	ontrol: The nature of feedback control, The concept of model- esign and analysis of model-based control systems applications		10	
	·	Total		60	
		List of Text Books/ Reference Books			
1	Versteeg and Malalaseko volume method", (2007)	era, "An introduction to computational fluid dynamics. The finite			
2		heat transfer and fluid flow", (1980)			
		Course Outcomes (students will be able to)			
CO1	The students will know herform analysis of these	now to establish simple and large-scale process models, and how to emodels.		K2	
CO2	The student will further numerical simulation al programming language (К3		
CO3	The student will know he from Process Systems Er	ow to use state-of-the-art python tools to solve important problems agineering.		K4	
CO4		to understand and apply tools for adjusting model parameters to we basic knowledge of data-driven models such linear static models		К3	
K1: Re	emembering, K2: Understa	anding, K3: Applying, K4: Analyzing, K5: Evaluating, K6: Creating			

Electives Syllabus Page 197 of 267

	Chemical Engineering Elective: Process Systems Engineering CET4761 Mapping of Course Outcomes (COs) with Programme Outcomes (POs)												
	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12												
CO1	CO1												
CO2													
CO3													
CO4													
3-Strong Contribution: 2-Moderate Contribution: 1-Low Contribution:													

	ical Engineering Ele f Course Outcomes		•	_									
	PSO1 PSO2 PSO3 PSO4 PSO5												
CO1													
CO2													
CO3													
CO4													
3-St	trong Contribution; 2	-Moderate Contr	ibution; 1-Low Cor	ntribution;									

Electives Syllabus Page 198 of 267

		Semester			
PEC	Course Code:	Course Title:	(Credits :	- 4
	CET4762	Project Management: Case Study Approach	L	T	P
	Semester:	Total contact hours: 60	3	1	0
		List of Prerequisite Courses			
	NIL				
		List of Courses where this course will be prerequisite	•		
	Design Project (CEP446	1)			
	Descr	iption of relevance of this course in the Int. M. Tech. Program			
the for	undations for a more in-de		oncepts	. In add	lition to
		Course Contents (Topics and subtopics)	R	eqd. ho	urs
1	Project: meaning, Difference project execution: conce	ent types, why to manage, cost overruns centres, various stages of ption to commissioning.		10	
2	Project execution as con Detailed Engineering act	glomeration of technical and non-technical activities.		10	
3	Pre project execution ma	in clearances and documents		40	
	Project team: Role of each	•			
	Project site: Data require	•			
	Project contracts. Types	and contents.			
	Project execution				
	Project cost control. Bar charts and Network	diagram			
	Project commissioning:	· ·			
	Troject commissioning.	Total		60	
		List of Text Books/ Reference Books			
1					
2					
		Course Outcomes (students will be able to)	l		
CO1	Define a project and exp	lain project life cycle and project constraints		K2	
CO2	Explain the key elements	s of project initiation and develop project estimate and plan		К3	
CO3	Identify project stakehole	ders and develop communication plan		K4	
CO4	Manage project schedule	·		К3	
CO5	Identify and manage key	sources of conflict in projects		К3	
CO6	Manage project change a	and explain tasks require to close a project		К3	
K1: R	emembering, K2: Underst	anding, K3: Applying, K4: Analyzing, K5: Evaluating, K6: Creating			

Cl	Chemical Engineering Elective: Project Management: Case Study Approach CET4762 Mapping of Course Outcomes (COs) with Programme Outcomes (POs)												
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	
CO1													
CO2													
CO3													
CO4													
CO5													

Electives Syllabus Page 199 of 267

Integrated Master of Technology, Chemical Engineering (Major) and MDM ICT Marathwada Campus, Jalna

CO6											
	3	S-Strong	Contribut	tion; 2-M	oderate (Contribut	ion; 1-L	ow Contr	ribution;		

	gineering Elective: I of Course Outcomes		•		2
	PSO1	PSO2	PSO3	PSO4	PSO5
CO1					
CO2					
CO3					
CO4					
CO5					
CO6					
3-5	Strong Contribution; 2	2-Moderate Contri	bution; 1-Low Cor	ntribution;	

Electives Syllabus Page 200 of 267

		Semester			
PEC	Course Code:	Course Title:	C	redits:	= 4
	CET4763	Advanced Materials	L	T	P
	Semester:	Total contact hours: 60	3	1	0
		List of Prerequisite Courses			
	Applied Physics (PHT41	51), Introduction to Material Technology (SMT4351),			
		List of Courses where this course will be prerequisite			
	Material Processing (SM	T4354)			
	Descri	ption of relevance of this course in the Int. M. Tech. Program			
This co		principles of material testing and characterization and to apply them f	or vario	ous engi	neering
		Course Contents (Topics and subtopics)	R	eqd. ho	urs
1		s: Metal nano particles, their structure and properties, Carbon nano erties and applications. Nano materials in catalysis.		10	
2	Composite Materials: Po composites, metal- ceran	olymer composites, metal-metal composites, polymer-metal nic composites.		10	
3		als: Principles of superconductivity, properties, advantages and actors. Applications, superconductors		10	
4	Smart Materials: Shape r Stimuli for sensors and a	nemory alloys, Auxetic materials and Biomimicking materials. ctuators		30	
		Total		60	
	,	List of Text Books/ Reference Books			
1	Physical Chemistry, Atki	ins and de Paula (any recent edition)			
2	Inorganic Chemistry, 5th Armstrong.	h edition by P. Atkins, T. Overton, J. Rourke, M. Weller and F.			
		Course Outcomes (students will be able to)			
CO1	Understand how intermo phenomena.	lecular forces determine colloidal behaviour, surfactant and surface		K2	
CO2		on of statistical thermodynamics to describe the behaviour of gases, phase (gas-liquid) equilibrium and liquid mixtures.		К3	
CO3	Develop an understanding function in the solid state	ng of the relationship between structure, local crystal chemistry and e.		K4	
CO4	Implement the theory dev	veloped in the lecture course through the practical component.		К3	
CO5		level of skills in a chemical laboratory demonstrating effective quette, especially in the areas of handling of chemicals and usage of equipment.		К3	
K1: R	emembering, K2: Understa	anding, K3: Applying, K4: Analyzing, K5: Evaluating, K6: Creating			

	Ma		_	_				rials CET		s)		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1												
CO2	CO2											
CO3												
CO4												
CO5	CO5											
	3	-Strong (Contribu	tion; 2-M	Ioderate (Contribut	tion; 1-L	ow Contr	ibution;			

Electives Syllabus Page 201 of 267

	Chemical Engineerin of Course Outcomes	_			
	PSO1	PSO2	PSO3	PSO4	PSO5
CO1					
CO2					
CO3					
CO4					
CO5					
3-S	trong Contribution; 2	-Moderate Contri	bution; 1-Low Cor	ntribution;	•

Electives Syllabus Page 202 of 267

		Semester			
PEC	Course Code:	Course Title:	(Credits :	= 4
	CET4764	Plant Utilities	L	T	P
	Semester:	Total contact hours: 60	3	1	0
		List of Prerequisite Courses			
	NIL				
		List of Courses where this course will be prerequisite			
	Industrial Chemistry an Dynamics (CET4256)	d Reaction Engineering (CET4253), Instrumentation and Process			
	Descr	iption of relevance of this course in the Int. M. Tech. Program			
air, in chemi chemi	strumental air, inert gase cal products. Use of con- cal plant for producing ma	smooth and proper operation of utilities and auxiliaries' plants such s, DM water and chilled water. These utilities are essential for more cept of energy efficiency and green chemistry are necessary for enterials of desired quality and to maintain plant safety. Hence the countries associated cognitive and effective domain learning outcomes.	anufact nergy or rse has	turing d conserva been d	different ation in esign to
		Course Contents (Topics and subtopics)	R	eqd. ho	urs
1	Role of Process Utilities	8			
2	feed water, cooling wate	and its conditioning and treatment for process industries e.g. boiler r. Recycling aspects of water from blow downs.		8	
3		stems in chemical process plants, design of efficient steam heating ization, flash steam, steam traps.		8	
4		s, classification, selection and industrial applications		8	
5	Characteristics of air and	l air receivers, instrument air. Inert gas generation		8	
6	Vacuum system engineer Electrical Power: HT/LT			5	
7	Area classification, Motors/drives selection a	accordingly.		5	
8	Single line diagram. Emergency Drives Ident Emergency power. Inver			5	
9	Estimation of utilities Utilities Audit			5	
		Total		60	
		List of Text Books/ Reference Books			
1	Physical Chemistry, Atk	ins and de Paula (any recent edition)			
2	Inorganic Chemistry, 5t Armstrong.	h edition by P. Atkins, T. Overton, J. Rourke, M. Weller and F.			
		Course Outcomes (students will be able to)			
CO1	Student will be able to in industry.	nterpret the usage of water as utility across various applications in an		K2	
CO2		of air and various form of air utilization in industry.		К3	
CO3	Understanding of applica	ation and means of generation of steam in industry		K4	

Ma	Che pping of		ngineerir Outcom	U					s)		
PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12

K3

Understanding of refrigeration systems and its utilization in an industry.

CO5 Knowledge of implementing a venting system and vacuum system in an industry
K1: Remembering, K2: Understanding, K3: Applying, K4: Analyzing, K5: Evaluating, K6: Creating

CO4

Electives Syllabus Page 203 of 267

Integrated Master of Technology, Chemical Engineering (Major) and MDM ICT Marathwada Campus, Jalna

CO1											
CO2											
CO3											
CO4											
CO5											
	3	S-Strong (Contribut	tion; 2-M	Ioderate (Contribut	tion; 1-Lo	ow Contr	ibution;		

Mapping o	Chemical Enginee of Course Outcomes				
	PSO1	PSO2	PSO3	PSO4	PSO5
CO1					
CO2					
CO3					
CO4					
CO5					

Electives Syllabus Page 204 of 267

		Semester			
PEC	Course Code:	Course Title:	(credits:	= 4
	CET4765	Fuels Engineering	L	T	P
	Semester:	Total contact hours: 60	3	1	0
		List of Prerequisite Courses			
	Introduction to Petroleun	n Technology (SPT4351)			
		List of Courses where this course will be prerequisite			
	Petrochemicals Technology (SPT4353)	logy (SPT4355), Refinery engineering (SPT4354), Reservoir			
	Descri	ption of relevance of this course in the Int. M. Tech. Program			
		s useful energy either through combustion or through nuclear reaction and can be harnessed economically for domestic and industrial purpose		ergy sh	ould be
		Course Contents (Topics and subtopics)	R	eqd. ho	urs
1	Classification of fuels: G	/L/S , Automotive Fuels Bharat Standards IV		8	
2		Gas: Processing for pipeline specs, CO2/H2S/COS Removal, Gas ession for pipeline transport, Coal bed methane, Bio Gas (methane)		8	
3	CNG: As auto fuel, Com	pression, CNG stations		8	
4		G JT effect, closed & open cycle, Storage of LNG, Transportation erminal, Gasification of LNG to NG for pipeline transport		8	
5	and handling, Manufactu	ources, Reforming for fuels, LPG: Domestic and Auto LPG Storage re and Storage (Partly in I&EC) Petrol, Diesel, Aviation Turbine re oil, Fuel oil, LSHS. Biofuels: bioethanol, biodiesel		8	
6	Solid Fuels: Characteriza Municipal domestic wast	tion, Coal, Biomass, Residue from Refinery, Plastic waste, e		5	
7	GHV/LHV Calculations definition and significant	sic equation, air requirement norms for excess air, Heating value: for mixture of components, Wobbe number for Gaseous Fuels ce, Burners: Gas/Liquid/Hydrogen, Flue gas composition, Dew nent of flue gas to meet local standards, Carbon Credit		5	
8	Gasification of Coal, Indicombined cycle, cogener	ian Coal, Biomass, Refinery Heavy Residue, Power generation, ation		10	
		Total		60	
		List of Text Books/ Reference Books			
1		nbustion", 3rd Edition, Universities Press, 2009.			
2	S.P. Sharma and C. Moh	an, "Fuels and combustion", Tata McGraw-Hill, 1984			
		Course Outcomes (students will be able to)			
CO1	Differentiate between var	rious fuels.		K2	
CO2	Analyse exhaust and flue			K4	
CO3	,	derations of burners, Gasification of coal, differents types of fuel		K3	
CO4	Control of emissions in c			K5	
K1: Re	emembering, K2: Understa	anding, K3: Applying, K4: Analyzing, K5: Evaluating, K6: Creating			

	Chemical Engineering Elective: Fuels Engineering CET4765 Mapping of Course Outcomes (COs) with Programme Outcomes (POs)											
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1												
CO2												
CO3												
CO4												

Electives Syllabus Page 205 of 267

3-Strong Contribution; 2-Moderate Contribution; 1-Low Contribution;

	Chemical Engineering Course Outcomes	•	0		
	PSO1	PSO2	PSO3	PSO4	PSO5
CO1					
CO2					
CO3					
CO4					
3-S	trong Contribution; 2	-Moderate Contri	bution; 1-Low Co	entribution;	•

Electives Syllabus Page 206 of 267

		Semester					
PEC	Course Code:	Course Title:	Credits = 4				
	CET4766	Advanced topics in Polymer Chemistry/Physics Characterization/Analysis of Polymers	L	T	P		
	Semester:	Total contact hours: 60	3	1	0		
	<u>.</u>	List of Prerequisite Courses					
	10+2 Physics, Applied Ph	ysics (PHT4151),					
		List of Courses where this course will be prerequisite					
		Technology (SMT4351), Polymer Science and Technology- I d Characterization of Resins and Polymers (SMP4351), Polymer II (SMT4353)					
'.	Descrip	tion of relevance of this course in the Int. M. Tech. Program	•				

This course introduces advanced methods of polymerization and to the characterization of macromolecules in solution. The course is made of flipped classrooms and projects. All topics are not necessarily covered each year.

Part A: After recalling the basics of chain polymerization methods, the different current synthetic strategies will be studied (anionic, cationic, standard radical, controlled radical and coordinative polymerization methods). The scope and limitations of each method will be systematically discussed. Mechanistic and kinetic features will be then studied for each polymerization method. Special emphasis will be finally placed on the control of macromolecular architectures.

Part B discusses the notions of ideal and real chains, the size of macromolecules in solution, the notions of excluded volume and second virial coefficient, the thermodynamic properties of polymer solutions, and different techniques of characterization of polymers in solution (osmometry, viscometry, size exclusion chromatography, static light scattering).

	Course Contents (Topics and subtopics)	Reqd. hours
1	Structure/property relationship: Morphology & Crystallinity Mechanical and Chemical properties	10
	Structure/Rheology relationships Rheology, elasticity, Viscoelasticity, yield and fracture chemical resistance Properties of commercial polymers. PE, PP, Acrylic, amides & peptides phenolic & Urethane resins	15
2	Role of Additives: Type of additives and their role in altering the properties	10
3	Polymer composites: Carbon filled; fibre filled etc. Reinforced polymers	10
4	Analysis of polymer solubility, thermodynamics and phase equilibrium of polymer solutions, End group analysis, Colligative property measurement, Light scattering, Solution viscosity and molecular size and wt. distribution. Spectroscopic methods, microscopy, thermal analysis.	15
5	Selection of polymers, domestic and engineering usage	10
	Total	60
	List of Text Books/ Reference Books	
1	S Introduction to polymers- R.J.Young & P.A.Lovell, Chapman & Hall, London. second edition. Wiley online library 1991.	
2	Textbook of Polymer Science- Fred W. Billmeyer, J.R.John Wiley & Sons, New York. Third edition. Wiley online library 1994.	
3	Principles of Polymer Systems- F. Rodrignek, McGraw Hill, N.Y. 2nd edition. Wiley online library 1981.	
4	Polymer Chemistry- Seymour & Carreher, Marcel Dekkar, NY. Library of congress.	
5	Fundaments of Polymer Science and Engineering- Anil Kumar & S.K.Gupta, Tata McGraw Hill, New Delhi. 1978.	
6	Principle of polymer science-P Bahadur, N.V Sastry 2nd edition Narosa Publishing House. 2002.	
	Course Outcomes (students will be able to)	
CO1	Realize the basic concept of chemical reactions and polymerization reactions involved in the Macro molecules and micro molecular reactions	K2

Electives Syllabus Page 207 of 267

Integrated Master of Technology, Chemical Engineering (Major) and MDM ICT Marathwada Campus, Jalna

CO2	Become fully aware of the stereo chemistry and physical status of polymer molecules, molecular weight, stereo specificity and stability of polymer compounds.	K4							
CO3	Understand the study of methods of polymerization reaction and their properties, advantages, disadvantages, modifications and applications.	К3							
CO4	Understand the various methods and techniques of polymerization reactions, their chemistry, mechanism, structures, properties and applications.	K2							
CO5	Understand the structure of monomers, functionality, and classification of polymers based on source, composition, conditions, molecular weight, geometry, and Nomenclature of polymers.	K2							
K1: R	K1: Remembering, K2: Understanding, K3: Applying, K4: Analyzing, K5: Evaluating, K6: Creating								

Chemical En	Chemical Engineering Elective: Advanced topics in Polymer Chemistry/Physics Characterization/Analysis of Polymers CET4766 Mapping of Course Outcomes (COs) with Programme Outcomes (POs)											
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1												
CO2												
CO3												
CO4												
CO5												
	3	S-Strong	Contribu	tion; 2-M	Ioderate	Contribu	tion; 1-L	ow Contr	ribution;			

Chemical Engineering Elective: Advanced topics in Polymer Chemistry/Physics Characterization/Analysis of Polymers CET4766 Mapping of Course Outcomes (COs) with Programme Specific Outcomes (PSOs)											
PSO1 PSO2 PSO3 PSO4 PSO5											
CO1											
CO2											
CO3											
CO4											
CO5											
3-S	3-Strong Contribution; 2-Moderate Contribution; 1-Low Contribution;										

Electives Syllabus Page 208 of 267

	Semester											
PEC	Course Code:	Course Title:	Credits = 4									
	CET4767	L	T	P								
	Semester:	3	1	0								
	NIL											
		List of Courses where this course will be prerequisite										
	Synthesis and Characterization of Resins and Polymers (SMP4351), Polymer Science and Technology- II (SMT4353)											
	Descri	otion of relevance of this course in the Int. M. Tech. Program										

Description of relevance of this course in the Int. M. Tech. Program

The course provides a complete overview of current and future aspects in polymer engineering. The finished polymer product properties are usually determined during the production process and hence it very essential to understand all the fundamentals and chemistry behind the polymerization process. Various terms such as reaction initiation, propagation, termination, reaction kinetics, thermal kinetics, molecular weight, and physical features such as microstructures, morphology, tensile and fractural strength etc. will be discussed in this course. The general polymerization concepts, principles, kinetics and methodology will be discussed through various examples.

The course will be helpful for polymer and chemical engineer, students and industries for the advancement in the concepts related to polymer reaction engineering.

	Course Contents (Topics and subtopics)	Reqd. hours
1	Kinetic modelling, concept of reactor design, optimisation and control of polymerisation process, isolation and separation of monomers/catalyst/by products etc for Bulk polymerisation, Solution polymerisation, Emulsion polymerisation, suspension polymerisation with case studies	10
2	Bonding forces in polymers, Molecular weight and its distribution, control of polymer synthesis; thermodynamic and kinetic control, diffusion control, polymer end chain control & polymerization process, control strategies	10
3	Interpretation of batch reactor data; Kinetic equations for unimolecular & bimolecular irreversible different order reaction such as second order& nth order, Half -life, varying and constant volume reaction system, Design equations for ideal reactors, namely batch, CSTR, plug flow, design equation for single reaction systems using batch and semi batch, CSTR, PFR, Multiple reactor system; reactor in series and parallel, Preference of type of reactor used, Best arrangement in ideal reactors	10
4	Recycle reactor, auto catalytic reactions, Design for multiple reactions: Parallel and series reactions, quantitative and qualitative treatment of product distribution and of reactor size for different types of ideal reactors, selectivity and yield, reactors in series and parallel for single reaction system, related problems Problems; related to reaction kinetics, series and parallel reaction and multiple reactor systems, Reaction engineering of step growth polymerization: Basic properties & Examples of commercially important polymers, Reactivity of functional groups Kinetics of step polymerization, Self-Catalysed Polymerization, External Catalysis of Polymerization, Effect of Non-equivalence of Functional Groups, Accessibility of functional groups, Equilibrium considerations, Cyclization versus linear polymerization	10
5	Step growth polymerization; Molecular weight control in linear polymerization, Molecular weight distribution in linear & non-linear polymerization, Introduction to radical chain polymerization, Basic concepts of resonance, Comparison between radical and step polymerization, Comparison between radical and ionic chain polymerization, Thermodynamic and kinetic aspect of Radical Chain Polymerization, Effect of Substituents, Modes of Propagation of Monomer Units, Experimental Facts from Literature, Synthesis of Head-to-Head Polymers, Polymerization Sequence: Initiation, Propagation, Termination	10
6	Radical chain polymerization; Rate Expression, Cage Efficiency, Determination of Rate of polymerization, Precipitation of Polymer, Polymer and Process Analysis for polymerization, Initiation, Stability and Half Life of Initiators, Dependence of Polymerization Rate on Initiator, Dependence on Monomer, Initiation in aqueous media,	10

Electives Syllabus Page 209 of 267

	D. L. T. C. C. C. A. T. C. C. C. C. C. C. C. C. C. C. C. C. C.	
	Redox Initiation (cont.), Initiation in non-aqueous media, Rate of Redox polymerization, Photochemical Initiation	
	Photosensitizer, Mechanism of Photo-initiation, Rate of Photo-polymerization, Absorbed	
	light Measurement, Initiation by Ionizing Radiation, Other initiation techniques, Electrolytic	
	polymerization, Plasma polymerization, Sonication, Kinetic Chain Length and other	
	important terms, Heterogenous Polymerization: Precipitation, Suspension	
7	Heterogenous Polymerization: Precipitation, Suspension (cont.) & Emulsion Polymerization; microstructural feature, factors affecting the emulsion polymerization, process of emulsion polymerization, mechanism kinetic and thermodynamics, Model, surface active agents, process, population balance, Physical properties and phase equilibrium calculations	9
8	Emulsion Polymerization: particle nucleation, morphology, types of reactors used for emulsion polymerization, performance of emulsion, polymerization reactors, Population balance, Implementation of emulsion polymerization, Ionic Chain Polymerization: Comparison between radical and ionic chain polymerization, Living and Dormant polymers and polymerizable Ionic Chain Polymerization: classification of ionic species, effect of solvents, conductance studies, initiation and propagation in ionic polymerization, effect of solvating agent, Heat	9
	and Entropy of dissociation of ionic pairs, types of ions, cationic polymerization, Chain	
9	Kinetic modelling of co-polymerisation processes	9 60
	Total	00
1	List of Text Books/ Reference Books	
1	Odian G., 2002, "Principles of Polymerization", John Wiley & Sons.	
2	Billmayer, F. W., Textbook of Polymer Science 3rd Edition, Willey 1984 Inter Science, New York	
3	Pauer, Werner (Ed.), 2018, Polymer Reaction Engineering of Dispersed Systems, Springer publications ISBN 978-3-319-96436-2	
4	José M. Asua, 2007, Polymer Reaction Engineering, Blackwell Publishing Ltd	
5	Thierry Meyer and Jos Keurentjes, 2005, Handbook of polymer Reaction engineering, Wiley-VCH	
6	Beisenberger J. A. and Sebastian D.H.; "Principles of Polymerization Engineering", John Wiley& Sons	
	Course Outcomes (students will be able to)	
CO1	To Study the methods of measuring the molecular weight, polymerization kinetics and Copolymerization and polymer processing technologies.	K2
	To understand all the fundamentals and chemistry behind the polymerization process.	K4
CO2	To understand an the randamentals and elemistry behind the polymerization process.	
	Understand the kinetic modelling of co-polymerisation processes	K3
CO2 CO3 CO4		

Chemical Engineering Elective: Polymer Reactor Engineering CET4767 Mapping of Course Outcomes (COs) with Programme Outcomes (POs)												
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1												
CO2												
CO3												
CO4												

Electives Syllabus Page 210 of 267

Integrated Master of Technology, Chemical Engineering (Major) and MDM ICT Marathwada Campus, Jalna

CO5												
3-Strong Contribution; 2-Moderate Contribution; 1-Low Contribution;												

Chemical Engineering Elective: Polymer Reactor Engineering CET4767 Mapping of Course Outcomes (COs) with Programme Specific Outcomes (PSOs)											
	PSO1	PSO2	PSO3	PSO4	PSO5						
CO1											
CO2											
CO3											
CO4											
CO5											
3-5	Strong Contribution;	2-Moderate Contri	bution: 1-Low Cor	ntribution:	1						

Electives Syllabus Page 211 of 267

	Semester											
PEC	Course Code:	Course Title:	Credits = 4									
	CET4768	L	T	P								
	Semester:	3	1	0								
	Polymer science and Technology I (SMT4352), Structural Property Relationship (SMT4355), Introduction to Material Technology (SMT4351)											
		List of Courses where this course will be prerequisite										
	Material Processing (SMT4354)											
	Description of relevance of this course in the Int. M. Tech. Program											

This course provides a generalized understanding to the polymer process engineering. First, a brief introduction about several polymers, their classification, and characterization techniques is provided. Then, the deep insight on the thermodynamic, rheological, heat and mass transfer, as well as reaction engineering perspective of the polymers is explained. Finally, the student will get to learn about the polymer processing, preparation processes, and industrial testing methods. To better understand the engineering perspective, the application of polymers in electronic sectors and building engineering is also discussed with examples.

	sed with examples.	Dand harre
	Course Contents (Topics and subtopics)	Reqd. hours
1	Plastic Technology: Moulding, (injection, blow) extrusion, cold-not and vacuum forming multipolymer systems. Equipment design and operating conditions	10
2	Fibre Technology: Textile processing, fibre spinning and after treatment. Equipment design and operating conditions	10
3	Elastomer Technology: Vulcanisation, Reinforcement compounding Equipment- design & operating conditions, environmental impact	10
4	Recycle of polymers: Reprocessing techniques and limitations	10
5	Selection of polymers: domestic & engineering usage	10
6	Rheological and mechanical measurements concept of solution viscosity	10
	Total	60
	List of Text Books/ Reference Books	
1	Richard G. Griskey Ph.D., P.E. (auth.) - Polymer Process Engineering-Springer Netherlands (1995)	
2	James J. Licari, Laura A. Hughes - Handbook of Polymer Coatings for Electronics_ Chemistry, Technology and Applications (Materials Science and Process Technology Series)- William Andrew (1991)	
3	Yoshihiko Ohama - Handbook of polymer-modified concrete and mortars_ properties and process technology-Noyes Publications (1995)	
4	Roger Brown - Handbook of polymer testing - physical methods-CRC Press (1999)	
5	Werner Pauer - Polymer Reaction Engineering of Dispersed Systems_ Volume I (2018, Springer International Publishing)	
6	George Odian - Principles of Polymerization (2004, Wiley-Interscience)	
7	Jose Asua - Polymer Reaction Engineering (2007, Wiley-Blackwell)	
	Course Outcomes (students will be able to)	
CO1	Isolate the key design features of a product which relate directly to the material(s) used in its construction	K2
CO2	Indicate how the properties of polymeric materials can be exploited by a product designer.	K4
CO3	Pursue lifelong learning that addresses, from concept to commercialization, the design and manufacture of plastic products.	К3
CO4	Realize basic elements in optical fibres, different modes and configurations	K2
CO5	Analyze the transmission characteristics associated with dispersion and polarization techniques.	K4

Electives Syllabus Page 212 of 267

	Chemical Engineering Elective: Polymer Processing CET4768 Mapping of Course Outcomes (COs) with Programme Outcomes (POs)											
	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12											
CO1												
CO2												
CO3												
CO4												
CO5												
	3	S-Strong (Contribu	tion: 2-M	oderate (Contribu	tion: 1-L	ow Contr	ibution:			

Chemical Engineering Elective: Polymer Processing CET4768 Mapping of Course Outcomes (COs) with Programme Specific Outcomes (PSOs)							
	PSO1	PSO2	PSO3	PSO4	PSO5		
CO1							
CO2							
CO3							
CO4							
CO5							
3-Strong Contribution; 2-Moderate Contribution; 1-Low Contribution;							

Electives Syllabus Page 213 of 267

		Semester				
PEC	Course Code:	Course Title:	Credits = 4			
	CET4769	Introduction to Polymer Engineering	L	T	P	
	Semester:	Total contact hours: 60	3	1	0	
		List of Prerequisite Courses				
	Polymer science and Tec	hnology I (SMT4352)				
	T	List of Courses where this course will be prerequisite				
	Material Processing (SM	T4354)				
		ption of relevance of this course in the Int. M. Tech. Program				
analys charac	ses, and modifies polyme	ed understanding about polymer engineering is commonly an engineers. It covers aspects of the petrochemical industry, polymerization Also, it includes polymer processing and description, and structure	ı, shap	e and p	olymer	
		Course Contents (Topics and subtopics)	R	eqd. ho	urs	
1		: Classification based on application and history, Natural and ypes e.g. fibres, rubbers, adhesives, resins, plastics, etc.		15		
2	amorphous, molecular w	roperties/structures: Thermoplastic, thermosetting, crystalline, eights status, transitions, glass transition temperature		15		
3	Polymer formation/modi ordination, complex poly Co-polymerisation, Heat	15				
4	Polymerisation Processes emulsion polymerisation Butadiene, poly urethane Biodegradable polymers	15				
		Total		60		
		List of Text Books/ Reference Books				
1	Paul C. Painter and Mic Destech Publications, Inc	hael M. Coleman, Essentials of Polymer Science and Engineering, 2., 2008.				
		Course Outcomes (students will be able to)				
CO1	molecular weight distrib	understand the relationships between polymer molecular weight, ation, and the properties of polymeric materials.		K2		
CO2	mechanisms/kinetics and Students will also be ab	tudents will demonstrate an ability to distinguish different polymerization reactions and their nechanisms/kinetics and learn how actual polymerization is performed in the laboratory. Students will also be able to analyze polymerization data and predict the conversion and nolecular weight, which will lead to critical thinking about how to improve the setup for etter polymerization.				
CO3	distributions from differen	to determine polymer molecular weights and molecular weight ent types of experiments. Students will learn about polymer solvent of the solvents on the dimensions of the polymers in solution.	K4			
CO4		nd expand their skills in performing and analysing the thermal and polymers and demonstrate an ability to predict how the molecular properties.	K4			
CO5	chemical structures and	describe the viscoelastic behaviour of polymers with respect to their molecular weights, and to construct a corresponding master curve ata, which can be used to predict the material response at different for frequencies.	K5			
CO6	analyze data. This will weight, viscoelastic prop	run extrusion and injection moulding machines, and to collect and help them to make connections between the polymer molecular erties, and processing conditions.				
K1: R	emembering, K2: Understa	anding, K3: Applying, K4: Analyzing, K5: Evaluating, K6: Creating				

Electives Syllabus Page 214 of 267

Chemical Engineering Elective: Introduction to Polymer Engineering CET4769 Mapping of Course Outcomes (COs) with Programme Outcomes (POs)												
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1												
CO2												
CO3												
CO4												
CO5												
CO6												
3-Strong Contribution; 2-Moderate Contribution; 1-Low Contribution;												

	Chemical Engineering Elective: Introduction to Polymer Engineering CET4769 Mapping of Course Outcomes (COs) with Programme Specific Outcomes (PSOs)							
	PSO1	PSO2	PSO3	PSO4	PSO5			
CO1								
CO2								
CO3								
CO4								
CO5								
CO6								
3-5	Strong Contribution; 2	-Moderate Contri	bution; 1-Low Con	ntribution;				

Electives Syllabus Page 215 of 267

		Semester			
PEC	Course Code:	Course Title:	Credits = 4		
	CET4770	Downstream Processing in Biochemical Industry	L	T	P
	Semester:	Total contact hours: 60	3	1	0
		List of Prerequisite Courses			
	Introduction to Biologica				
		List of Courses where this course will be prerequisite	1		
	NIL				
		ption of relevance of this course in the Int. M. Tech. Program			
other p		cessing is to isolate, purify and concentrate the previously synthesi bulk matrix. Downstream processing may also include formulation at o drug product (DP).			
		Course Contents (Topics and subtopics)	R	eqd. ho	urs
1		biochemical industry, Separation processes for bulk chemicals and Unit operations on biochemical industry, such as filtration, mass transfer,		10	
2	liquid extraction, physica two phase flow in extract	l-liquid extractions, phase diagrams, thermodynamics of liquid - al vs reactive extraction, liquid ion exchangers, design of extractors, tors, modelling and simulation of extractors,	10		
3	Aqueous two-phase extra micellar extraction of pro-	10			
4	Adsorption: physical and and polymeric adsorbents and secondary metabolic	10			
5	Protein purifications, pre separations of proteins, d	10			
6	Gel permeation chromato affinity chromatography,	5			
7	Applications in biochemi	ical industry		5	
		Total		60	
		List of Text Books/ Reference Books			
1	Belter, P.A. E.L. Cussler Biotechnology, Wiley In	And Wei-Houhu – "Bioseparations – Downstream Processing For terscience Pun. (1988).			
2	Sivasankar, B. "Biosepar	rations: Principles and Techniques". PHI, 2005.			
3	R.O. Jenkins, (Ed.) – Pro Learning Series, Butterw	duct Recovery In Bioprocess Technology – Biotechnology By Open orth-Heinemann (1992).			
4	J.C. Janson And L. Ryder and Applications, VCH F	n, (Ed.) – Protein Purification – Principles, High Resolution Methods Pub. 1989			
5	R.K. Scopes – Protein Pu	nrification – Principles And Practice, Narosa Pub. (1994).			
		Course Outcomes (students will be able to)			
CO1	1	n of this course, the students will be able to Understand the methods nzymes and in general about product development R & D		K3	
CO2	Able to Define the funda	mentals of downstream processing for product recovery		К3	
CO3	Able to Understand the re	equirements for successful operations of downstream processing		К3	
CO4	Able to Describe the com	nponents of downstream equipment and explain the purpose of each		K2	
CO5	Able to Understand the poperations involved in bi	process of isolation, purification, product formulations and finishing oproduct production		K4	
K1: Re	emembering, K2: Understa	anding, K3: Applying, K4: Analyzing, K5: Evaluating, K6: Creating			

Electives Syllabus Page 216 of 267

Cher	Chemical Engineering Elective: Downstream Processing in Biochemical Industry CET4770 Mapping of Course Outcomes (COs) with Programme Outcomes (POs)											
	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12											
CO1												
CO2												
CO3												
CO4												
CO5	CO5											
3-Strong Contribution; 2-Moderate Contribution; 1-Low Contribution;												

	neering Elective: Do of Course Outcomes		_	•	1770					
	PSO1	PSO2	PSO3	PSO4	PSO5					
CO1										
CO2										
CO3										
CO4										
CO5										
3-Strong Contribution; 2-Moderate Contribution; 1-Low Contribution;										

Electives Syllabus Page 217 of 267

		Semester			
PEC	Course Code:	Course Title:	C	credits =	= 4
	CET4771	Advanced Biochemical Engineering	L	T	P
	Semester:	Total contact hours: 60	3	1	0
		List of Prerequisite Courses			
	Introduction to Biological	Science (BST4251)			
]	List of Courses where this course will be prerequisite			
	NIL				
	Descrip	tion of relevance of this course in the Int. M. Tech. Program			
engine	eers are key players in the gre	rinciples of reactor design for bioprocess and biotechnology applicatest biomedical challenges that lie ahead including: can we make more efficiently and with less energy.			
	C	ourse Contents (Topics and subtopics)	R	eqd. ho	urs
1	proteins, special needs, Un centrifugation, heat and ma			10	
2	Solvent extraction: liquid- liquid extraction, physical two phase flow in extracto		10		
3	Aqueous two-phase extrac micellar extraction of prote	tion, affinity partitioning, dye ligand partitioning, Reverse eins and enzymes,		10	
4		chemical adsorption, theories of adsorption, ion exchange resins adsorption of small molecular weight bioproducts such primary roducts of cells,	10		
5		pitation, affinity precipitation, adsorptive and chromatographic sign of adsorption columns, Methods of operation.,		10	
6		raphy, metal ligand chromatography, dye ligand chromatography, xpanded bed chromatography,		5	
7	Applications in biochemic	al industry		5	
		Total		60	
		List of Text Books/ Reference Books			
1	"Principle of Fermentation	n Technology", P.F. Stanbury and A. Whitaker; Pergamon Press.			
2	• • • • • • • • • • • • • • • • • • • •	Bu'lock, B. Kristiansen, Academic Press.			
3	"Biochemical Engineering Co., New York.	g Fundamentals" by J.E. Bailey and D.F. Ollis, McGraw-Hill Book			
4	Bioprocess Engineering B Prentice Hall, Upper Sadd	asic Concepts. 2nd edition Michael L. Shuler and Fikret Kargi, le River, NJ.			
5	Bioprocess Engineering Pr	inciples Pauline Doran, Academic Press, London.			
6	T Panda, Bioreactors analy	vsis and design, Tata McGraw Hill, New Delhi, New York, 2011			
	T	Course Outcomes (students will be able to)			
CO1	Apply chemical engineering principles to bioreactors.	g principles e.g. fluid flow, mixing, heat transfer and mass transfer		К3	
CO2	Assess the performance of	bioreactors and troubleshoot operational problems.		K3	
CO3		ding of the socio-economic context of advanced biotechnology atory and ethical responsibilities, in assessing complex problems.		K3	
CO4	Solve open-ended problem proposing creative process	is by investigating emerging trends in the field and identifying and es.	K2		
CO5	Collaborate effectively wit	h others by utilising your team's diverse abilities and perspectives.		K4	
CO3 CO4 CO5	Demonstrate an understar applications, such as regul Solve open-ended problem proposing creative process Collaborate effectively with	ading of the socio-economic context of advanced biotechnology atory and ethical responsibilities, in assessing complex problems. as by investigating emerging trends in the field and identifying and es.			K3

Electives Syllabus Page 218 of 267

	Chemical Engineering Elective: Advanced Biochemical Engineering CET4771 Mapping of Course Outcomes (COs) with Programme Outcomes (POs)											
	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12											
CO1												
CO2	CO2											
CO3												
CO4												
CO5	CO5											
3-Strong Contribution; 2-Moderate Contribution; 1-Low Contribution;												

	al Engineering Election of Course Outcomes				
	PSO1	PSO2	PSO3	PSO4	PSO:
CO1					
CO2					
CO3					
CO4					
CO5					
3-	Strong Contribution; 2	-Moderate Contri	bution; 1-Low Cor	tribution;	•

Electives Syllabus Page 219 of 267

		Semester			
PEC	Course Code:	Course Title:	C	redits :	= 4
	CET4772	Adsorptive Separations	L	T	P
	Semester:	Total contact hours: 60	3	1	0
		List of Prerequisite Courses			
	Chemical Engineering O	perations (CET4254), Separation Processes (CET4356)			
		List of Courses where this course will be prerequisite			
	NIL				
	Descri	ption of relevance of this course in the Int. M. Tech. Program			
		orinciples of adsorption and adsorption separation processes including verview of representative industrial processes.	; both e	equilibri	um and
		Course Contents (Topics and subtopics)	R	eqd. ho	urs
1	Separation Processes: over	erview, alternative separation techniques, Mass separating agents	ı	10	
2	Adsorbents: Molecular si Polymeric adsorbents	eves activate carbon, zeolites alumina, silica ion exchangers,		10	
3	adsorption, Thermodynai phenomena, Surface exce	sorption: Selectivity engineering in catalysis, Gaseous and liquid mics of adsorption, Statistical thermodynamics of adsorption ess, theories of adsorption. Separations: Bulk separation, ion and recovery from dilute solutions: metals, organic chemicals,		10	
4	Design of adsorbers: Gas	eous and liquid phase adsorption		10	
5	Theoretical analysis of di	ffusion in relation to adsorption in micropores		10	
6	Chromatographic separat Biochemical applications	ions: Bulk chemicals separations, Purification, refining operations,		5	
7	Novel separation techniq	ues using adsorbents, Industrial examples		5	
		Total		60	
		List of Text Books/ Reference Books			
1	Principles of Adsorption	and Adsorption Processes, 1984. Ruthven D.M Wiley.			
2	Pressure Swing Adsorption	on, 1994. Ruthven D.M., Farooq S., Knaebel K.S Wiley.			
3	Diffusion in Zeolites and	other Microporous Solids, 1992. Kärger J., Ruthven D.M Wiley.	1		
4	Adsorbents Fundamental	s and Applications, 2003. Yang R.T., Wiley.	1		
5	Adsorption by Powders Academic Press.	& Porous Solids, 1999. Rouquerol F., Rouquerol J., Sing K	L		
6	Perry's Chemical Enginee Hill	ers' Handbook. 7th Ed., 1997. Perry R.H. and Green D.W., McGraw-	L		
		Course Outcomes (students will be able to)			
CO1	An understanding of the	fundamental equilibrium and transport properties in adsorption.		К3	
CO2	A capability to model tra	nsient adsorption processes.		K3	
CO3	An understanding of the	basic design of adsorption systems.		К3	
CO4		orption equilibrium (including both single and multicomponent naterials (with emphasis on zeolites and activated carbon);.	<u> </u>	K2	
K1: R	emembering, K2: Understa	anding, K3: Applying, K4: Analyzing, K5: Evaluating, K6: Creating			

	Chemical Engineering Elective: Adsorptive Separations CET4772 Mapping of Course Outcomes (COs) with Programme Outcomes (POs)												
	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12												
CO1													
CO2	CO2												

Electives Syllabus Page 220 of 267

CO3												
CO4												
3-Strong Contribution; 2-Moderate Contribution; 1-Low Contribution;												

	hemical Engineering of Course Outcomes	_	_		
	PSO1	PSO2	PSO3	PSO4	PSO5
CO1					
CO2					
CO3					
CO4					
3-6	Strong Contribution; 2	-Moderate Contri	bution; 1-Low Co	ntribution;	1

Electives Syllabus Page 221 of 267

		Semester							
PEC	Course Code:	Course Title:	C	redits =	= 4				
	CET4773	Interfacial Science and Engineering	L	T	P				
	Semester:	Total contact hours: 60	3	1	0				
	T	List of Prerequisite Courses							
	NIL								
		List of Courses where this course will be prerequisite	•						
	NIL								
		ption of relevance of this course in the Int. M. Tech. Program							
fabrica are dis Studer	ating process. Physical phe scussed, including surface its will be encouraged to als and solving engineering		interfac wettabil loping	tial pher lity of s new fur	nomer surfac actions				
		Course Contents (Topics and subtopics)	K	eqd. ho	urs				
1	Definitions: Chemical and mechanisms and thermod tension and its measurem equation, equilibrium crit interfaces Interfacial area dispersions, Bubbles, and		10						
2	Microphases: Definitions and dynamics, Micelle formation surfactants CMC, structures of micelles, swollen micelle and microemulsions models, phase diagrams, Macroemulsions, Mechanical vs thermodynamic stability, HLB, Bancroft rule and other systems, Foams Colloids, Film elasticity, drainage, association, Langmuir Blodgets film production.								
3	solubilization, thermodyn	of measurement of relevant properties: surface tension, namic properties, spectroscopic techniques or phase (involving microphases) flow and transport, visco lutions.		10					
4		sis by microphases: Models, theories and data, surface potential and layer theory, layer Debye Huckel theory, Thermodynamics of y		10					
5		llsification, foam breakage, theories of coalescence, and motion, shear and other models.		10					
6	separation processes, Coa deposition, other applicat	, foam fractionation, froth floatation Enhanced oil recovery, Novel agulation, Flocculation, Microelectronics, surface vapour ions with techniques for molecular dynamics of structures, graphics software for		5					
7	Diffusion on the surface a	and in microphases		5					
		Total		60					
		List of Text Books/ Reference Books							
1	"Physics and Chemistry of John Wiley & Sons.	of Interfaces" by Hans-Jürgen Butt, Karlheinz Graf, Michael Kappl							
2	"Advanced Techniques fo	or Surface Engineering", by W. Gissler and H.A. Jehn,							
3	"Surfactants and Interfaci Sons.	al Phenomena", Milton J. Rosen, Joy T. Kunjappu, John Wiley &							
		Course Outcomes (students will be able to)							
CO1	To control the fundament	al concepts of surface and interfacial Engineering		К3					

Electives Syllabus Page 222 of 267

To interpret the phenomena of the interface between two phases

To understand electron-transfer kinetics and electric double layer effects

K3

K3

CO2

CO3

CO4	To be familiar with the nature phenomena and learn from the nature to solve engineering problems	K2							
CO5	To use the surface reactions to produce new materials.	K5							
K1: Re	K1: Remembering, K2: Understanding, K3: Applying, K4: Analyzing, K5: Evaluating, K6: Creating								

	Chemical Engineering Elective: Interfacial Science and Engineering CET4773 Mapping of Course Outcomes (COs) with Programme Outcomes (POs)											
	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12											
CO1												
CO2	CO2											
CO3												
CO4												
CO5												
3-Strong Contribution; 2-Moderate Contribution; 1-Low Contribution;												

	al Engineering Election of Course Outcomes				
	PSO1	PSO2	PSO3	PSO4	PSO5
CO1					
CO2					
CO3					
CO4					
CO5					
3-5	Strong Contribution; 2	2-Moderate Contri	bution; 1-Low Cor	ntribution;	•

Electives Syllabus Page 223 of 267

		Semester			
PEC	Course Code:	Course Title:	(Credits =	= 4
	CET4774	Colloid and Interfacial Science	L	T	P
	Semester:	Total contact hours: 60	3	1	0
		List of Prerequisite Courses			
	NIL				
	1	List of Courses where this course will be prerequisite			
	NIL				
	Descri	iption of relevance of this course in the Int. M. Tech. Program			
Behavof softincreation will enumber will b	riour and interactions toget ft materials, functional nasing attention recently. The nable students to: 1. Appre particles and surfaces. 2. Appre we very useful to undergra	cing the basic concepts and tools for the analysis of colloidal and ther with brief introduction to some advanced topics such as self-assematerials, nanocomposites, super-hydrophobicity, super-glue, etc. e overall aim of this course is to develop a broad background in colloidate and understand much of the otherwise specialized contemporary pply these themes to their own research and development problems eduate students, post-graduate students, teachers and practitioners for	mbly, n which ls and in publis ffective rom a v	neso-path have a nterface: hed rese bly. This wide var	tterni ttract s whi earch cour riety
backg	rounds: chemical, mechani	ical, civil, materials and electrical engineering; chemistry and physics;	1		
	C II I D C II F	Course Contents (Topics and subtopics)	K	eqd. ho	urs
1		Existence of surface tension/surface free energy, Laplace equation, urity rise phenomena, Measurement of surface tension, Contact stics		10	
2	Surface Thermodynamic Surface Excess, Monolay	s: Surface thermodynamic properties, Kelvin Eqn. Gibbs eqn, yer phase		10	
3	BET etc., Potential theo	s Mobile adsorption, Adsorption isotherms Langmuir, Freundlich, bry, Adsorption from solution, Electrical Diffuse Double layer eory scaled particle theory, Stern layer, Surfactant adsorption		10	
4		actants, synthesis of surfactants, Micelle structures, Determination elle formation, Swollen micelles, Hydrotropy		10	
5		s: Location of solubilization in micelles, Measurement of opic methods: MR, Fluorescence, IR etc, Detergency, selective		10	
6		acro emulsions, Stability of emulsions (Mechanical vs. oft rule, de-emulsification, HLB for emulsion, multiple emulsions,		5	
7	Foams: Gibbs triangle, F foams	ilm elasticity, drainage of films, Foam, defoaming, applications of		5	
		Total		60	
		List of Text Books/ Reference Books			
1	Principles of Colloid and starting with the 2nd edit	Surface Chemistry, Paul C. Hiemenz, Marcel Dekker, any edition ion, 1986.			
	1	Course Outcomes (students will be able to)	ı		
CO1	engineering; multi-phase	omenclature, concepts and tools of colloid and interface science and nano-systems; mechanics and thermodynamics on small scales.		K2	
CO2	A clear understanding of behaviour and exploitation	f differences between the surface and bulk dominated regimes and on of nano-behaviour.		K2	
CO3	Appreciation of how the processes to materials.	ese concepts and tools translate into a variety of applications from		K4	
CO4		nterfaces is highly multidisciplinary in nature combining both the ons from such diverse domains as chemical engineering and		K4	
CO5	-	solved to illustrate the concepts clearly and updated reviews and		K5	

Electives Syllabus Page 224 of 267

research papers will also be referred in addition to the standard textbooks.

K1: Remembering, K2: Understanding, K3: Applying, K4: Analyzing, K5: Evaluating, K6: Creating

		mical En	_	_								
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1												
CO2												
CO3												
CO4												
CO5												
	3	3-Strong	Contribu	tion; 2-M	Ioderate (Contribu	tion; 1-L	ow Contr	ibution;			

	ical Engineering Ele of Course Outcomes				
	PSO1	PSO2	PSO3	PSO4	PSO5
CO1					
CO2					
CO3					
CO4					
CO5					
3-5	Strong Contribution;	2-Moderate Contr	ibution; 1-Low Co	ntribution;	

Electives Syllabus Page 225 of 267

		Semester			
PEC	Course Code:	Course Title:	(Credits	= 4
	CET4775	Catalytic Green Science and Technology	L	T	P
	Semester:	Total contact hours: 60	3	1	0
-	•	List of Prerequisite Courses			
	NIL				
	Li	st of Courses where this course will be prerequisite			
	NIL				
•	Descripti	on of relevance of this course in the Int. M. Tech. Program	m		

The need for enhanced education in catalysis is common to many countries. Dramatic progress in catalysis fundamental science and technology occurred in the last two decades enables teaching and learning of catalysis based on a unified approach in which catalysis including all its subdisciplines is taught in a logically consistent way using the organic chemistry reaction mechanism, namely the main chemistry conceptual methodology with its unique usefulness as predictive and creative tool. Selected lessons from the past are taken into account along with new insight on the role of catalysis and green chemistry in chemistry education based on systems thinking.

	Course Contents (Topics and subtopics)	Reqd. hours
1	Green synthesis and heterogeneous catalysis, Metal and supported metal catalysis, metal-support interaction, Metal oxides and determination of acidity and basicity, Nature and type of supports, Solid acid catalysis, Solid base catalysis,	10
2	Catalyst design, preparation and activation, Clay and modified clays, Ion exchange resins, Zeolites and zeotypes, Heteropoly acids, Inorganic-organic catalysts, Immobilised enzymes, zeozymes, complexes,	10
3	Electrochemical catalysis, Photocatalysis, Microwave catalysis, Ultrasound catalysis, Synergistic catalysis, Important examples from,	10
4	Refinery industry -FCC, reforming, platforming, hydroforming, polymerisation, alkylation, isomerisation; hydrodesulfurization, hydro-nitrogenation, Pharmaceutical and fine chemical industry,	10
5	Dyestuff and intermediate industries, Perfume and flavour industry, Polymer industry, Textile industry, Paint industry,	10
6	Edible oil industry, Food industry,	5
7	Waste water treatment, Catalysis for auto-exhaust pollution abatement, DeNox, DeSOx technologies	5
	Total	60
	List of Text Books/ Reference Books	
1	IUPAC (1987) Compendium of Chemical Terminology, Gold V, Loening KL, McNaught AD, Sehmi P (Ed.s), Blackwell Scientific Publications: Oxford	
2	Wisniak J (2010) The History of Catalysis. From the Beginning to Nobel Prizes. Educ. quím. 21:60–69	
3	Kennema M, Shaping the future of catalysts, Heterogeneous Catalysts for Sustainable Industry, Royal Society of Chemistry, Burlington house, London, 25 November 2019	
4	Szekely G, de Sousa MCA, Gil M, Ferreira FC, Heggie W (2015). Chem Rev 115:8182–8229	
	Course Outcomes (students will be able to)	
CO1	Demonstrate knowledge of the principles and key applications of catalysis	K2
CO2	Explain the relation and differences between catalysis various subdisciplines	K2
CO3	Explain the interdisciplinary connection of catalysis with materials and surface science	K4
CO4	Explain different catalyst preparation methods	K4
CO5	Explain use of quantum chemistry in catalysis, and modern catalyst characterization methods	K5
CO6	Identify and understand the latest knowledge connected to catalysis research	K6
K1: R	emembering, K2: Understanding, K3: Applying, K4: Analyzing, K5: Evaluating, K6: Creating	

Electives Syllabus Page 226 of 267

	Chemical Ma	l Engined	_		-							
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1												
CO2												
CO3												
CO4												
CO5												
CO6												
	3	3-Strong (Contribu	tion; 2-M	loderate (Contribu	tion; 1-L	ow Contr	ribution;			

	Engineering Electives of Course Outcomes				
	PSO1	PSO2	PSO3	PSO4	PSO5
CO1					
CO2					
CO3					
CO4					
CO5					
CO6					
3-5	Strong Contribution; 2	-Moderate Contri	bution; 1-Low Cor	ntribution;	

Electives Syllabus Page 227 of 267

		Semester			
PEC	Course Code:	Course Title:	C	redits :	= 4
	CET4776	Homogeneous Catalysis	L	T	P
	Semester:	Total contact hours: 60	3	1	0
		List of Prerequisite Courses			
	NIL				
		List of Courses where this course will be prerequisite			
	NIL				
	Descri	ption of relevance of this course in the Int. M. Tech. Program			
mecha	nisms and applications of	se is to provide the student with an advanced training in Catalysis income of the different types of catalysts that operate both in homogen ano-catalysts, and in heterogeneous phase.			
		Course Contents (Topics and subtopics)	R	eqd. ho	urs
1	Examples, Single phase a	and multiphase catalytic reactions,		10	
2	Acidbase catalysis, Tra	nsition metal catalysis,		10	
3	Bio-catalysis: Microbes a	and enzymes, Phase transfer catalysis, Micellar catalysis,		10	
4	Microemulsion catalysis,	Electron transfer catalysis, Heteropoly acid catalysis,		10	
5	Homogeneous polymer c	atalysis, Heterogenisation of homogeneous catalysts,		10	
6	Catalysis by microwaves	and ultrasound,		5	
7	Catalyst recovery and rea	use		5	
		Total		60	
		List of Text Books/ Reference Books			
1	Eric V. Anslyn and Deni Science Books, 2006, seld	nis A. Dougherty: Modern Physical Organic Chemistry, University ected chapters.			
2	Homogeneous Catalysis:	Understanding the Art, W.N.M. van Leeuwen			
3	Catalysis: An Integrated	Textbook Ulf Hanefeld, Leon Lefferts			
4	Catalysis: Concepts and C	Green Applications, Gadi Rothenberg			
		Course Outcomes (students will be able to)			
CO1	The student must identification chemicals processes.	fy the importance of catalysis in the development of sustainable		K2	
CO2		he different types of catalysts, their mode of action, advantages and their principal applications.		K2	
CO3	The student must identify	y key reactions in organometallic catalysis.		K4	
CO4	The student must know complexes and their reac	the main homogeneous reactions catalyzed by transition metal tion mechanisms.		K4	
CO5		ribe the different types of heterogeneous catalysts and the different ion of molecular catalysts.		K5	
CO6	_	cribe the different types of organocatalyzed reactions and its		K6	
K1: Re	emembering, K2: Understa	anding, K3: Applying, K4: Analyzing, K5: Evaluating, K6: Creating			

		Chemical pping of	_	_		_		•		s)		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1												
CO2												
CO3												

Electives Syllabus Page 228 of 267

CO4											
CO5											
CO6											
	3	S-Strong (Contribu	tion; 2-M	loderate (Contribut	tion; 1-L	ow Contr	ibution;		

	nemical Engineering of Course Outcomes	_	•		
	PSO1	PSO2	PSO3	PSO4	PSO:
CO1					
CO2					
CO3					
CO4					
CO5					
CO6					

Electives Syllabus Page 229 of 267

		Semester									
PEC	Course Code:	Course Title:	(Credits	= 4						
	CET4777	Fundamentals of Catalytic Science and Engineering	L	T	P						
	Semester:	Total contact hours: 60	3	1	0						
		List of Prerequisite Courses	I	1							
	NIL										
		List of Courses where this course will be prerequisite									
	NIL										
	Descri	ption of relevance of this course in the Int. M. Tech. Program									
The gl	lobal objective of the cours	se is									
	•	chemical kinetics, catalysis and applications ➤ To provide insight to			•						
		talytic reactions ➤ To give a wholesome picture on catalytic reactions		atalytic	reactors						
and m		on catalyst synthesis, characterization and instrumentation involved									
		Course Contents (Topics and subtopics)	R	eqd. ho	urs						
1	Relevance and examples, heterogeneous catalysis,	, Atom economy and green chemistry concepts, Homogenous and		10							
2	Fundamentals of homogeneous catalysis and mechanisms and kinetics, Fundamentals of adsorption, isotherms, energetics, structural and dynamic considerations, Mechanisms, models and kinetics of surface reactions, Fractal models,										
3	Determination of surface structure though modern methods, Significance of Pore structure and models, Solid and surface chemistry of catalysis,										
4	Quantum mechanical, mo artificial intelligence and	olecular mechanical and hybrid models, Catalyst design through computer modelling,	10								
5	Poisoning, promotion, de	eactivation and selectivity, Catalytic process engineering,		10							
6	Measurement of catalytic	rates and kinetic parameters, Types of reactors		5							
7	Catalyst recovery and reu	ise		5							
		Total		60							
		List of Text Books/ Reference Books									
1	H. S. Fogler, "Elements of 2001.	f Chemical Reaction Engineering", 3rd Ed, New Delhi-Prentice Hall,									
2	O. Levenspiel, "Chemica	l Reaction Engineering" Willey Eastern, 3rd Ed. 2000.									
3	J. M. Smith, "Chemical E	Engineering Kinetics", 3rd Ed., McGraw- Hill, 1988									
4	Krijn P. de Jong, "Synthe	sis of Solid Catalysts", Wiley, 2009									
		Course Outcomes (students will be able to)									
CO1	Explain the general chara	acteristics of catalysts and the principle behind the catalytic activity		K2							
CO2	Outline appropriate prepa	arative method for a catalyst		K2							
CO3	Apply the basic concepts	and theory for characterization of catalysts		K3							
CO4	Identify various industria	ıl catalysts		K4							
CO5	Analyze catalyst deactiva	ation		K5							
CO6	Describe modern trends i	n catalyst technology		K6							
K1: R	emembering, K2: Understa	anding, K3: Applying, K4: Analyzing, K5: Evaluating, K6: Creating	•								

Chemi	Chemical Engineering Elective: Fundamentals of Catalytic Science and Engineering CET4777 Mapping of Course Outcomes (COs) with Programme Outcomes (POs)												
PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12												PO12	
CO1													
CO2	CO2												

Electives Syllabus Page 230 of 267

CO3												
CO4												
CO5												
CO6												
3-Strong Contribution: 2-Moderate Contribution: 1-Low Contribution:												

	eering Elective: Fund of Course Outcomes		•		T 4777
	PSO1	PSO2	PSO3	PSO4	PSO5
CO1					
CO2					
CO3					
CO4					
CO5					
CO6					
3-5	Strong Contribution; 2	-Moderate Contri	bution; 1-Low Co	ntribution;	

Electives Syllabus Page 231 of 267

CET4778 Refinery Science and Engineering L Semester: Total contact hours: 60 3 List of Prerequisite Courses Refinery engineering (SPT4354), Petroleum refining processes (SPT4352) List of Courses where this course will be prerequisite NIL	oil distillatio											
Semester: Total contact hours: 60 3	m the properties oil distillation											
Refinery engineering (SPT4354), Petroleum refining processes (SPT4352) List of Courses where this course will be prerequisite NIL Description of relevance of this course in the Int. M. Tech. Program The petroleum refining training course covers the technology aspects you need to know about refineries fror and composition of crude oil to the core refining processes including atmospheric and vacuum crude hydrotreating, catalytic reforming, FCC, alkylation, hydrocracking, delayed coking, amine treating and Sulph gasoline/diesel blending. Course Contents (Topics and subtopics) R	m the propertic											
Refinery engineering (SPT4354), Petroleum refining processes (SPT4352) List of Courses where this course will be prerequisite NIL Description of relevance of this course in the Int. M. Tech. Program The petroleum refining training course covers the technology aspects you need to know about refineries fror and composition of crude oil to the core refining processes including atmospheric and vacuum crude hydrotreating, catalytic reforming, FCC, alkylation, hydrocracking, delayed coking, amine treating and Sulph gasoline/diesel blending. Course Contents (Topics and subtopics) R Terminology, Origin, Kerogen, Occurrence, Recovery, Classification, Composition, Evaluation, Fractionation, Identification, Asphaltic constituents, Refining chemistry, Refining distillation Thermal cracking, Catalytic cracking, Hydro processing, Reforming, Treatment processes, Gas cleaning, Products, Petrochemicals Petroleum economics, Policy framework for Indian oil and gas. Total List of Text Books/ Reference Books Petroleum refining, Technology and Economics by J H Gary and G E Handwork The Chemistry and Technology of Petroleum by James G Speight,	oil distillatio											
NIL Description of relevance of this course in the Int. M. Tech. Program	oil distillatio											
Description of relevance of this course in the Int. M. Tech. Program The petroleum refining training course covers the technology aspects you need to know about refineries fror and composition of crude oil to the core refining processes including atmospheric and vacuum crude hydrotreating, catalytic reforming, FCC, alkylation, hydrocracking, delayed coking, amine treating and Sulph gasoline/diesel blending. Course Contents (Topics and subtopics) R Terminology, Origin, Kerogen, Occurrence, Recovery, Classification, Composition, Evaluation, Fractionation, Identification, Asphaltic constituents, Refining chemistry, Refining distillation Thermal cracking, Catalytic cracking, Hydro processing, Reforming, Treatment processes, Gas cleaning, Products, Petroleum economics, Policy framework for Indian oil and gas. Total List of Text Books/ Reference Books Petroleum refining, Technology and Economics by J H Gary and G E Handwork The Chemistry and Technology of Petroleum by James G Speight,	oil distillatio											
The petroleum refining training course covers the technology aspects you need to know about refineries from and composition of crude oil to the core refining processes including atmospheric and vacuum crude hydrotreating, catalytic reforming, FCC, alkylation, hydrocracking, delayed coking, amine treating and Sulph gasoline/diesel blending. Course Contents (Topics and subtopics) R	oil distillatio											
The petroleum refining training course covers the technology aspects you need to know about refineries fror and composition of crude oil to the core refining processes including atmospheric and vacuum crude hydrotreating, catalytic reforming, FCC, alkylation, hydrocracking, delayed coking, amine treating and Sulph gasoline/diesel blending. Course Contents (Topics and subtopics) R Terminology, Origin, Kerogen, Occurrence, Recovery, Classification, Composition, Evaluation, Fractionation, Identification, Asphaltic constituents, Refining chemistry, Refining distillation Thermal cracking, Catalytic cracking, Hydro processing, Reforming, Treatment processes, Gas cleaning, Products, Petroleum economics, Policy framework for Indian oil and gas. Total List of Text Books/ Reference Books Petroleum refining, Technology and Economics by J H Gary and G E Handwork The Chemistry and Technology of Petroleum by James G Speight,	oil distillatio											
and composition of crude oil to the core refining processes including atmospheric and vacuum crude hydrotreating, catalytic reforming, FCC, alkylation, hydrocracking, delayed coking, amine treating and Sulph gasoline/diesel blending. Course Contents (Topics and subtopics) R	oil distillatio											
1 Terminology, Origin, Kerogen, Occurrence, Recovery, Classification, Composition, Evaluation, 2 Fractionation, Identification, Asphaltic constituents, Refining chemistry, Refining distillation 3 Thermal cracking, Catalytic cracking, Hydro processing, 4 Reforming, Treatment processes, 5 Gas cleaning, Products, 6 Petrochemicals 7 Petroleum economics, Policy framework for Indian oil and gas. Total List of Text Books/ Reference Books 1 Petroleum refining, Technology and Economics by J H Gary and G E Handwork 2 The Chemistry and Technology of Petroleum by James G Speight,	Dood house											
Evaluation, Practionation, Identification, Asphaltic constituents, Refining chemistry, Refining distillation Thermal cracking, Catalytic cracking, Hydro processing, Reforming, Treatment processes, Gas cleaning, Products, Petrochemicals Petroleum economics, Policy framework for Indian oil and gas. Total List of Text Books/ Reference Books Petroleum refining, Technology and Economics by J H Gary and G E Handwork The Chemistry and Technology of Petroleum by James G Speight,	Reqd. hours											
distillation Thermal cracking, Catalytic cracking, Hydro processing, Reforming, Treatment processes, Gas cleaning, Products, Petrochemicals Petroleum economics, Policy framework for Indian oil and gas. Total List of Text Books/ Reference Books Petroleum refining, Technology and Economics by J H Gary and G E Handwork The Chemistry and Technology of Petroleum by James G Speight,	Evaluation,											
4 Reforming, Treatment processes, 5 Gas cleaning, Products, 6 Petrochemicals 7 Petroleum economics, Policy framework for Indian oil and gas. Total List of Text Books/ Reference Books 1 Petroleum refining, Technology and Economics by J H Gary and G E Handwork 2 The Chemistry and Technology of Petroleum by James G Speight,												
5 Gas cleaning, Products, 6 Petrochemicals 7 Petroleum economics, Policy framework for Indian oil and gas. Total List of Text Books/ Reference Books 1 Petroleum refining, Technology and Economics by J H Gary and G E Handwork 2 The Chemistry and Technology of Petroleum by James G Speight,	Thermal cracking, Catalytic cracking, Hydro processing, 10											
6 Petrochemicals 7 Petroleum economics, Policy framework for Indian oil and gas. Total List of Text Books/ Reference Books 1 Petroleum refining, Technology and Economics by J H Gary and G E Handwork 2 The Chemistry and Technology of Petroleum by James G Speight,	10											
7 Petroleum economics, Policy framework for Indian oil and gas. Total List of Text Books/ Reference Books 1 Petroleum refining, Technology and Economics by J H Gary and G E Handwork 2 The Chemistry and Technology of Petroleum by James G Speight,	10											
List of Text Books/ Reference Books 1 Petroleum refining, Technology and Economics by J H Gary and G E Handwork 2 The Chemistry and Technology of Petroleum by James G Speight,	5											
List of Text Books/ Reference Books 1 Petroleum refining, Technology and Economics by J H Gary and G E Handwork 2 The Chemistry and Technology of Petroleum by James G Speight,	5											
Petroleum refining, Technology and Economics by J H Gary and G E Handwork The Chemistry and Technology of Petroleum by James G Speight,	60											
2 The Chemistry and Technology of Petroleum by James G Speight,												
, , , , , , , , , , , , , , , , , , , ,												
Composition and proporties of Patroloum by H. I. Neumann, D. D. Lahma and D. Sayarin												
3 Composition and properties of Petroleum by H J Neumann, B P Lahme and B Severin												
4 Modern Petroleum Technology : G D Hobson and W Pohl												
Course Outcomes (students will be able to)												
CO1 Understand all the basics about crude oil, including its physical/chemical properties and composition	K2											
CO2 Understand and discuss major refinery processes	K2											
CO3 Describe all the refinery units	K3											
CO4 Understand the flow diagrams of refineries	K4											
CO5 Explain step-by-step the processes of refining	K5											
CO6 Understand the refinery products and their characteristics.	K6											

	Chemical Engineering Elective: Refinery Science and Engineering CET4778 Mapping of Course Outcomes (COs) with Programme Outcomes (POs)													
PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12												PO12		
CO1	CO1													
CO2	CO2													
CO3														
CO4														

Electives Syllabus Page 232 of 267

CO5												
CO6												
3-Strong Contribution; 2-Moderate Contribution; 1-Low Contribution;												

	Chemical Engineering Elective: Refinery Science and Engineering CET4778 Mapping of Course Outcomes (COs) with Programme Specific Outcomes (PSOs)												
	PSO1	PSO2	PSO3	PSO4	PSO5								
CO1													
CO2													
CO3													
CO4													
CO5													
CO6													
3-Strong Contribution; 2-Moderate Contribution; 1-Low Contribution;													

Electives Syllabus Page 233 of 267

		Semester					
PEC	Course Code:	Course Title:	Credits = 4				
	CET4779	Flow Though Porous Media	L	T	P		
	Semester:	3	1	0			
		List of Prerequisite Courses					
	Chemical engineering op						
		List of Courses where this course will be prerequisite					
	NIL						
	Descri	ption of relevance of this course in the Int. M. Tech. Program					

The course discusses the various applications of flow through porous media in fields such as geophysical or geochemical flow, hydrology, and hydrocarbon recovery. It delves into mass continuity in porous media, explaining theories of flow and how to measure porosity and permeability. Derivation of the continuity equation and the diffusion equation for single phase flow in the reservoir. Introduction to the concepts of heterogeneity and anisotropy. Steady state, pseudo steady state and unsteady state flow regimes. Definition of productivity index of wells for various well geometries and fluid types during single phase flow. Introduction to two phase flow. Definition of mobility and mobility ratio. The fractional flow curve. The displacement process in porous media and the Buckley-Leverett Equation.

	Course Contents (Topics and subtopics)	Reqd. hours
1	Relevance of pore structure in science and technology, Examples from oil reservoirs, catalysis, soil science, membranes, aquifers, foods, polymers, biology, etc.,	10
2	Pore structures and their determination, Capillarity and wettability, Models of pore structure,	10
3	Wettability and flow histories, Single phase flow, Multiphase flow, Percolation processes and network models, beds, Ultrafiltration, Models of catalyst poisoning and deactivation, Geo-statistics	10
4	Fractal models, Simulations of macroscopic properties,	10
5	Pore level mechanisms of flow,	10
6	Diffusion and dispersion in porous media, Membrane transport,	5
7	Analysis of trickle and packed	5
	Total	60
	List of Text Books/ Reference Books	
1	Scheidegger A.E. The Physics of Flow through Porous Media, University of Toronto Press, 1974	
2	Dullien F.A.L. Porous Media: Fluid Transport and Pore Structure, Academic Press 1979	
3	Bear J. Dynamics of Fluids in Porous Media, Dover Civil and Mechanical Engineering 1988	
4	Civan F. Porous Media Transport Phenomena Wiley 2011	
	Course Outcomes (students will be able to)	
CO1	Formulate mathematical models representing flow of single phase fluids in porous media	K2
CO2	Describe the various flow regimes observed in the reservoir	K2
CO3	Describe the effects of rock and fluid properties on the flow of fluids in porous media	K3
CO4	Obtain the solutions to the diffusion equation for various boundary conditions	K4
CO5	Describe oil-water flow in the reservoir	K5
K1: R	emembering, K2: Understanding, K3: Applying, K4: Analyzing, K5: Evaluating, K6: Creating	

Chemical Engineering Elective: Flow Though Porous Media CET4779 Mapping of Course Outcomes (COs) with Programme Outcomes (POs)												
PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12												
CO1												
CO2												

Electives Syllabus Page 234 of 267

CO3												
CO4												
CO5												
3-Strong Contribution; 2-Moderate Contribution; 1-Low Contribution;												

	Chemical Engineering Elective: Flow Though Porous Media CET4779 Mapping of Course Outcomes (COs) with Programme Specific Outcomes (PSOs)												
	PSO1 PSO2 PSO3 PSO4 PSO5												
CO1													
CO2													
CO3													
CO4													
CO5													

Electives Syllabus Page 235 of 267

		Semester					
PEC	Course Code:	Course Title:	Credits = 4				
	CET4780	L	T	P			
	Semester:	3	1	0			
	Refinery engineering (SI	T4354), Petroleum Reservoir Engineering					
		List of Courses where this course will be prerequisite					
	NIL						
	Dogoni	intion of volovones of this source in the Int. M. Tech. Program	•				

Description of relevance of this course in the Int. M. Tech. Program

The course discusses the various applications of flow through porous media in fields such as geophysical or geochemical flow, hydrology, and hydrocarbon recovery. It delves into mass continuity in porous media, explaining theories of flow and how to measure porosity and permeability. Derivation of the continuity equation and the diffusion equation for single phase flow in the reservoir. Introduction to the concepts of heterogeneity and anisotropy. Steady state, pseudo steady state and unsteady state flow regimes. Definition of productivity index of wells for various well geometries and fluid types during single phase flow. Introduction to two phase flow. Definition of mobility and mobility ratio. The fractional flow curve. The displacement process in porous media and the Buckley-Leverett Equation.

	Course Contents (Topics and subtopics)	Reqd. hours								
1	Residual oil and tracer studies, Defining enhanced oil recovery, Basic equations for fluid flow in porous media,	10								
2	Petrophysics and petrochemistry, Phase behaviour and fluid properties, Efficiency of waterflooding, Pore level mechanisms, Mobility control, capillary number, bond number correlations,	10								
3	Heterogeneity of pore structure and reservoirs, Thermal methods, Steam stimulation, steam flooding and hot water drive, Combustion- forward and reverse,	10								
4	Ancillaries in thermal methods, Miscible flooding, Surfactant flooding, Microemulsion flooding,	10								
5	Foam flooding, Polymer flooding, Micellar-polymer flooding, Alkaline flooding,	10								
6	Carbon dioxide flooding, Inert gas injection,	5								
7	Reactive gas injection, Microbial recovery	5								
	Total	60								
	List of Text Books/ Reference Books									
1	Mandal, Ajay, and Keka Ojha. Enhanced Oil Recovery: Mechanisms, Technologies and Feasibility Analyses. CRC Press, 2023									
2	Green, D.W. and Willhite, G.P., 1998. Enhanced oil recovery (Vol. 6, pp. 143-154). Richardson, TX: Henry L. Doherty Memorial Fund of AIME, Society of Petroleum Engineers.									
3	Lake, L.W., Johns, R., Rossen, B. and Pope, G.A., 2014. Fundamentals of enhanced oil recovery (Vol. 1, p. 1). Richardson, TX: Society of Petroleum Engineers.									
4	Donaldson, E.C., Chilingarian, G.V. and Yen, T.F. eds., 1985. Enhanced oil recovery, I: fundamentals and analyses. Elsevier.									
5	Latil, M., 1980. Enhanced oil recovery. Éditions Technip									
	Course Outcomes (students will be able to)									
CO1	Describe different chemical, miscible, and thermal EOR processes	K2								
CO2	Maximize oil recovery using Mobility Ratio and Capillary Number	K2								
CO3	Apply reservoir characterization and screening actual fields for EOR	K3								
CO4	Understand chemical, miscible, thermal, and hybrid EOR techniques K4									
CO5	Understand newly developed EOR methods and compare with current ones	K5								
K1: Re	emembering, K2: Understanding, K3: Applying, K4: Analyzing, K5: Evaluating, K6: Creating									

Electives Syllabus Page 236 of 267

	Chemical Engineering Elective: Enhanced Oil Recovery CET4780 Mapping of Course Outcomes (COs) with Programme Outcomes (POs)													
	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12													
CO1														
CO2	CO2													
CO3														
CO4														
CO5	CO5													
	3	-Strong (Contribut	tion; 2-M	loderate (Contribut	tion; 1-Lo	ow Contr	ribution;					

	Chemical Engineering Elective: Enhanced Oil Recovery CET4780 Mapping of Course Outcomes (COs) with Programme Specific Outcomes (PSOs)													
	PSO1	PSO2	PSO3	PSO4	PSO5									
CO1														
CO2														
CO3														
CO4														
CO5														
3-S	trong Contribution;	2-Moderate Contr	ibution; 1-Low Co	ontribution;										

Electives Syllabus Page 237 of 267

		Semester						
PEC	Course Code:	(Credits = 4					
	CET4781	L	T	P				
	Semester:	Total contact hours: 60	3	1	0			
-	•	List of Prerequisite Courses						
	Refinery engineering (SPT43	54)						
-	Lis	t of Courses where this course will be prerequisite						
	NIL							
•	Descriptio	n of relevance of this course in the Int. M. Tech. Program	m					

The course Petroleum Reservoir Engineering is designed to help the students to develop a complete understanding of the characteristics of Drive mechanisms; Steady, pseudo-steady and Unsteady fluid flow behaviour through porous media and various water influx models to estimate water encroachment into a reservoir. The course also introduces the concept of Water flooding with emphasis on displacement efficiencies, flooding pattern and role of reservoir geology in the design and operation of water floods.

	Course Contents (Topics and subtopics)	Reqd. hours
1	Energy sources, world scenario, oil pricing, Genesis of petroleum and migration, Composition of petroleum and its classification, Petroleum reservoirs,	10
2	Exploration and drilling technology, Well logging and well completion, Core analysis, Capillarity and wettability, Models of pore structure and multiphase flow, Well stimulation and production strategy, Well pressure behaviour, Gas reservoir engineering	10
3	Fluid displacement and frontal displacement; Buckley-Leverett theory, Material balance, Decline curve analysis, Well patterns and displacement efficiencies, Primary recovery, Gravity drainage,	10
4	Waterflooding, Mechanisms of microscopic and macroscopic flow,	10
5	Transportation of oil and gas, Production rate, reservoir life, Heavy oil and tar sand technologies,	10
6	Residual oil determination,	5
7	Computer modelling of reservoirs, Tertiary recovery methods	5
	Total	60
	List of Text Books/ Reference Books	
1	Applied Petroleum Reservoir Engineering by BC Craft and M Hawkins.	
2	Petroleum Reservoir Rock and Fluid Properties by Abhijit Y Dandekar.	
3	The reservoir Engineering aspects of Waterflooding by Forrest F Craig (Jr).	
4	Reservoir Engineering Handbook by Tarek Ahmed.	
5	Fundamentals of Reservoir Engineering by LP Dake.	
	Course Outcomes (students will be able to)	
CO1	To develop Critical-thinking and problem-solving approach.	K2
CO2	Understanding of basic oil & gas reservoir characteristics, Drive mechanisms and pressure behaviour in a steady, pseudo-steady and unsteady state reservoir.	K2
CO3	Ability to design water flooding project for optimum recovery.	К3
CO4	Water influx models and its uses to analyse water influx behaviour into reservoir.	K4
CO5	Plan the methods and procedures for avoiding or minimizing environmental impact of petroleum engineering and geo-energy engineering activities	K5
K1: Re	emembering, K2: Understanding, K3: Applying, K4: Analyzing, K5: Evaluating, K6: Creating	

		ical Eng	U					U	U			
Mapping of Course Outcomes (COs) with Programme Outcomes (POs)												
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12

Electives Syllabus Page 238 of 267

CO1											
CO2											
CO3											
CO4											
CO5											
	3	-Strong (Contribut	tion: 2-M	oderate (Contribut	ion: 1-La	ow Contr	ibution:		

	Chemical Engineering Elective: Petroleum Reservoir Engineering CET4781 Mapping of Course Outcomes (COs) with Programme Specific Outcomes (PSOs)													
	PSO1	PSO2	PSO3	PSO4	PSO5									
CO1														
CO2														
CO3														
CO4														
CO5														
3-5	Strong Contribution; 2	2-Moderate Contri	ibution; 1-Low Cor	ntribution;										

Electives Syllabus Page 239 of 267

		Semester			
PEC	Course Code:	Course Title:	C	credits :	= 4
	CET4782	Mixing	L	T	P
	Semester:	Total contact hours: 60	3	1	0
		List of Prerequisite Courses	•		
	NIL				
		List of Courses where this course will be prerequisite	•		
	NIL				
	Descri	ption of relevance of this course in the Int. M. Tech. Program			
	is equipment is used for m	re to create a uniform mixture, promote chemical reactions, and dis- nixing powders, liquids, and semi-solids depending on the application			
		Course Contents (Topics and subtopics)	R	eqd. ho	urs
1	Examples of industrial in	nportance		10	
2	Flow pattern, power cons	sumption, classification of impellers, internals		10	
3	Mechanism of mixing, B particles,	lending in viscous and turbulent system, Suspension of solid		10	
4	Heat transfer, Gas-liquid	dispersion, Liquid-liquid dispersions,		10	
5	Three phase dispersions,	Solid-solid mixing, emulsions, pastes,		10	
6	Mass transfer at gas-liqui	id, liquid-liquid, solid-solid and solid-liquid interface		5	
7	Process design and scale-	-up considerations case studies		5	
		Total		60	
		List of Text Books/ Reference Books			
1	Mixing in the Process Ind	ustries: Second A W NIENOW, M F EDWARDS, N. Harnby · 1997			
2	Foundations of Mixed M	ethods Research: Integrating Charles Teddlie, Abbas Tashakkori ·			
		Course Outcomes (students will be able to)			
CO1	Specific and measurable will demonstrate by the contract of th	statements that define the knowledge, skills, and attitudes learners completion of a course.		K2	
CO2	Evolve useful methods for	or mixing processes		K2	
CO3		ons as well as increasingly effective methods both for experiments odelling of complex operations		К3	
CO4		evelopment of scalable operations.		K4	
CO5	Evaluate and use these te	chnologies effectively in process development and scale-up.		K5	
K1: R	emembering, K2: Understa	anding, K3: Applying, K4: Analyzing, K5: Evaluating, K6: Creating	•		

	Chemical Engineering Elective: Mixing CET4782 Mapping of Course Outcomes (COs) with Programme Outcomes (POs)														
	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12														
CO1															
CO2															
CO3															
CO4															
CO5	CO5														
	3	S-Strong (Contribu	tion; 2-M	Ioderate (Contribut	tion; 1-L	ow Contr	ribution;						

Electives Syllabus Page 240 of 267

Chemical Engineering Elective: Mixing CET4782 Mapping of Course Outcomes (COs) with Programme Specific Outcomes (PSOs)										
	PSO1	PSO2	PSO3	PSO4	PSO5					
CO1										
CO2										
CO3										
CO4										
CO5										
3-5	Strong Contribution; 2	2-Moderate Contr	ibution; 1-Low Co	ntribution;	•					

Electives Syllabus Page 241 of 267

	Semester											
PEC	Course Code:	Course Title:	(Credits = 4								
	CET4783	Statistical Methods in Engineering	L	T	P							
	Semester:	nester: Total contact hours: 60										
	<u>.</u>	List of Prerequisite Courses										
	NIL											
]	List of Courses where this course will be prerequisite										
	NIL											
	D	tion of volumes of this course in the Int. M. Took. Durane										

- Description of relevance of this course in the Int. M. Tech. Program
- 1. To introduce students about fundamental principles and knowledge of statistics and statistical tools.
- 2. To develop students' ability to compile statistical data, carry out statistical calculations
- 3. Understanding of applications of statistical techniques with emphasis to solve practical problems in science and engineering.
- 4. Understanding of applications of Probability distribution in real-life and production problems.
- 5. To develop students' ability for Hypothesis testing and it's applications.

distributi 2 Applicat 3 Acceptar 4 Discrete Probabili discrete in 5 Joint Prodistributi 6 Multiple Hypothe 7 Statistica 1 Box, G.E. Interscien 2 Devore, J. CA (2000) 3 Ross, S.M. Harcourt	ous and discrete probability distributions, normal, chi-square, gamma, Poisson ons. cons. t-Tests, F-Test, Homogeneity tests, Quality Control. dee sampling Linear regression and lack of fit Contingency tables. Random Variables and Probability Distributions Discrete random variables ty mass functions Cumulative distribution functions Mean and variance of a random variable Uniform, binominal, and Poisson distributions bability Distributions Joint and marginal distribution functions Bivariate normal on Linear combinations of random variables Error analysis for nonlinear equations Linear Regression Properties of least squares estimation Matrix approach sis tests and confidence intervals I Quality Control Quality control charts Western Electric rules Total List of Text Books/ Reference Books E.P., W.G. Hunter, and J.S. Hunter, Statistics for Experimenters, 2nd ed., Wiley-	10 10 10 10 10 5 5 60
3 Acceptar 4 Discrete Probability discrete in 5 Joint Prodistributi 6 Multiple Hypothe 7 Statistica 1 Box, G.F. Interscien 2 Devore, J. CA (2000) 3 Ross, S.M. Harcourt	Random Variables and Probability Distributions Discrete random variables ty mass functions Cumulative distribution functions Mean and variance of a random variable Uniform, binominal, and Poisson distributions bability Distributions Joint and marginal distribution functions Bivariate normal on Linear combinations of random variables Error analysis for nonlinear equations Linear Regression Properties of least squares estimation Matrix approach sis tests and confidence intervals I Quality Control Quality control charts Western Electric rules Total List of Text Books/ Reference Books	10 10 10 5 5
4 Discrete Probabilidiscrete in discrete i	Random Variables and Probability Distributions Discrete random variables ty mass functions Cumulative distribution functions Mean and variance of a random variable Uniform, binominal, and Poisson distributions bability Distributions Joint and marginal distribution functions Bivariate normal on Linear combinations of random variables Error analysis for nonlinear equations Linear Regression Properties of least squares estimation Matrix approach sis tests and confidence intervals 1 Quality Control Quality control charts Western Electric rules Total List of Text Books/ Reference Books	10 10 5 5
Probability discrete in discre	ty mass functions Cumulative distribution functions Mean and variance of a random variable Uniform, binominal, and Poisson distributions bability Distributions Joint and marginal distribution functions Bivariate normal on Linear combinations of random variables Error analysis for nonlinear equations Linear Regression Properties of least squares estimation Matrix approach sis tests and confidence intervals 1 Quality Control Quality control charts Western Electric rules Total List of Text Books/ Reference Books	10 5 5
distributi Multiple Hypothe Statistica Box, G.E Interscien Devore, J CA (2000 Ross, S.M Harcourt	on Linear combinations of random variables Error analysis for nonlinear equations Linear Regression Properties of least squares estimation Matrix approach sis tests and confidence intervals 1 Quality Control Quality control charts Western Electric rules Total List of Text Books/ Reference Books	5
Hypothe 7 Statistica 1 Box, G.F. Interscien 2 Devore, J. CA (2000) 3 Ross, S.M. Harcourt	sis tests and confidence intervals I Quality Control Quality control charts Western Electric rules Total List of Text Books/ Reference Books	5
1 Box, G.E Interscien 2 Devore, J CA (2000 3 Ross, S.M Harcourt	Total List of Text Books/ Reference Books	
Interscien Devore, J CA (2000 Ross, S.M Harcourt	List of Text Books/ Reference Books	60
Interscien Devore, J CA (2000 Ross, S.M Harcourt		
Interscien Devore, J CA (2000 Ross, S.M Harcourt	P. W.G. Hunter, and I.S. Hunter, Statistics for Experimenters, 2nd ed., Wiley-	
CA (2000 3 Ross, S.M Harcourt	ice, NY (2005).	
Harcourt	.L, Probability and Statistics for Engineering and the Sciences, 5th ed. Pacific Grove,	
	M. Introduction to Probability and Statistics for Engineers and Scientists, 2nd ed., (Academic, San Diego (2000)	
	nery D.C and G.C. Runger, Applied Statistics and Probability for Engineers, 4th ed., ey, NY (2007).	
	Course Outcomes (students will be able to)	
	nension of statistical inferences like Mean, Median, Mode and Dispersion and their cons in real-life situations.	K2
	dension of statistical inferences like Correlation and Regression and its applications fe situations.	K2
	tension of sampling techniques and Hypothesis testing methods and their applications fe situations.	К3
CO4 Compreh	nension of Probability distributions and their applications in real-life situations.	K4
CO5 Compreh		K5

Electives Syllabus Page 242 of 267

	Chemical Engineering Elective: Statistical Methods in Engineering CET4783 Mapping of Course Outcomes (COs) with Programme Outcomes (POs)											
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1												
CO2												
CO3												
CO4												
CO5												
	3	-Strong (Contribut	tion; 2-M	loderate (Contribut	tion; 1-Lo	ow Contr	ibution;			

	Chemical Engineering Elective: Statistical Methods in Engineering CET4783 Mapping of Course Outcomes (COs) with Programme Specific Outcomes (PSOs)											
	PSO1	PSO2	PSO3	PSO4	PSO5							
CO1												
CO2												
CO3												
CO4												
CO5												
3-8	3-Strong Contribution; 2-Moderate Contribution; 1-Low Contribution;											

Electives Syllabus Page 243 of 267

		Semester			
PEC	Course Code:	Course Title:	(Credits	= 4
	CET4784	Electrochemical Engineering	L	T	P
	Semester:	Total contact hours: 60	3	1	0
		List of Prerequisite Courses	ı	ı	
	NIL				
		List of Courses where this course will be prerequisite	•		
	NIL				
	Descr	iption of relevance of this course in the Int. M. Tech. Program	•		
the pri materi	inciples of Electrochemist	••	hesis, e	nergy s	systems,
		Course Contents (Topics and subtopics)	R	eqd. ho	urs
1	Introduction to electroch		20		
2	Theoretical aspects and		20		
3	Role of mass transfer in		10		
4	Some aspects of electroc	chemical reactor design. Scale-up and optimization of reactors		10	
		Total		60	
		List of Text Books/ Reference Books			
1	Pletcher D, Walsh FC (Academic & Professional	(1990) Industrial Electrochemistry (2nd Edition), London, Blackie II.			
2	Fuller TF, Harb JN (201 & Sons.	8) Electrochemical Engineering (1st Edition), Hoboken, John Wiley			
		Course Outcomes (students will be able to)	•		
CO1	1 1	t the equations for mass transport in dilute and concentrated as their applicability in specific cases.		K2	
CO2		equations for production and transport of heat in electrochemical e temperature dependence of electrode potentials, electrode kinetics erties.		K2	
CO3	Explain and implement	models for current distribution in porous electrodes.		K3	
CO4		ectrochemical system, based on continuity equations and transport ariables, and with necessary boundary conditions.		K4	
CO5	Solve problems of mode make conclusions from t	erate mathematical/ numerical level of difficulty, and to discuss and the results.		K5	
K1: R	emembering, K2: Underst	anding, K3: Applying, K4: Analyzing, K5: Evaluating, K6: Creating			

	Chemical Engineering Elective: Electrochemical Engineering CET4784 Mapping of Course Outcomes (COs) with Programme Outcomes (POs)											
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1												
CO2												
CO3												
CO4												
CO5												
	3	S-Strong (Contribu	tion; 2-M	loderate (Contribut	tion; 1-L	ow Contr	ibution;			

Electives Syllabus Page 244 of 267

Chemical Engineering Elective: Electrochemical Engineering CET4784 Mapping of Course Outcomes (COs) with Programme Specific Outcomes (PSOs)										
	PSO1	PSO2	PSO3	PSO4	PSO5					
CO1										
CO2										
CO3										
CO4										
CO5										
3-8	3-Strong Contribution; 2-Moderate Contribution; 1-Low Contribution;									

Electives Syllabus Page 245 of 267

		Semester			
PEC	Course Code:	Course Title:	C	redits :	= 4
	CET4785	Engineering Aspects of Manufacturers of Organic Chemicals	L	T	P
	Semester:	Total contact hours: 60	3	1	0
		List of Prerequisite Courses			
	NIL				
		List of Courses where this course will be prerequisite			
	NIL				
	Descri	iption of relevance of this course in the Int. M. Tech. Program			
knowl	edge of conducting polym	edge about desalination of brackish water and treatment of municipalities, bio-degradable polymers and fibre reinforced plastics. To learn the synthesis of nano materials.			
		Course Contents (Topics and subtopics)	R	eqd. ho	urs
1	Special features of proce as hydrogenation, oxidat		20		
2	Different strategies of co	onducting reactions.		20	
3	Introduction to a few nar Darzens condensation, et	me reactions such as Friedel Crafts reactions, Sandmeyers reaction, tc.	10		
4		s for the synthesis of medium and low volume chemicals, with an ive flow sheets of the entire process	10		
		Total		60	
	,	List of Text Books/ Reference Books			
1		Chemical Technology, Edited and Revised by M. Gopala Rao and Affiliated East West, New Delhi, 1997.			
2	T.G. Austin and S. Shre Delhi, 1984.	eve, Chemical Process Industries, 5th Edition, McGraw Hill, New			
		Course Outcomes (students will be able to)			
CO1	Study in detail the listed hazards	industrial chemicals and gases w.r.t. production, uses, storage and		K2	
CO2	Understand different che		K2		
CO3	Industrial effluents and t		К3		
CO4	Measurement of other visulphate ion	water quality parametersalkalinity, dissolved CO2, chloride ion,		K4	
CO5	Identify the consequence technology	ces of technology to society and mitigate problems caused by		K5	
K1: Re	emembering, K2: Understa	anding, K3: Applying, K4: Analyzing, K5: Evaluating, K6: Creating			

Chemical	Chemical Engineering Elective: Engineering Aspects of Manufacturers of Organic Chemicals CET4785 Mapping of Course Outcomes (COs) with Programme Outcomes (POs)											
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1												
CO2												
CO3												
CO4												
CO5												
	3	3-Strong	Contribu	tion; 2-M	Ioderate	Contribu	tion; 1-L	ow Conti	ribution;			

Electives Syllabus Page 246 of 267

	Chemical Engineering Elective: Engineering Aspects of Manufacturers of Organic Chemicals CET4785 Mapping of Course Outcomes (COs) with Programme Specific Outcomes (PSOs)										
	PSO1	PSO2	PSO3	PSO4	PSO5						
CO1											
CO2											
CO3											
CO4											
CO5											
3-3	Strong Contribution; 2	-Moderate Contri	bution; 1-Low Cor	ntribution;	•						

Electives Syllabus Page 247 of 267

		Semester			
PEC	Course Code:	Course Title:	C	redits :	= 4
	CET4786	Industrial Economics	L	T	P
	Semester:	Total contact hours: 60	3	1	0
		List of Prerequisite Courses			
	Basic Principles of Financ	e & Economics (HUT4156)			
		List of Courses where this course will be prerequisite			
	NIL				
	Descrip	tion of relevance of this course in the Int. M. Tech. Program			
		ing finance has to be well understood by the students since it has ineer/scientist and also in selecting the best possible alternative out o			
	(Course Contents (Topics and subtopics)	R	eqd. ho	urs
1		f Economics, Nature of Economics problem and working system, engineering, technology & Economics. Nature and s		10	
2	demand, applications of the	alysis: Meaning, Types, Determinants, law of demand, elasticity of the concept of elasticity of demand, Demand forecasting.		10	
3		Supply: Meaning, factor of production, Long run vs short run, law urn to scale, Market Supply, Law of Supply.		10	
4	Cost Analysis: concept of Modern approach to theory	cost, cost function, short & tong run cost-output relation, y of cost.		10	
5		Market Structure: Market mechanism, Profit maximizing condition, res of Market, Price-output determination in various markets.		10	
6		Good: Growth of Monopoly and Market failure, Imperfect market and market failure, Externalities.		5	
7		oncepts, Financial statement and financial investment analysis, ging components of working capital investment & Damp; financing		5	
		Total		60	
		List of Text Books/ Reference Books			
1	Dwivedi, D.N (2012). M publication.	ficroeconomics: theory and Application, 2nd Edition, Pearson			
2	Ahuja, H.L (2016), Princip	oles of Microeconomic s, 72nd edition, S Chand Publishing.			
3	Shrivastava, Rajiv and A University Press.	nil Mishra (2011), Financial Management, 2nd edition, Oxford			
4	Gupta, G.S (2012), Manag Limited.	erial Economics, 2nd Edition, Tata McGraw Hill Education Private			
5	Khan, M.Y. and P. K Jain Education Private Limited	n (2017), Financial Management, 7th edition, Tata McGraw Hill .			
		Course Outcomes (students will be able to)			
CO1	applied to a variety of ecoralso be helpful to the stude	e and understanding of a set of analytical techniques which can be nomic (and non-economic) and financial management issues. It will ent to understand how individuals and firms interact within markets, w government policy may improve outcomes for society.		K2	
CO2	To help students gain an u	nderstanding in certain core concepts of Industrial Economics.		K2	
CO3	To familiarize students wi	th theories in Industrial Economics.		К3	
CO4	To help students understar	nd cost structures and their role and importance in firm decisions.		K4	
CO5	To analyze the performa contemporary developmen	nce of the Indian Industrial Economy against the backdrop of at.		K5	
K1: R	emembering, K2: Understar	nding, K3: Applying, K4: Analyzing, K5: Evaluating, K6: Creating			

Electives Syllabus Page 248 of 267

	Chemical Engineering Elective: Industrial Economics CET4786 Mapping of Course Outcomes (COs) with Programme Outcomes (POs)											
	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12											
CO1	CO1											
CO2												
CO3												
CO4	CO4											
CO5	CO5											
3-Strong Contribution: 2-Moderate Contribution: 1-Low Contribution:												

	Chemical Engineering Elective: Industrial Economics CET4786 Mapping of Course Outcomes (COs) with Programme Specific Outcomes (PSOs)							
	PSO1	PSO2	PSO3	PSO4	PSO5			
CO1								
CO2								
CO3								
CO4								
CO5								
3-5	Strong Contribution; 2	2-Moderate Contri	ibution; 1-Low Con	ntribution;	•			

Electives Syllabus Page 249 of 267

		Semester			
PEC	Course Code:	Course Title:	C	Credits =	- 4
ļ	CET4787	Advanced Strength of Materials	L	T	P
	Semester:	Total contact hours: 60	3	1	0
		List of Prerequisite Courses			
	Structural Mechanics (E	ST4151)		_	
		List of Courses where this course will be prerequisite			
	NIL				
	Descr	iption of relevance of this course in the Int. M. Tech. Program			
		concepts, theories and principles applied for explaining the mechanical	behavio	our of m	ateria
	various states of stress and			Campt	-+:-
	vides you with an in-dep	th understanding of the major principles used in evaluating the restation.	ponse	of consi	rucuo
mater	dis to suesses una deferm	Course Contents (Topics and subtopics)	R	eqd. ho	urs
1	Analysis of Trusses - Co	ondition for perfect truss, redundancy, stable, unstable truss.		10	
		hod of joints, method of sections.			
2	Torsion of a circular sha problem.	ft - concept, basic derivation, shear stress distribution, simple		10	
3	Short and Long columns and Rankine's approach	s (Struts) - Basic concept, crippling load, end conditions. Euler's (without derivations)		10	
4		s - concept of radial, longitudinal stresses, behaviour of thin thin cylindrical and spherical shells. Behaviour of thick cylinders		10	
5	relationship, plane stress	rains – Representation of stress and strain at a point, Stress stain s and plane strain. Transformation of stresses and its importance, rains, maximum shearing stress, Mohr's circle its use and		5	
6	D, 2-D and 3-D analysis Force displacement relat	besign - Steps in the engineering design, Importance of analysis, 1- and interpretation of results. Design philosophies, factor of safety, tionship, Strain deformation relationship, Introduction to finite puter aided analysis and design.		5	
7	composites, fibres and m	Types of composite materials, fillers for composites, polymer natrix for a composite material, Types of fibres, their properties, ibres, manufacturing of polymer composite materials. Mechanics of operties and testing of composite materials, Uses of composite		5	
8	coatings, anticorrosive c Various polymers and ep performance enhancing	ndustrial applications - Advances in materials, Materials used for coatings, special purpose floorings, water proofing compounds, poxies used for industrial applications. Different types of and special purpose construction chemicals. Plasticizers and supering agents, accelerators and retarders, viscosity modifying agents,		5	
		Total		60	
	T	List of Text Books/ Reference Books	T		
1		Materials by Timoshenko and Gere			
2	Advanced Solid Mechan	·			
3		Materials by Seely and Smith			
4	Strength of Materials by	·			
5	Mechanics of Materials-	I by EJ Hern; Paragaman, New York			

Electives Syllabus Page 250 of 267

Course Outcomes (students will be able to....)

K2

Identify different areas of ADVANCED STRENGTH OF MATERIALS.

CO1

CO2	Find the applications of all the areas in day-to-day life.	K2		
CO3	Determine the stresses in thick cylinders.	K3		
CO4	Analyse the curved beams for stresses with different cross sections.	K4		
CO5	Determine the Strain Energy under various loading conditions.	K5		
K1: Re	K1: Remembering, K2: Understanding, K3: Applying, K4: Analyzing, K5: Evaluating, K6: Creating			

	Chemical Engineering Elective: Advanced Strength of Materials CET4787 Mapping of Course Outcomes (COs) with Programme Outcomes (POs)											
	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12										PO12	
CO1	CO1											
CO2												
CO3												
CO4												
CO5												
	3-Strong Contribution; 2-Moderate Contribution; 1-Low Contribution;											

	cal Engineering Elector of Course Outcomes				
	PSO1	PSO2	PSO3	PSO4	PSO5
CO1					
CO2					
CO3					
CO4					
CO5					
3-5	Strong Contribution; 2	2-Moderate Contri	bution; 1-Low Cor	ntribution;	•

Electives Syllabus Page 251 of 267

		Semester			
PEC	Course Code:	Code: Course Title:			
	CET4788	Turbulent Flow and CFD	L	T	P
	Semester:	Total contact hours: 60	3	1	0
	·	List of Prerequisite Courses	·		
]	NIL				
	List	of Courses where this course will be prerequisite			
]	NIL				
•	Description	of relevance of this course in the Int. M. Tech. Pro-	gram		

Computational Fluid Dynamics (CFD) course is designed to give the fundamental concepts of the CFD methods and algorithms that enable students to develop their own CFD computer programs or use available public domain or commercial software and interpret the results. The course starts with the mathematical descriptions of fluid flow and the associated phenomena (heat and mass transfer) for incompressible flows at laminar and turbulent flow regimes. Then, the formulation of the numerical solution methodology is discussed in detail using explicit and implicit finite-volume methods. Students will run source codes available in public domain or licensed educational, if available. Homework assignments and a course project will be given.

	Course Contents (Topics and subtopics)	Reqd. hours
1	Derivation of equations of momentum and energy for turbulent flows. Modelling of turbulent flows: kinetic energy, algebraic stress model, Low Reynolds number model, LES model etc.	10
2	Turbulent boundary layer flows and similar solutions	10
3	Grid generation, Conservation Laws (Mass, Momentum, and Energy) of Fluid Flow & Heat Transfer Conservation laws in integral form Conservation laws in differential form The primitive variables (non-conservative) and conservative forms of the governing equations.	10
4	Use of Control volume method, Methods of lines, Finite difference, Finite element and various algorithms (SIMPLE, SIMPLER & SIMPLEC etc) to solve the momentum, energy and mass transfer equations for simulation of some practical problems (Simulation of stirred vessel, Natural convection flow inside a closed chamber etc)	10
5	Solution of Discretized Equations The tri-diagonal matrix algorithm (TDMA)/Thomas algorithm Application of TDMA to two-dimensional and three-dimensional problems	10
6	The Finite Volume Method for Unsteady Flows One-dimensional unsteady heat conduction with explicit and implicit formulations Discretization of unsteady convection-diffusion equation Extension of implicit method to 2-D and 3-D problems The unsteady SIMPLE and pressure implicit with splitting of operators (PISO) algorithms	5
7	Major commercial software packages. Problem solving demonstrations using student version (normally, free).	5
	Total	60
	List of Text Books/ Reference Books	
1	Patankar, S.V. (1980), Numerical Heat Transfer and Fluid Flow, Hemisphere Publishing Co.	
2	Versteeg, H.K. and Malalasekera, W. (1995), An introduction to computational fluid dynamics: The finite-volume method, Longman Scientific & Technical (in USA, by John Wiley and Sons Inc.).	
3	Simple CFD source codes in MATLAB	
	Course Outcomes (students will be able to)	
CO1	Use statistical methods to describe and analyse turbulent flow,	K2
CO2	Describe and explain the length scale structure of turbulence, and	K2

Electives Syllabus Page 252 of 267

CO3	Use an understanding of turbulence to describe the strengths and weaknesses of common CFD models for turbulent flow.	К3			
CO4	Program and simulate simple CFD problems	K4			
CO5	Understand the CFD role in industrial design applications and its limitations	K5			
K1: Re	K1: Remembering, K2: Understanding, K3: Applying, K4: Analyzing, K5: Evaluating, K6: Creating				

	Chemical Engineering Elective: Turbulent Flow and CFD CET4788 Mapping of Course Outcomes (COs) with Programme Outcomes (POs)											
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1												
CO2												
CO3												
CO4												
CO5	CO5											
	3	S-Strong (Contribu	tion; 2-M	loderate (Contribut	tion; 1-L	ow Contr	ibution;			

	Chemical Engineering Elective: Turbulent Flow and CFD CET4788 Mapping of Course Outcomes (COs) with Programme Specific Outcomes (PSOs)											
	PSO1 PSO2 PSO3 PSO4 PSO5											
CO1												
CO2												
CO3												
CO4												
CO5												
3-5	3-Strong Contribution; 2-Moderate Contribution; 1-Low Contribution;											

Electives Syllabus Page 253 of 267

		Semester			
PEC	Course Code:	Course Title:	C	redits :	= 4
	CET4789	Momentum, Heat and Mass Transfer	L	T	P
	Semester:	Total contact hours: 60	3	1	0
		List of Prerequisite Courses			
	Fluid Flow (CET4251) (CET454)	, Heat Transfer (CET4252), Chemical Engineering Operations			
		List of Courses where this course will be prerequisite			
	NIL				
	Descri	iption of relevance of this course in the Int. M. Tech. Program			
on des	ign of heat and mass trans or operations used in biopr	1			
		Course Contents (Topics and subtopics)	R	eqd. ho	urs
1		f momentum, energy, mass transfer in curvilinear coordinate ation (Newtonian & Non-Newtonian fluids),		15	
2		es - Flow between two concentric cylinders, flow between two ders, hydrodynamics of bearings lubrication, steady flow around a ow motion).		15	
3	perturbation theory), sim	ory, derivation of bounder layer equations (using singular ilar and non-similar solutions for some forced, mixed and natural ing bounder layer theory)		15	
4		ordinary diffusion in liquids, diffusion with homogenous chemical falling liquids film (forced convection mass transfer)		15	
		Total		60	
		List of Text Books/ Reference Books			
1	A. Suryanarayana, "Mass	Transfer Operations", 1st edition, New - Age, International, 2006.			
2	McCabe, W.L. Smith J.C edition, McGraw Hill, 20	C. and Harriot P., "Unit Operations of Chemical Engineering", 7th 004.			
3	D. Q. Kern, "Process Hea	at Transfer", McGraw-Hill, 2001.			
4	C. J. King, "Separation Programme Pr	rocesses", 2nd edition, McGraw Hill, 2014.			
		Course Outcomes (students will be able to)			
CO1	Understand the basic mo	des of heat and mass transfer.		K2	
CO2	Apply principles of heat	and mass transfer to predict transfer coefficients		K2	
CO3	Analyze working of various	ous heat transfer equipment		K3	
CO4	Design heat and mass tra	nsfer equipment		K4	
CO5	Evaluate no. of stages red	quired for given mass transfer problem.		K5	
K1: Re	emembering, K2: Understa	anding, K3: Applying, K4: Analyzing, K5: Evaluating, K6: Creating			

	Chemical Engineering Elective: Momentum, Heat and Mass Transfer CET4789 Mapping of Course Outcomes (COs) with Programme Outcomes (POs)											
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1												
CO2												
CO3												
CO4												
CO5												

Electives Syllabus Page 254 of 267

3-Strong Contribution; 2-Moderate Contribution; 1-Low Contribution;

	Engineering Electivof Course Outcomes				
	PSO1	PSO2	PSO3	PSO4	PSO5
CO1					
CO2					
CO3					
CO4					
CO5					
3-5	Strong Contribution; 2	2-Moderate Contri	bution; 1-Low Cor	ntribution;	•

Electives Syllabus Page 255 of 267

		Semester			
PEC	Course Code:	Course Title:	C	redits :	= 4
	CET4790	Theoretical and Computational Chemistry	L	T	P
	Semester:	Total contact hours: 60	3	1	0
		List of Prerequisite Courses			
	NIL				
		List of Courses where this course will be prerequisite			
	NIL				
	Descri	ption of relevance of this course in the Int. M. Tech. Program			
		ional chemistry is to solve chemical problems by simulating chemica reliable, accurate and comprehensive information at an atomic level.	ıl syste	ms (mo	lecular,
		Course Contents (Topics and subtopics)	R	eqd. ho	urs
1	Wave character and wave orthogonalization,	e functions, De Broglie equation, normalization and		15	
2		erators, Schrodinger equation, particle in an infinite square well anical harmonic oscillator, angular momentum operator and rigid		15	
3	Born Oppenheimer approfunctions,	eximation, potential energy surfaces, self-consistent field wave		15	
4	Computational methods: methods, SCF theory, Ha	Molecular mechanics, MO theory, semi empirical and ab initio artree Fock method, DFT		15	
		Total		60	
		List of Text Books/ Reference Books			
1		stlund, "Modern Quantum Chemistry: Introduction to Advanced ory", (Dover Pubns, 1996)			
2	Wolfram Koch, Max C. F Edition, (Wiley, 2001)	Holthausen, "A Chemist's Guide to Density Functional Theory", 2nd			
3	Christopher J. Cramer, "I edition, (Wiley, 2004)	Essentials of Computational Chemistry: Theories and Models", 2nd			
4	Michael P. Allen and Do (Oxford University Press	minic J. Tildesley, "Computer Simulation of Liquids", 2nd edition, , 2017).			
5		d Smit, "Understanding Molecular Simulation: from Algorithms to n, (Academic Press, 2001).			
		Course Outcomes (students will be able to)			
CO1	Know the main mathema	tical models that are used in chemistry, mainly the simplest ones.		K2	
CO2		s that inspire the models, how they are translated into mathematical mparison with experiments.		K2	
CO3	The student will acquire chemistry methods and p	critical knowledge of the potentials and limitations of computational rograms.		K3	
CO4	analyses simple chemic theoretical chemistry, rec	owledge of popular computational methods of quantum chemistry, cal problems and formulates appropriate questions in terms of cognizes theoretical methods suitable for solving these questions.		K4	
CO5	Discuss the applications	of DFT in inorganic, organic and physical chemistry		K5	
K1: R	emembering, K2: Understa	anding, K3: Applying, K4: Analyzing, K5: Evaluating, K6: Creating			

C	Chemical Engineering Elective: Theoretical and Computational Chemistry CET4790 Mapping of Course Outcomes (COs) with Programme Outcomes (POs)											
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1												

Electives Syllabus Page 256 of 267

CO2										
CO3										
CO4										
CO5										
	3-Strong Contribution; 2-Moderate Contribution; 1-Low Contribution;									

	ngineering Elective: of Course Outcomes		_	•)							
	PSO1 PSO2 PSO3 PSO4 PSO5											
CO1												
CO2												
CO3												
CO4												
CO5												
3-5	Strong Contribution; 2	2-Moderate Contr	ibution; 1-Low Co	ntribution;								

Electives Syllabus Page 257 of 267

		Semester			
PEC	Course Code:	Course Title:	C	redits	= 4
	CET4791	Green Chemistry and Catalysis	L	T	P
	Semester:	Total contact hours: 60	3	1	0
		List of Prerequisite Courses			
	NIL				
		List of Courses where this course will be prerequisite			
	NIL				
	Descri	ption of relevance of this course in the Int. M. Tech. Program			

Green chemistry known as sustainable chemistry, is founded on the main principle of reducing or preventing pollution already at the source. This stands in contrast to the field of Environmental Chemistry which encompasses the study of pollutants that are already present in the environment. The term green chemistry was coined by Paul Anastas and introduced at the beginning of the 1990s. It has since established itself as an important philosophy within chemistry over the past decades. One of the objectives of this course is to provide the student knowledge about the principles for Green Chemistry. Central topics will include the reduction of waste, use of renewables, catalysis, substitution of hazardous and dangerous chemicals with more benign alternatives etc. Furthermore, the student will obtain skills and experience through case studies and laboratory exercises.

exerci	ses.	
	Course Contents (Topics and subtopics)	Reqd. hours
1	Concept of Green Chemistry: Twelve principles of green chemistry, E factor, Waste	10
	management	
2	Types of catalysis: Homogeneous and Heterogeneous catalysis. Catalytic cycles Organometallic compounds used as catalysts: Pd, Rh, and Ru in C-C bond formation. Catalytic properties of mononuclear compounds	10
3	Homogeneous catalysis: Hydrogenation, hydroformylation, hydrocyanation, Hydrosilylation, Wilkinson catalysts, Chiral ligands and chiral induction, Ziegler-Natta catalysts	10
4	Mercuration and oxymercuration	10
5	Organopalladium catalysts: Suzuki coupling, Heck coupling and related cross coupling reactions.	10
6	Alkene oligomerization and metathesis.	5
7	Catalytic oxidations and reductions: Epoxidation, dihydroxylations.	5
	including carbonylation, decarboxylation, olefin isomerization, arylation	
	Important catalytic reactions: Monsanto acetic acid process, Wacker process, Heck reaction	
	Total	60
	List of Text Books/ Reference Books	
1	Green Chemistry and Engineering Mukesh Doble, Ken Rollins, Anil Kumar	
2	Green Chemistry and Catalysis, R. A. Sheldon, Isabella Arends, Ulf Hanefeld	
	Course Outcomes (students will be able to)	
CO1	Knowing the 12 principles of Green Chemistry.	K2
CO2	Be able to describe classes of the most important chemicals (both organic and inorganic) that are hazardous/dangerous for human and animal health, and the environment.	K2
CO3	Identification of greener solvents and recycling of these including catalysts.	К3
CO4	Calculate the atomic efficiency and E-factors of chemical reactions and processes.	K4
CO5	Apply the principles for Green Chemistry in order to make a life cycle assessment for a chemical product including waste treatment (degradation/recycling).	K5
K1: R	emembering, K2: Understanding, K3: Applying, K4: Analyzing, K5: Evaluating, K6: Creating	
	·	

	Chemical Engineering Elective: Green Chemistry and Catalysis CET4791 Mapping of Course Outcomes (COs) with Programme Outcomes (POs)											
	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12									PO12		
CO1												

Electives Syllabus Page 258 of 267

CO2												
CO3												
CO4												
CO5												
	3	S-Strong (Contribut	ion: 2-M	oderate (Contribut	tion: 1-L	ow Contr	ibution:	•	•	•

	ical Engineering Electric Electric Course Outcomes		•	•	
	PSO1	PSO2	PSO3	PSO4	PSO5
CO1					
CO2					
CO3					
CO4					
CO5					
3-5	Strong Contribution; 2	2-Moderate Contr	ibution; 1-Low Co	entribution;	

Electives Syllabus Page 259 of 267

		Semester			
PEC	Course Code:	Course Title:	(credits :	= 4
	CET4792	L	T	P	
	Semester:	Total contact hours: 60	3	1	0
		List of Prerequisite Courses	•	•	
	NIL				
	1	List of Courses where this course will be prerequisite	ı		
	NIL				
	Descr	iption of relevance of this course in the Int. M. Tech. Program	ı		
The fo		ne synthesis, structure and bonding, properties and reactivity of main	group (organom	etalli
		ganolithium reagents, organophosphorus compounds, etc), organotrans			
cluste	r chemistry, zeolites and	metal-organic frameworks, and organo-lanthanoid and -actinoid cher	mistry.	The lab	orato
		m to develop skills in modern synthetic chemistry and the purificatio	n of co	mpound	ls usir
chrom	natographic techniques.		_		
		Course Contents (Topics and subtopics)	R	eqd. ho	urs
1		etal-carbon bond with main group and transition elements. l-carbon bond formation. Methods of M-C bond formation.		10	
2		city. Electron counting and 16 and 18 electron rules - applications		10	
		. Stereochemical nonrigidity in organometallic compounds.		10	
3		f metal alkyls and aryls. Complexes with CO and related ligands,		10	
		elated unsaturated molecules. Organic transition metal complexes			
		zing groups for double bond, triple bond, propyl cation and short			
		s with cyclopentadiene and arenes and other CnHn sandwich and s. Hydride, dinitrogen and dihydrogen complexes			
4		omplexes: Structure and applications in catalysis		10	
7		reactions: Ligand substitution, oxidative reactions, migratory		10	
		sertion, extrusion, oxidative addition, reductive elimination,			
		nechanism and stereochemistry.			
5		h C-M bond: Li, Mg, Al, Ti and Ce alkyls; Organicuprates, organic		10	
	zinc reagents	IZI and according TDL according to the control of t			
6		son Khand reaction. The use of stoichiometric transition metal sis of complexes organic molecules - enantioselective synthesis via		5	
	organometallic compour				
7		ds, boranes, carboranes and, metallocarboranes, organo platinum		5	
	complexes, metallocenes				
	Importance of organome	tallic compounds in Biological systems			
		Total		60	
		List of Text Books/ Reference Books	1		
1		P G Taylor, J M F Gagan			
2	Principles of Organomet	allic Chemistry G. E. Coates			
		Course Outcomes (students will be able to)	T		
CO1		the synthesis, structure, bonding, properties and reactivity of main lanthanoid, and actinoid organyls.		K2	
CO2		level in a chemical synthesis laboratory demonstrating effective tiquette, especially in the areas of chromatographic techniques and zation.		K2	
CO3	Demonstrate effective re	eport writing, experimental design and data analysis.		К3	
CO4	Understand fundamenta understand efficient cata	al reaction types and mechanisms and how to combine these to alytic processes		K4	
	1		t e		

Electives Syllabus Page 260 of 267

K5

Know important applications of organometallic homogeneous catalysis in the production of

K1: Remembering, K2: Understanding, K3: Applying, K4: Analyzing, K5: Evaluating, K6: Creating

large-scale (bulk) and smaller-scale (fine chemicals) production

	Chemical Engineering Elective: Organometallic Chemistry CET4792 Mapping of Course Outcomes (COs) with Programme Outcomes (POs)											
	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12										PO12	
CO1												
CO2	CO2											
CO3												
CO4												
CO5												
	3-Strong Contribution; 2-Moderate Contribution; 1-Low Contribution;											

	mical Engineering E of Course Outcomes	_		•	
	PSO1	PSO2	PSO3	PSO4	PSO5
CO1					
CO2					
CO3					
CO4					
CO5					
3-8	Strong Contribution; 2	2-Moderate Contri	bution; 1-Low Co	ntribution;	•

Electives Syllabus Page 261 of 267

rearrangement of ions, Maclaferty rearrangement, retrodiels-alder reaction.

ESR spectroscopy: Theory, experimental technique, Hyperfine splitting

Emission: Flame photometry, ICP, Ark-Spark spectra, Phosphorescence, XRF

Elements of Nuclear Chemistry H.J. Arnikar, 4th Edn. Wiley Eastern Ltd.

Structure elucidation using combined stereoscopic methods

NMR

(1994)

1

2 3

CO1

CO₂

Mossbaur spectroscopy

John Wiley and sons 2nd Edn.

oxidation states, metal-metal bonded compounds

Molecular orbital theory

Hyphenated techniques: GC-MS, LC-MS, LC-MS-MS, GC-IR, GC-AIS, GC-NMR, LC-

Fundamentals of molecular spectroscopy, C.N.Banwell and E.McCasj, Tata McGraw Hill

Introduction of Nuclear and Radiochemistry, G. Friedlaunder, T.W.Kennedy and J.M.Miller,

Learn bonding in transition metal complexes, Valence bond theory, Crystal field theory,

Study of structural trends, mononuclear oxocomplexes, polyoxometallates, intermediate

5

60

K2

K2

Total

		Semester			
PEC	Course Code:	Course Title:	C	redits =	= 4
	CET4793	CET4793 Advanced Spectroscopy			
	Semester:	3	1	0	
		List of Prerequisite Courses			
	NIL				
		List of Courses where this course will be prerequisite			
	NIL				
	Descr	iption of relevance of this course in the Int. M. Tech. Program			
measu sampl applie	rements and allow scient les and follow chemical re-	ill introduce some of the key principles, tools and techniques that ists of all disciplines to characterise chemical structure and compositactions in intricate detail. The module will cover how these technique original imaging, as well as more fundamental science for measuring that reactivity.	ition, in	nage bio e used f	ologic or bo
		Course Contents (Topics and subtopics)	Re	eqd. ho	urs
1	UV-VIS spectroscopy -	Woodward rules, aromatic and heterocyclic compounds		10	
2	New applications	nnique, group frequencies, vibrational coupling. NIR spectroscopy.		10	
3	transitions. Raman vs IR			10	
4	quadrupole relaxation, is			10	
5	systens, different spin sy Simplification of compl reagents, INDOR technic C13 NMR: Basics, doble	resonance, SY, H1-C13 HETCOR- APT and DEPT, C13-C13 connecticity: ns: NOE and NOESY		10	
6		sics, EI and CI techniques. Isotopic abundance, fragmentation,		5	

Electives Syllabus Page 262 of 267

List of Text Books/ Reference Books

Course Outcomes (students will be able to....)

CO3	Understand reaction mechanisms of d-metal complexes, Ligand substitution reactions. classification & theory of redox reactions, photochemical reactions	К3
CO4		K4
C04	Study of structure, properties, reactions and synthesis of d-block carbonyls, Reactivity of d-and f-block organometallic compounds	K4
CO5	Introduction, methods of separation and applications of Lanthanides, Actinides	K5
K1: R	emembering, K2: Understanding, K3: Applying, K4: Analyzing, K5: Evaluating, K6: Creating	

	Chemical Engineering Elective: Advanced Spectroscopy CET4793 Mapping of Course Outcomes (COs) with Programme Outcomes (POs)											
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1												
CO2												
CO3												
CO4												
CO5												
	3	S-Strong	Contribu	tion; 2-M	Ioderate	Contribu	tion; 1-L	ow Conti	ribution;			

	nemical Engineering of Course Outcomes				
	PSO1	PSO2	PSO3	PSO4	PSO5
CO1					
CO2					
CO3					
CO4					
CO5					
3-5	Strong Contribution; 2	2-Moderate Contr	ibution; 1-Low Cor	ntribution;	

Electives Syllabus Page 263 of 267

		Semester			
PEC	Course Code:	Course Title:	C	redits	= 4
	CET4794	Statistical Mechanics	L	T	P
	Semester:	Total contact hours: 60	3	1	0
		List of Prerequisite Courses			
	Applied Physics (PHT41	51), Structural Mechanics (EST4151)			
		List of Courses where this course will be prerequisite			
	NIL				
	Descri	iption of relevance of this course in the Int. M. Tech. Program	•		

This course develops concepts in classical laws of thermodynamics and their application, postulates of statistical mechanics, statistical interpretation of thermodynamics, microcanonical, canonical and grant canonical ensembles; the methods of statistical mechanics are used to develop the statistics for Bose-Einstein, Fermi-Dirac and photon gases; selected topics from low temperature physics and electrical and thermal properties of matter are discussed.

2 i	Basic Statistical Approach to a System Applicability of the statistical approach to a system, equilibrium and fluctuations, irreversibility and approach to equilibrium, counting of system states – macrostates and microstates, equiprobability postulate, concept of statistical ensemble, number of accessible states of a system, phase space. Ensemble approach to Thermodynamics of Physical Systems Isolated system – microcanonical ensemble, system in contact with a heat reservoir,	10
3]	irreversibility and approach to equilibrium, counting of system states – macrostates and microstates, equiprobability postulate, concept of statistical ensemble, number of accessible states of a system, phase space. Ensemble approach to Thermodynamics of Physical Systems	
		4.0
1	canonical ensemble, Maxwell-Boltzmann distribution as an example, mean values in a canonical ensemble, partition function for a canonical ensemble, relation to thermodynamics.	10
. (Generalised Interactions Grand canonical ensemble, systems with variable number of particles, chemical potential, partition function for a grand canonical ensemble, relation to thermodynamic variables.	10
5	Applications to Multi-phase Systems	10
t	Stability conditions for a homogeneous system, equilibrium between phases, phase transformations, general relations for a system with several components, general conditions for chemical equilibrium, chemical equilibrium between ideal gases, the equilibrium constants in terms of partition functions.	10
	Total	60
-	List of Text Books/ Reference Books	
1	Pathria, R.K., Statistical Mechanics, Butterworth-Heinemann, (1996).	
2	Reif, F., Fundamentals of Statistical and Thermal Physics, Waveland, (2008).	
3	Mandl, F. (1998): Statistical Physics, 2nd edition, Wiley	
	Course Outcomes (students will be able to)	
	Explain statistical physics and thermodynamics as logical consequences of the postulates of statistical mechanics	K2
CO2	Apply the principles of statistical mechanics to selected problems	K2
CO3	Apply techniques from statistical mechanics to a range of situations	К3
	Use the tools, methodologies, language and conventions of physics to test and communicate ideas and explanation.	K4
	Use the tools, methodologies, language and conventions of physics to test and communicate ideas and explanation.	K5

Chemical Engineering Elective: Statistical Mechanics CET4794 Mapping of Course Outcomes (COs) with Programme Outcomes (POs)

Electives Syllabus Page 264 of 267

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1												
CO2												
CO3												
CO4												
CO5												
		Ctunna	Contail	2 M	[1	C = = 4 =: 15 == 4	1 T	C	.:1	•	•	•

3-Strong Contribution; 2-Mod	derate Contribution;	1-Low Contribution;

	hemical Engineering of Course Outcomes	-			
	PSO1	PSO2	PSO3	PSO4	PSO5
CO1					
CO2					
CO3					
CO4					
CO5					

Electives Syllabus Page 265 of 267

		Semester			
PEC	Course Code:	Course Title:	C	redits :	= 4
	CET4795	Molecular Quantum Mechanics	L	T	P
	Semester:	Total contact hours: 60	3	1	0
		List of Prerequisite Courses			
	Applied Physics (PHT41	51), Structural Mechanics (EST4151)			
		List of Courses where this course will be prerequisite			
	NIL				
	Descri	ption of relevance of this course in the Int. M. Tech. Program			
calcul	ations at the molecular lev	damental knowledge and introduce selected tools needed to perform rel. It addresses students in physics and applied mathematics as well imarily addresses students with a basic understanding of quantum me	as mat	hematic	
		Course Contents (Topics and subtopics)	R	eqd. ho	urs
1	Revision of Basic Conce	ots		10	
2		r the hydrogen atom, solution in terms of radial and angular ace of quantum numbers, atomic spectra.		10	
3	The quantum harmonic o significance of 'zero-poir	scillator, eigenvalues and eigenfunctions (no detailed derivation), at' energy.		10	
4	Origin of Molecular Spec Analysis of diatomic mol a simple diatomic molecu	ecule as a rigid rotator, rotational and vibrational energy levels of		10	
5	Approximation methods	in Quantum Mechanics erturbation theory with simple examples, variational theorem,		10	
6	Molecular Quantum Mec Molecular orbital and va			10	
		Total		60	
		List of Text Books/ Reference Books			
1	Molecular Quantum Mec	hanics Peter W. Atkins, Ronald S. Friedman			
2	Introductory Quantum Cl	nemistry A. K. Chandra ·			
3	Molecular Quantum Dyn	amics: From Theory to Applications, Fabien Gatti · 2014			
		Course Outcomes (students will be able to)			
CO1	Form and use wave func	tions and operators for many-electron systems		K2	
CO2	Characterise the symmet rules	ry of wave functions and thereby understand spectroscopic selection		K2	
CO3	Explain strong covalent	oonds in terms of wave functions		К3	
CO4	Explain the correlated m	otions of electrons		K4	
CO5	Perform calculations of a	approximate wave functions with help of computers		K5	

	Chemical Engineering Elective: Molecular Quantum Mechanics CET4795 Mapping of Course Outcomes (COs) with Programme Outcomes (POs)											
	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO1										PO12	
CO1												
CO2												
CO3												
CO4												

K1: Remembering, K2: Understanding, K3: Applying, K4: Analyzing, K5: Evaluating, K6: Creating

Electives Syllabus Page 266 of 267

CO5											
	3	-Strong	Contribut	ion; 2-M	loderate (Contribut	ion; 1-L	ow Contr	ribution;		

	ical Engineering Electric of Course Outcomes				
	PSO1	PSO2	PSO3	PSO4	PSO5
CO1					
CO2					
CO3					
CO4					
CO5					
3-	Strong Contribution;	2-Moderate Contri	ibution: 1-Low Cor	ntribution:	

Electives Syllabus Page 267 of 267